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Abstract
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to

one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancel-

lations between the contributions of irreducible diagrams and the contributions due to non-static

corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated

with the loop corrections are isolated in dimensional regularization. The resulting axial current is

finite and conserved in the chiral limit, while the axial charge requires renormalization. A com-

plete set of contact terms for the axial charge up to the relevant order in the power counting is

constructed.

PACS numbers: 21.45.-v, 23.40-s
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I. INTRODUCTION

Chiral symmetry is an approximate symmetry of Quantum Chromodynamics (QCD),
the fundamental theory that describes the interactions of quarks and gluons—the symmetry
becomes exact in the limit of vanishing quark masses. Chiral effective field theory (χEFT) is
the theoretical framework that permits the derivation of nuclear potentials and electroweak
currents from the symmetries of QCD—the exact Lorentz, parity, and time-reversal symme-
tries, and the approximate chiral symmetry. Pions and nucleons (and low-energy excitations
of the nucleon, such as the ∆ isobar), rather than quarks and gluons, are the degrees of free-
dom of χEFT. Chiral symmetry requires the pion to couple to these baryons, as well as
to other pions, by powers of its momentum Q and, as a consequence, the Lagrangian de-
scribing their interactions can be expanded in powers of Q/Λχ, where Λχ ∼ 1 GeV is the
chiral symmetry breaking scale. Classes of Lagrangians emerge, each characterized by a
given power of Q/Λχ, or equivalently a given order in the derivatives of the pion field and/or
pion mass factors, and each containing a certain number of unknown parameters, the so
called low-energy constants (LECs). These LECs could in principle be calculated from the
underlying QCD theory of quarks and gluons, but the non-perturbative nature of this theory
at low energies makes this task extremely difficult. Hence, in practice, the LECs are fixed
by comparison with experimental data, and therefore effectively encode short-range physics
and the effects of baryon resonances, such as the ∆ isobar, and heavy-meson exchanges, not
explicitly retained in the chiral Lagrangians.

Within χEFT a variety of studies have been carried out in the strong-interaction sector
dealing with the derivation of two- and three-nucleon potentials [1–9] and accompanying
isospin-symmetry-breaking corrections [10–13], and in the electroweak sector dealing with
the derivation of parity-violating two-nucleon potentials induced by hadronic weak interac-
tions [14–17] and the construction of nuclear electroweak currents [18–25]. Most of these
studies have been based on a formulation of χEFT in which nucleons and pions are the
explicit degrees of freedom. A few, however, have also retained ∆ isobars as explicit degrees
of freedom.

In this paper, the focus is on nuclear axial charge and current operators. These were
originally derived up to one loop in heavy-baryon covariant perturbation theory (HBPT) in
a pioneering work by Park et al. [18]. Here we re-derive them by employing a formulation
of time-ordered perturbation theory (TOPT), which accounts for cancellations occurring
at a given order in the power counting between the contributions of irreducible diagrams
and the contributions due to non-static corrections from energy denominators of reducible
diagrams [20]. Because of the different treatment of reducible diagrams in the HBPT and
TOPT approaches, we find differences between the operators obtained in these two for-
malisms as well as additional differences due to the omission of a number of contributions
in Ref. [18], as discussed in Sec. VII.

An accurate theory of nuclear electroweak structure and dynamics is relevant in several
areas of current interest. One such area is that of low-energy tests of physics beyond the
Standard Model in β-decay experiments [26]. Phenomenologically, the weak interactions are
known to couple only to left-handed neutrinos, and to violate parity maximally. However,
beyond the Standard Model (BSM) theories have been constructed in which small deviations
from these properties are introduced. These deviations affect the correlation coefficients
entering β-decay rates, and can in principle be detected. For a proper interpretation of
these measurements and, in particular, to unravel possible signatures of BSM physics, it is
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crucial to have control of the nuclear structure and weak interactions in nuclei.
Another area of interest is that of neutrino interactions with nuclei and neutron matter.

