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We investigate the evolution of the net-proton kurtosis and the kurtosis of the chiral order pa-
rameter near the critical point in the model of nonequilibrium chiral fluid dynamics. The order
parameter is propagated explicitly and coupled to an expanding fluid of quarks and gluons in or-
der to describe the dynamical situation in a heavy-ion collision. We study the critical region near
the critical point on the crossover side. There are two sources of fluctuations: non-critical initial
event-by-event fluctuations and critical fluctuations. These fluctuations can be distinguished by
comparing a mean-field evolution of averaged thermodynamic quantities with the inclusion of fluc-
tuations at the phase transition. We find that while the initial state fluctuations give rise to flat
deviations from statistical fluctuations, critical fluctuations reveal a clear structure of the phase
transition. The signals of the critical point in the net-proton and sigma field kurtosis are affected
by the nonequilibrium dynamics and the inhomogeneity of the space-time evolution but develop
clearly.

PACS numbers: 5.75.-q, 47.75.+f, 11.30.Qc, 24.60.Ky, 25.75.Nq

I. INTRODUCTION

At large temperatures and densities, strongly-
interacting matter is expected to change from a confined
hadronic phase to a deconfined phase of quarks and glu-
ons where chiral symmetry is restored. As the partition
function of quantum chromodynamics (QCD) cannot be
solved perturbatively in the region of the phase transi-
tion, we have to rely on other techniques to study the
QCD phase diagram. Lattice QCD has successfully dis-
covered the crossover nature of the transition [1, 2] and
established continuum-extrapolated results for the QCD
equation of state, both at small baryochemical poten-
tial µB [3, 4]. Due to the fermionic sign problem, stan-
dard lattice QCD methods become computationally in-
effective in the regime of large densities. A couple of
methods have been developed to extend the region of
current lattice QCD calculations to finite baryochemi-
cal potential [5–7], but quantitative conclusions cannot
yet be drawn. A QCD critical point has been excluded
up to values of µB/T . 1. Another approach to the
QCD phase diagram, which reproduces lattice results at
vanishing baryochemical potential and can be extended
to larger densities, comes from solving a coupled set of
Dyson-Schwinger equations for the quark and gluon prop-
agators [8, 9]. Here, a potential critical point is found to
be located at (T c, µcq) = (115, 168) MeV.

Ratios of cumulants of conserved quantities like the
net-baryon number or net-electric charge are sensitive to
a critical point [10–12] signaling the singularity of ther-
modynamic quantities via their relation to susceptibili-
ties [13–16]. In this context higher-order cumulants are of
special interest because they are more sensitive to the cor-
relation length of fluctuations [17, 18]. From universal-
ity arguments it has been demonstrated that the critical
contributions to the kurtosis, in particular, may become
negative approaching the critical point from the crossover

side in heavy-ion collision experiments [19]. This leads to
the expectation of measuring a decreasing kurtosis low-
ering the beam energies, followed by a more complicated
non-monotonic structure depending on the interplay of
the location of the QCD critical point and freeze-out con-
ditions for fluctuation measures.

Measurements of the net-proton and net-charge kur-
tosis and skewness have been reported by the STAR
collaboration [20, 21], where significant deviations from
the hadron resonance gas and UrQMD calculations were
found at lower beam energies.

To understand the experimental data, it is impor-
tant to develop dynamical models which are able to de-
scribe nonequilibrium effects of the QCD phase transi-
tion. Even if thermalization times are small during the
evolution of the system created in a heavy-ion collision
and local equilibrium is thus achieved, near the criti-
cal point the thermalization time diverges with a certain
power of the correlation length given by the dynamical
universality class [22]. This phenomenon is called crit-
ical slowing down and limits the divergence of fluctua-
tions due to finite-time effects. A phenomenological ap-
proach has been applied in [23] to understand the growth
of the correlation length in an evolving system. It was
found that the correlation length does not grow beyond
1.5−2 fm, but memory effects let the system remain cor-
related for a longer period than expected in equilibrium.
Expanding Fokker-Planck dynamics in terms of powers
of the correlation length over the system size in the scal-
ing regime, the importance of memory effects was under-
lined in [24]. In a real-time evolution of non-Gaussian
moments the magnitude and the sign of the critical con-
tributions could be significantly different from the equi-
librium expectations. In this model a simplified and ho-
mogeneous expansion was assumed and the back-reaction
of the order parameter fluctuations on the surrounding
matter was not taken into account.
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In this work, we focus on the real-time evolution of the
fluctuations of the order parameter for chiral symmetry,
the sigma field, as obtained in a coupled dynamics. While
the sigma field is propagated explicitly via a stochastic-
relaxational equation, it interacts with a fermionic heat
bath which expands fluid dynamically [25]. It has been
demonstrated in [26–29], that this model is able to de-
scribe critical slowing down as well as spinodal decompo-
sition within a dynamical setup.