The low-energy inelastic neutrino scattering from nuclei is important in astrophysics and for
neutrino detectors. The spallation of neutrons from nuclei by neutrino interactions is relevant
in setting the neutron to seed ratio in core-collapse supernovae. Accurate predictions for
neutrino-nucleus scattering cross sections, specifically from the argon nucleus, are key to the
measurements of supernovae neutrino fluxes, a major component of the Deep Underground
Neutrino Experiment (DUNE). At temperatures of a few MeV, neutrino processes are also
very important in core-collapse supernovae. One significant issue is the decoupling of various
flavors of neutrinos and antineutrinos at the surface of the proto-neutron star. This sets
the initial temperatures (flux versus energy) of e, µ and τ neutrinos and antineutrinos.
Understanding this initial flux is critical to interpreting the subsequent evolution of neutrinos
and their role in the r-process. Neutrino and antineutrino interactions in neutron matter are
also of importance in understanding the evolution of the very neutron-rich matter formed
in neutron-star mergers, since they can potentially alter the neutron to proton ratio and
significantly impact the r-process in neutron star mergers, currently considered to be an
important source for r-process nucleosynthesis.

The present paper is organized as follows. In Sec. II pion-nucleon (πN) and pion-pion
(ππ) interaction Hamiltonians are constructed from the chiral Lagrangian formulation of
Refs. [27, 28]—for convenience these Lagrangians are listed in Appendix A, where a number
of details relative to the construction of the Hamiltonians up to the relevant chiral order
are also provided. In Sec. III the power counting scheme and TOPT formulation adopted
in the present work are described. These along with the interaction vertices obtained in
Appendix B are utilized to derive two-nucleon axial charge and current operators up to
one loop in Secs. IV and V, respectively. Ultraviolet divergencies associated with the loop
corrections are isolated in dimensional regularization: the resulting axial current is then
found to be finite, while the axial charge requires renormalization. All this along with the
renormalization of the one-pion-exchange (tree-level) axial charge is discussed- in Sec. VI. A
number of details are relegated to Appendix C, where a complete set of contact terms for the
axial charge (up to the relevant order) is constructed, to Appendix D, where loop functions
entering the axial current are defined, and to Appendix E, where a listing of counter-terms
is given. In Sec. VII a summary and discussion of our results as well as a comparison
between the expressions for the axial operators obtained here and those of Park et al. [18]
are provided. Conclusions are summarized in Sec. VIII.

II. INTERACTION HAMILTONIANS FROM CHIRAL LAGRANGIANS

The chiral Lagrangian describing the interactions of pions and nucleons is given by

L = LπN + Lππ , (2.1)

where

LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . , (2.2)

Lππ = L(2)
ππ + L(4)

ππ + . . . , (2.3)

and the superscript n specifies the chiral order Qn (Q denotes generically the low-momentum
scale), i.e., the number of derivatives of the pion field and/or insertions of the pion mass.
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External fields are counted as being of order Q. Since we are interested in deriving nuclear

potentials and currents up one loop, it suffices to retain in L up to L(3)
πN and L(4)

ππ . The

Lagrangians L(n)
πN (in fact up to order n = 4) and L(n)

ππ have been given, for example, in
Refs. [27] and [28], respectively, and are listed in Appendix A of the present paper for
completeness. The total Lagrangian can be written as

L = N
(
i /∂ −m+ Γ0

a ∂0πa + Λi
a ∂iπa + ∆

)
N

+
1

2

(
∂0πaGab ∂0πb + ∂iπa G̃ab ∂iπb −m2

π πaHab πb

)
− fπ Aµa Fab (∂µπb) , (2.4)

where πa is the pion field of isospin component a, N is the iso-doublet of nucleon fields,
Aµa is the axial-vector field of isospin component a, fπ is the pion decay constant, and m
and mπ are, respectively, the nucleon and pion masses. The symbols Γ0

a, Λi
a, and ∆ denote

combinations of the pion and axial-vector fields (and their derivatives) and/or of pion mass
factors, having the following expansions

Γ0
a = Γ0

a(0) + Γ0
a(1) + Γ0

a(2) , (2.5)

and similarly for Λi
a, and

∆ = ∆(1) + ∆(2) + ∆(3) , (2.6)

where the argument n in Γ0
a(n), Λi

a(n), and ∆(n) specifies the power counting Qn. The

symbols Gab, G̃ab, Hab, and Fab denote three-by-three matrices in isospin space, containing
powers of the pion field and/or pion mass. A listing of all these quantities, limited to the
terms relevant for the construction of the currents at one loop, is provided in Appendix A.
At this stage the various fields, masses, and coupling constants are to be understood as bare
(un-renormalized) quantities.

From the Lagrangian L in Eq. (2.4) the conjugate momenta relative to the pion and
nucleon fields follow as

Π† =
∂L

∂(∂0N)
= iN γ0 , (2.7)

Πa =
∂L

∂(∂0πa)
= Gab ∂

0πb − fπ FabA0
b +N Γ0

aN , (2.8)

and the Hamiltonian then reads

H = Π† ∂0N + Πa ∂0πa − L = H0 +HI , (2.9)

where H0,

H0 =
1

2

(
Πa Πa − ∂iπa ∂iπa +m2

π πa πa
)

+N
(
−i γi ∂i +m

)
N , (2.10)

is the free pion and nucleon Hamiltonian, while HI is the Hamiltonian accounting for the
interactions between pions and nucleons as well as between these and the external field. By
only keeping terms linear in the latter, the interaction Hamiltonian is given by

HI =
1

2
Πa

[(
G−1

)
ab
− δab

]
Πb −

1

2

[
Πa

(
G−1

)
ab

(
N Γ0

b N
)

+ h.c.
]

+
fπ
2

[
Πa

(
G−1

)
ab
FbcA

0
c + h.c.

]
− fπ

2

[(
N Γ0

aN
) (
G−1

)
ab
FbcA

0
c + h.c.

]
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+
1

2

(
N Γ0

aN
) (
G−1

)
ab

(
N Γ0

b N
)
−N

(
Λi
a ∂iπa + ∆

)
N

−1

2
∂iπa

(
G̃ab − δab

)
∂iπb + fπ A

i
a Fab ∂iπb +

m2
π

2
πa (Hab − δab) πb . (2.11)

It admits the following expansion in powers of Q:

HI = H(1)
I +H(2)

I +H(3)
I + . . . , (2.12)

and the vertices corresponding to the various interaction terms are listed in Appendix B.

III. FROM AMPLITUDES TO CURRENTS

The expansion of the transition amplitude for a given process is based on TOPT. Terms
in this expansion are conveniently represented by diagrams. We distinguish between re-
ducible diagrams (diagrams which involve at least one pure nucleonic intermediate state)
and irreducible diagrams (diagrams which include pionic and nucleonic intermediate states).
The former are enhanced with respect to the latter by a factor of Q for each pure nucleonic
intermediate state (see below). In the static limit—in the limit m → ∞, i.e., neglecting
nucleon kinetic energies—reducible contributions are infrared-divergent. The prescription
proposed by Weinberg [29] to treat these is to define the nuclear potential and currents as
given by the irreducible contributions only. Reducible contributions, instead, are generated
by solving the Lippmann-Schwinger (or Schrödinger) equation iteratively with the nuclear
potential (and currents) arising from irreducible amplitudes.