We follow the evolution of the system over various hy-
persurfaces of constant energy density of the coupled sys-
tem and compare the fluctuations in the sigma field to the
fluctuations in net-proton numbers which are obtained
from a Cooper-Frye particlization prescription. We fur-
thermore give a comparison to a mean-field evolution in
order to pin down the fluctuations stemming from the
initial state versus dynamical fluctuations near the phase
transition.

We begin with a description of nonequilibrium chiral
fluid dynamics (NχFD) in Sec. II, including the equations
of motion and a brief description of the implementation of
initial state and particlization. In Sec. III, we investigate
the dynamics of the net-proton and sigma field kurtosis
for an evolution in the crossover regime near the critical
point. We conclude and give a brief outlook in Sec. IV.

II. NONEQUILIBRIUM CHIRAL FLUID
DYNAMICS

We study the fluid dynamical evolution in a heavy-ion
collision using a quark-meson model with dilaton field,
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as introduced in [30]. In addition to the breaking and
restoration of chiral symmetry it accounts for scale sym-
metry via the dilaton or glueball field χ that is identified
with a gluon condensate. In the present version of this
model we consider light quarks only, so q = (u, d). The
two condensates σ and χ dynamically generate masses for
the constituent quarks and gluons, thus allowing us to fix
the coupling parameters gq = 3.37 and gA = 850 MeV
from the ground state nucleon and glueball masses. The
additional parameters of the chiral sigma model are stan-
dard values: the pion decay constant of fπ = 93 MeV, the
pion mass mπ = 138 MeV, the explicit symmetry break-

ing term h = fπm
2
π and the self-coupling λ2 =

m2
π−m

2
σ

2f2
π

.

For more details, the reader is referred to [29, 30].

In mean-field approximation, the effective thermody-
namic potential reads

Veff = Ωqq̄ + ΩA + Uσ + Uχ + Ω0 , (2)

with the quark and gluon contributions

Ωqq̄ = −2NfNcT
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which depend on temperature T and quark chemical
potential µ = µB/3, Ω0 in Eq. (2) is an unimportant
constant to set the total energy to zero in the ground
state. The quasiparticle energies of constituent quarks
and gluons are generated via their effective masses as

Eq =
√
p2 +m2

q and EA =
√
p2 +m2

A.

The mean-field values of the condensate fields, 〈σ〉 and
〈χ〉, are obtained by minimizing the effective thermody-
namic potential Veff via

∂Veff

∂σ

∣∣∣∣
σ=〈σ〉

= 0 ,
∂Veff

∂χ

∣∣∣∣
χ=〈χ〉

= 0 . (5)

In what we will call the mean-field evolution, the order
parameter fields are set to their mean-field values neglect-
ing fluctuations and the pressure is given by p = −Veff .
The energy and quark number density of the system are
thus evaluated as e = T∂p/∂T+µnq−p and nq = ∂p/∂µ.
This is equivalent to conventional deterministic fluid
dynamical calculations using a chiral equation of state
(EoS).