The formalism developed by some of the present authors is based on this prescription [20].
However, the omission of reducible contributions from the definition of nuclear operators
needs to be dealt with care when the irreducible amplitude is evaluated under an approxi-
mation. It is usually the case that the irreducible amplitude is evaluated in the static limit
approximation. The iterative process will then generate only that part of the reducible
amplitude including the approximate static nuclear operators. The reducible part obtained
beyond the static limit approximation needs to be incorporated order by order—along with
the irreducible amplitude—in the definition of nuclear operators. This scheme in combina-
tion with TOPT, which is best suited to separate the reducible content from the irreducible
one, has been implemented in Refs. [21, 23, 25] and is briefly described below. The method
leads to nuclear operators which are not uniquely defined due to the non-uniqueness of the
transition amplitude off-the-energy shell. While non unique, the resulting operators are
nevertheless unitarily equivalent, and therefore the description of physical systems is not
affected by this ambiguity [23, 30].

We note that an alternative approach, implemented to face the difficulties posed by the
reducible amplitudes, has been introduced by Epelbaum and collaborators [31]. The method,
referred to as the unitary transformation method, is based on TOPT and exploits the Okubo
(unitary) transformation [32] to decouple the Fock space of pions and nucleons into two sub-
spaces, one containing only pure nucleonic states and the other involving states that retain
at least one pion. In this decoupled space, the amplitude does not involve enhanced con-
tributions associated with the reducible diagrams. The subspaces are not-uniquely defined,
since it is always possible to perform additional unitary transformations onto them, with
a consequent change in the formal definition of the resulting nuclear operators. This, of
course, does not affect physical representations.
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The two TOPT-based methods outlined above lead to formally equivalent operator struc-
tures for the nuclear potential and electromagnetic charge and current up to loop corrections
included, which makes it plausible to conjecture that the two methods are closely related.
However, this topic has not been investigated further. In what follows, we focus on the
method developed in Refs. [21, 23, 25] and show how nuclear operators are derived from
transition amplitudes. Here, we are especially interested in the construction of the two-body
weak axial charge and current operators. We will not discuss the aforementioned unitary
equivalence between operators corresponding to different off-the-energy-shell extrapolations
of the transition amplitudes. This issue has already been addressed in considerable detail
in Ref. [23] for the case of the two-body nuclear potential and electromagnetic charge and
current operators. Similar considerations apply to the present case.

The starting point is the conventional perturbative expansion for the amplitude

〈f | T5 | i〉 = 〈f | HI

∞∑
n=1

(
1

Ei −H0 + i η
HI

)n−1
| i〉 , (3.1)

where | i〉 and | f〉 represent the initial and final states, respectively |N1N2A〉 and |N ′1N ′2〉
(A denotes generically the external axial field), of energies Ei and Ef with Ei = Ef , H0 is
the Hamiltonian describing free pions and nucleons, and HI is the Hamiltonian describing
interactions among these particles (H0 =

∫
dxH0(x) and similarly for HI , withH0 andHI as

defined in Sec. II with the various fields taken in the Schrödinger picture). The evaluation of
this amplitude is carried out in practice by inserting complete sets of H0 eigenstates between
successive terms of HI . Power counting is then used to organize the expansion in powers of
Q/Λχ � 1.

In the perturbative series, Eq. (3.1), a generic (reducible or irreducible) contribution
is characterized by a certain number, say N , of vertices, each scaling as Qαi × Q−βi/2

(i=1, . . . , N), where αi is the power counting implied by the specific term in the inter-
action Hamiltonian HI under consideration and βi is the number of pions in and/or out of
the vertex, a corresponding N–1 number of energy denominators, and L loops. Out of these
N–1 energy denominators, NK of them will involve only nucleon kinetic energies and possi-
bly, depending on the particular time ordering under consideration, the energy ωq associated
with the external field, both of which scale as Q2, while the remaining N −NK − 1 energy
denominators will involve, in addition, pion energies, which are of order Q. Loops, on the
other hand, contribute a factor Q3 each, since they imply integrations over intermediate
three momenta. Hence the power counting associated with such a contribution is(

N∏
i=1

Qαi−βi/2

)
×
[
Q−(N−NK−1)Q−2NK

]
×Q3L . (3.2)

Clearly, each of the N −NK − 1 energy denominators can be further expanded as

1

Ei − EI − ωπ
= − 1

ωπ

[
1 +

Ei − EI
ωπ

+
(Ei − EI)2

ω2
π

+ . . .

]
, (3.3)

where EI denotes the energy of the intermediate state (including the kinetic energies of the
two nucleons and, where appropriate, the energy of the external field), and ωπ the pion
energy (or energies, as the case may be)—the ratio (Ei−EI)/ωπ is of order Q. The leading
order term −1/ωπ represents the static limit, while the sub-leading terms involving powers
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of (Ei − EI)/ωπ represent non-static corrections of increasing order; elsewhere [20, 21], we
have referred to these as recoil corrections.

Interactions with the external axial field are treated in first order in Eq. (3.1), and in-
spection of the Q scaling of the various terms shows that the associated transition amplitude
admits the following expansion

T5 = T
(−3)
5 + T

(−2)
5 + T

(−1)
5 + . . . , (3.4)

where T
(n)
5 is of order Qn. Next, we denote the two-nucleon strong-interaction potential

with v and the weak-interaction potential with v5 = A0
a ρ5,a −Aa · j5,a, where ρ5,a and j5,a

are, respectively, the nuclear weak axial charge and current operators and Aµa = (A0
a,Aa)

is the external axial field. We construct v + v5 by requiring that iterations of v + v5 in the
Lippmann-Schwinger equation [23]

(v + v5) + (v + v5)G0 (v + v5) + (v + v5)G0 (v + v5)G0 (v + v5) + . . . , (3.5)

match the T5 amplitude, on the energy shell Ei = Ef , order by order in the power counting;
here G0 denotes the propagator G0 = 1/(Ei − EI + iη). The potentials v and v5 have the
following expansions

v = v(0) + v(2) + v(3) + . . . , (3.6)

v5 = v
(−3)
5 + v

(−2)
5 + v

(−1)
5 + v

(0)
5 + v

(1)
5 + . . . , (3.7)

where the potentials v(n) have been derived in Refs. [21, 23], in particular v(1) vanishes [23],

and v
(n)
5 = A0

a ρ
(n)
5,a − Aa · j(n)5,a . The superscript (n) on v5 and T5 only refers to the power

counting of ρ
(n)
5,a and j

(n)
5,a , and does not include the power of Q associated with the external

field. The matching between T
(n)
5 and v

(n)
5 leads to the following relations [23]

v
(−3)
5 = T

(−3)
5 , (3.8)

v
(−2)
5 = T

(−2)
5 −

[
v
(−3)
5 G0 v

(0) + v(0)G0 v
(−3)
5

]
, (3.9)

v
(−1)
5 = T

(−1)
5 −

[
v
(−3)
5 G0 v

(0)G0 v
(0) + permutations

]
−
[
v
(−2)
5 G0 v

(0) + v(0)G0 v
(−2)
5

]
, (3.10)

v
(0)
5 = T

(0)
5 −

[
v
(−3)
5 G0 v

(0)G0 v
(0)G0 v

(0) + permutations
]

−
[
v
(−2)
5 G0 v

(0)G0 v
(0) + permutations

]
−
[
v
(−1)
5 G0 v

(0) + v(0)G0 v
(−1)
5

]
−
[
v
(−3)
5 G0 v

(2) + v(2)G0 v
(−3)
5

]
, (3.11)

v
(1)
5 = T

(1)
5 −

[
v
(−3)
5 G0 v

(0)G0 v
(0)G0 v

(0)G0 v
(0) + permutations

]
−
[
v
(−2)
5 G0 v

(0)G0 v
(0)G0 v

(0) + permutations
]

−
[
v
(−1)
5 G0 v

(0)G0 v
(0) + permutations

]
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−
[
v
(0)
5 G0 v

(0) + v(0)G0 v
(0)
5

]
−
[
v
(−3)
5 G0 v

(2)G0 v
(0) + permutations

]
−
[
v
(−2)
5 G0 v

(2) + v(2)G0 v
(−2)
5

]
−
[
v
(−3)
5 G0 v

(3) + v(3)G0 v
(−3)
5

]
, (3.12)

and a similar set of relations is obtained between T (n) and v(n), i.e., the amplitudes and po-
tentials in the presence of strong interactions only [23]. These relations allow us to construct

v(n) and v
(n)
5 from T (n) and T

(n)
5 .

a1 a2 c

FIG. 1. Diagrams a1 and a2 contribute to the one-body axial current operator at order Q(−3).