From the curvature of the effective potential at the
equilibrium value, the mass of the sigma field and thus
the inverse correlation length are obtained as

m2
σ =

1

ξ2
eq

=
∂2Veff

∂σ2
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σ=〈σ〉

. (6)

In order to study nonequilibrium effects, we follow our
previous works [25, 28, 29, 31], and propagate both order
parameters explicitly. For the chiral condensate we derive
a stochastic relaxation equation from the two-particle ir-
reducible effective action as

∂µ∂
µσ + ησ∂tσ +

δVeff

δσ
= ξ , (7)

which takes into account interactions with the surround-
ing quark heat bath via a dissipative term and a stochas-
tic noise field ξ. In the simplest approximation the noise
is Gaussian
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〈ξ(t, ~x)ξ(t′, ~x′)〉ξ = δ(~x− ~x′)δ(t− t′)mσησ coth
(mσ

2T

)
,

(8)
and has a vanishing expectation value 〈ξ(t, ~x)〉 = 0. Due
to the discretizing of the space-time delta function the
noise term will be dependent on the lattice spacing [32].
In order to avoid this numerical cut-off dependence, we
coarse-grain the noise term over the spatial extension
of the equilibrium estimate for the correlation length as
given in Eq. (6).

The damping coefficient ησ depends on temperature
and chemical potential,

ησ =
12g2

π

[
1− 2nF

(mσ

2

)] 1

m2
σ
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σ

4
−m2

q

)3/2

, (9)

and vanishes near the critical point, where the mass of
the sigma field becomes zero and the constituent quarks
massive. Below the phase transition we use a damping
coefficient of ησ = 2.2/fm as has been estimated for the
σ − π interaction in [33].

In the temperature regime of interest the dilaton field
only fluctuates minimally around its equilibrium value, as
the restoration of scale symmetry occurs at much higher
temperatures only. We, therefore, propagate small fluc-
tuations according to the classical Euler-Lagrange equa-
tion of motion

∂µ∂
µχ+

δVeff

δχ
= 0 . (10)

The relaxation times of the constituent quarks and glu-
ons are assumed to be much smaller than the long-wave
length sigma mode and can thus be treated in local ther-
mal equilibrium with the pressure

p(T, µ;σ, χ) = −Ωqq̄ − ΩA . (11)

In order to conserve the total energy and momentum
of the coupled system, the divergence of the energy-
momentum tensor of the quark-gluon fluid Tµν equals
a source term from the sigma and dilaton fields

∂µT
µν = −∂µ

(
Tµνσ + Tµνχ

)
, (12)

∂µN
µ
q = 0 . (13)

Thus, the fluid dynamical fields become stochastic as the
evolution of the sigma field follows a stochastic differen-
tial equation.

Recently, we have used this model to study the dy-
namical evolution through a first-order phase transition,
where spinodal decomposition plays an important role
[34–38]. We have demonstrated the formation of non-
uniform structures in the energy and baryon density [26]
and the dynamical enhancement of fluctuations in the

medium [29]. Such effects are especially interesting for
upcoming experiments at FAIR [39] and NICA [40] which
will make the region of high baryon densities in the phase
diagram accessible.

A. Initial state

In this paper, we use event-by-event initial conditions,
as opposed to previous publications, where we used an
averaged initial state, usually a smooth sphere or ellip-
soid. The initial energy and baryon density profiles are
obtained from the UrQMD transport model [41, 42] run
at a center-of-mass energy per nucleon pair of

√
sNN =

19.7 GeV/c. However, as the underlying EoS is differ-
ent from that of the effective chiral model used here, we
have to scale the resulting quantities such that we can in-
vestigate the region around the critical point during the
fluid dynamical evolution. With this set of initial condi-
tions from UrQMD the fields are initialized at their lo-
cal equilibrium values according to the temperature and
baryochemical potential profiles. All events are gener-
ated with zero impact parameter.

The UrQMD initial state has been used in recent hy-
brid model calculations at lower beam energies [43] look-
ing at observables like elliptic and triangular flow. It has
been noted that it becomes less reliable at lower energies
where different space-time regions might not thermalize
along a contour of proper time, but gradually during the
evolution. Also the impact of the core-corona separation
is more important. We apply the UrQMD initial state
on the crossover side to the right of the critical point,
where the system traverses the critical region, but does
not extend to extreme baryonic densities. Our study is
of exploratory nature to investigate the effect of initial
state fluctuations versus dynamical fluctuations near the
critical point.