Diagram c contributes to the one-body axial charge operator at order Q(−2). Nucleons, pions,

and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time

ordering is shown for diagrams a2 and c. The full dot in c is from the interaction vertex H
(2)
πNN ,

see Appendix B.

The weak axial charge and current operators at leading order consist of the single-nucleon
contributions shown in Fig. 1 and are given by

ρ
(−2)
5,a (q) = − gA

4m
τ1,a σ1 · (p′1 + p1) (2π)3δ(p1 + q− p′1) + (1 
 2) , (3.13)

j
(−3)
5,a (q) = −gA

2
τ1,a

[
σ1 −

q

q2 +m2
π

σ1 · q
]

(2π)3δ(p1 + q− p′1) + (1 
 2) , (3.14)

where q is the momentum carried by the external field, and pi and p′i are the initial and
final momenta of nucleon i. The counting Q−3 of j5,a (panel a1 in Fig. 1) follows from the
product of a factor Q0 associated with the ANN current vertex (recall that the Q scaling
of the external field is not counted), and a factor Q−3 due to the momentum-conserving δ-
function δ (p′2 − p2) implicit in disconnected terms of this type. Evaluation of the pion-pole
contribution (panel c), in which the axial source couples directly to the pion which is then

absorbed by the nucleon, leads to the ρ
(−2)
5,a expression in Eq. (3.13). In this disconnected

term, the counting Q−2 accounts for the Q−3 factor due to δ (p′2 − p2), the factors Q and Q2

of the πA and πNN vertices, respectively, and the factor Q−2 from the pion field normal-
ization and energy denominator associated with the intermediate state. A similar counting
is applied to panel a2 in Fig. 1 contributing to j5,a.

There is no direct coupling of the nucleon to A0
a: the interaction −(gA/2)N τ ·A0 γ

0γ5N
in

−N ∆(2)N ,
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with ∆(2) as given by Eq. (A59) occurs with the opposite sign in

− (fπ/2)
[
N Γ0

a(1)N
(
G−1

)
ab
FbcA

0
c + h.c.

]
,

with Γ0
a(1) as in the first term of Eq. (A57) and (G)−1ab = Fab = δab up to πaπb or m2

π terms,
and hence cancels out in Eq. (2.11). The single-nucleon axial charge of the correct sign and
strength follows from the sum of the two time-ordered contributions of diagram c with the
full dot representing the interaction (gA/2fπ)N τ ·Π γ0γ5N from

− (1/2)
[
Πa

(
G−1

)
ab
N Γ0

b(1)N + h.c.
]
.

Because of the different power counting of the leading order terms in the current and
charge operators, the strong interaction potentials needed to construct these operators up
to order n = 1 include corrections up to n = 3, i.e., v(3), in the case of the current and up
to n = 2, i.e., v(2), in the case of the charge. The leading order (LO) term v(0) consists of
(static) one-pion-exchange (OPE) and contact interactions, while the next-to-leading order
(NLO) term v(1) (as already noted) vanishes (see Ref. [23]). The next-to-next-to leading
order (N2LO) term v(2) contains two-pion-exchange (TPE) and contact interactions, the
latter involving two gradients of the nucleon fields. The v(2) term was originally derived in
Ref. [1], and is well known. However, at N2LO there is also a recoil correction to the OPE,
which we write as [30]

v(2)π (ν) = v(0)π (k)
(1− ν) [(E ′1 − E1)

2 + (E ′2 − E2)
2]− 2 ν (E ′1 − E1)(E

′
2 − E2)

2ω2
k

, (3.15)

where v
(0)
π (k) is the leading order OPE potential, defined as

v(0)π (k) = − g2A
4 f 2

π

τ1 · τ2 σ1 · k σ2 · k
1

ω2
k

, (3.16)

Ei (pi) and E ′i (p′i) are the initial and final energies (momenta) of nucleon i, and k = p1−p′1.