The second- and the fourth-order moments of the
event-by-event volume averaged sigma-field fluctuations
at initial proper time τ0 is 〈∆σ2〉0 = 4 MeV2 and
〈∆σ4〉0 = 64 MeV4 respectively. The initial kurtosis is
thus given by κσ2 = 4 MeV2.

B. Hypersurfaces of constant energy density and
particlization

In order to follow the evolution of the initial and the
dynamical fluctuations we average the sigma field over
hypersurfaces of constant energy density and look at the
event-by-event fluctuations. The energy density is given
by the sum of the local energy density of the fluid and of
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the order parameter fields
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In order to make a first qualitative connection to exper-
imental observables we apply a Cooper-Frye particliza-
tion prescriptions [44, 45] to produce protons and an-
tiprotons from the fluid dynamical fields, in particular
from the energy density in Eq. (14) by the help of the
Cornelius hypersurface finder developed in [46]. Besides
(anti-)protons we produce all non-strange particles im-
plemented in the UrQMD model, such that the fully in-
tegrated energy, momentum, net-charge and net-baryon
number are conserved exactly in each event. In general,
the effect of sigma field fluctuations should couple to par-
ticle production, in particular (anti-)protons and pions,
via an interaction term like gp̄σp [12, 17, 18]. These con-
tributions will be considered in future work. In this study
we do not apply a subsequent hadronic cascade, but work
in this direction is underway.

III. RESULTS

The goal of this work is to study the real-time evo-
lution of the kurtosis in a system which follows a tra-
jectory on the crossover side near the critical point as
seen in Fig. 1. We have calculated the respective tem-
peratures and quark chemical potentials as volume aver-
ages over different hypersurfaces of constant energy den-
sity and then averaged these values over a set of events.
Along the phase boundary we notice a bending which
typically occurs in the crossover fluid dynamical trajec-
tories and isentropes of chiral effective models in mean-
field approximation [26, 47, 48]. We compare mean-field,
where σ = 〈σ〉, χ = 〈χ〉, from Eq. (5), and nonequi-
librium evolutions, i.e. with the order parameter fields
evolved according to Eqs. (7, 10), of the system to disen-
tangle initial fluctuations and dynamically evolved crit-
ical fluctuations. The hypersurface- and event-averaged
quantities T and µ for the trajectory do not differ signif-
icantly between the mean-field and the nonequilibrium
evolution.

First we extract the net-proton number kurtosis, a
quantity that is also studied in experiment. It is cal-
culated as

κσ2 =
〈∆N4〉
〈∆N2〉

− 3〈∆N2〉 , (15)

where ∆N = N − 〈N〉 is the event-wise fluctuation
in the net-proton number and 〈. . . 〉 denotes an aver-
age over events. For each event we extract the mul-
tiplicity with the above described particlization proce-
dure over several hypersurfaces of constant energy den-
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FIG. 1. (Color online) Event-averaged trajectory near the
critical point (black dot). Lines of constant energy density
are drawn to indicate the position of the particlization proce-
dures.
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FIG. 2. (Color online) Kurtosis of the net-proton number as
function of freeze-out energy for mean-field and nonequilib-
rium evolution.

sity. Then, in order to observe fluctuations, we apply a
cut in the rapidity of |y| < 0.5 and in transverse momen-
tum 0.4 GeV < pT < 0.8 GeV. This is similar to the
published data from the STAR Collaboration [20, 21].
The results are shown in Fig. 2, with a comparison be-
tween the mean-field and a nonequilibrium evolution. We
can immediately see that for the mean-field scenario the
values drop only slightly beyond unity, while in nonequi-
librium we obtain a clear minimum at e = 2.5e0 where
the kurtosis reaches a value of about 0.3. Although there
are event-by-event initial state fluctuations, they only re-
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FIG. 3. (Color online) Kurtosis of the net-proton number as
function of particlization energy for nonequilibrium evolution
compared with the thermodynamic equilibrium values calcu-
lated from generalized susceptibilities c4/c2.

sult in a flat behavior of the kurtosis as function of the
particlization energy density. In the case of nonequilib-
rium, where we explicitly propagate the order parame-
ter and allow for energy and momentum exchange be-
tween the field and the quark-gluon fluid, fluctuations
build up when the systems passes the crossover region,
resulting in a dip in the net-proton kurtosis. To compare
this to the thermodynamic net-quark number kurtosis,
we calculated the ratio of the generalized susceptibilities
c4/c2 = κσ2 along the trajectory in Fig. 1. These sus-
ceptibilities are defined as [49]

cn =
∂n(p/T 4)

∂(µq/T )n
. (16)

The result is shown in Fig. 3, together with the nonequi-
librium net-proton kurtosis. Note that in order to make
a graphical comparison possible, we have scaled c4/c2 by
a factor of 10−5. We see a sharp minimum with a nega-
tive quark-number kurtosis at e = 2.6e0, around the same
point where we have the minimum in the net-proton kur-
tosis. We note two things: First, the equilibrium signal
for criticality survives even in the dynamical environment
representing the situation in a heavy-ion collision, though
clearly less pronounced. Second, the resulting suppres-
sion of the net-proton kurtosis is spread out over a larger
range of energy densities as a result of the inhomogenous
medium and critical slowing down. It is important to re-
member that the values of T and µ for the calculation of
c4/c2 are averaged over the whole volume of the fireball.
Therefore, a stronly negative kurtosis does not only occur
at 2.6e0, but also around this value, whereas in smaller

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4

σ field
net−protons

0.4<pT<0.8GeV/c

κ
σ

2

e/e0

FIG. 4. (Color online) Net-proton kurtosis and kurtosis of the
volume-averaged sigma field in comparison. The sigma field
kurtosis is shown in unit MeV2.

regions of space-time.
In Fig. 4 we compare the net-proton kurtosis of the

nonequilibrium evolution to the kurtosis of the sigma
field. We extract the latter one by volume-averaging the
sigma field on hypersurfaces of constant energy density
and subsequently calculating the event-by-event fluctua-
tions of the obtained values 〈σ〉V . Here we see a simi-
lar course in the two curves with a minimum at nearly
the same energy density of about 2.5e0. In addition we
observe a maximum of the sigma-field kurtosis at lower
energy densities, which occurs below the equilibrium ex-
pectation for the phase transition and can be attributed
to the importance of memory effects in a nonequilibrium
evolution.

It is important to note that while the sigma field is
not, the net-proton fluctuations are generally subject to
global net-baryon number conservation [50–52]. At the
presently investigated range of baryochemical potentials,
however, baryon stopping should only have a negligible
effect.

IV. CONCLUSIONS

We have studied the net-proton kurtosis within the
model of nonequilibrium chiral fluid dynamics, includ-
ing a particlization procedure. This model captures the
essential nonequilibrium dynamics of the order parame-
ters at the QCD phase transition and critical point. We
evaluated the kurtosis of both the sigma field and the
net-proton number along an evolution near the critical
point as a function of the energy density on a hyper-
surface. Here we compared mean-field fluid dynamical
calculations to those with an explicit propagation of the
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order parameter fields, the chiral and gluon condensates.
This takes into account the nonequilibrium evolution of
the fluctuations via a stochastic relaxation equation. In
the nonequilibrium case we found a minimum in both
sigma and net-proton kurtosis at the same energy den-
sity. This minimum occurs around the same energy den-
sity as the minimum in the thermodynamic net-quark
number kurtosis, implying that the suppression of the
net-proton kurtosis is a remnant of the negative thermo-
dynamic kurtosis. In comparison to that, a mean-field
evolution without propagation of the order parameters
shows a flat kurtosis as function of the energy density on
the hypersurface.

The aim of future work will be to use a more realistic
EoS, possibly including both hadronic and quark degrees
of freedom. Models including quarks and hadrons have
been studied in [53–55], its parameters constrained by
both lattice QCD data at small baryochemical potentials
as well as neutron star properties at small temperatures.
We will then study the kurtosis as a function of beam
energy to compare results with the beam energy scan
program at STAR. Finally, it is necessary to consider the
evolution of produced fluctuations in a hadronic cascade

to account for effects such as for example isospin ran-
domization and charge diffusion processes [56–59].
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