There is an infinite class of corrections v
(2)
π (ν), labeled by the parameter ν, which, while

equivalent on the energy shell (E ′1 +E ′2 = E1 +E2) and hence independent of ν, are different
off the energy shell. Friar [30] has in fact shown that these different off-the-energy-shell

extrapolations v
(2)
π (ν) are unitarily equivalent.

The next-to-next-to-next-to-leading order (N3LO) term v(3) includes interactions gen-

erated by vertices from the sub-leading Lagrangian L(2)
πN—these are of no interest for the

present discussion—as well as non-static corrections to the N2LO potentials v(2). Among

these, the TPE correction v
(3)
2π (ν) (from direct and crossed box diagrams) depends on the

specific choice made for v
(2)
π (ν). However, as shown in Ref. [23], the unitary equivalence

remains valid also for v
(3)
2π (ν). In the derivation of the axial current j

(n)
5,a at n = 1 below, the

choice ν = 0 is made for v
(2)
π (ν) and v

(3)
2π (ν), specifically Eq. (3.15) above and Eq. (19) of

Ref. [23]. The remaining non-static corrections in the potential v(3) are as given in Eqs. (B8),
(B10), and (B12) of that work. Clearly, different choices in the off-the-energy-shell extrap-

olations of these potentials will lead to different forms for (some of) the j
(1)
5.a(ν) corrections

to the axial current. As shown in the case of the electromagnetic charge operator [23], one
would expect these different forms to be unitarily equivalent. However, this has not been
verified explicitly in the present case.

9



IV. AXIAL CHARGE

The nuclear weak axial charge two-body operator can be written as

ρ5,a = ρOPE
5,a + ρTPE

5,a + ρCT
5,a , (4.1)

namely as a sum of terms due to one-pion exchange (OPE), two-pion exchange (TPE), and
contact contributions (CT). We defer the discussion of loop corrections to the OPE axial
charge (and current) and of their renormalization to a later section. In the following, and in
Sec. V as well, contributions to the OPE and TPE (or MPE in Sec. V) operators are labeled
by the power counting superscript (n). While each individual contribution is not explicitly
identified as being OPE and TPE (or MPE), this is obvious from the context.

Here and throughout this paper, we adopt the following conventions. The momenta ki
and Ki are defined as

Ki = (p′i + pi) /2 , ki = p′i − pi , (4.2)

where pi (p′i) is the initial (final) momentum of nucleon i. A symmetrization (1 
 2) and
an overall momentum-conserving δ-function (2π)3δ(k1 + k2−q) are understood in all terms
listed below unless otherwise noted.

A. Leading one-pion and two-pion exchange contributions

Diagrams contributing to ρOPE
5,a at leading order and to ρTPE

5,a are shown, respectively,
in panels a1 and a2, and panels c1-c12 of Fig. 2. The contributions of a1-a2, and c1-c2 and
c5-c6 are given by

ρ
(−1)
5,a (a1) = i

gA
8f 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

, (4.3)

ρ
(−1)
5,a (a2) = ρ

(−1)
5,a (a1) , (4.4)

ρ
(1)
5,a(c1 + c2) = i

gA
16 f 4

π

(τ1 × τ2)a σ1 · k2 I
(0)(k2) , (4.5)

ρ
(1)
5,a(c5 + c6) = i

g3A
16 f 4

π

[
4 τ1,a σ1i (σ2 × k2)j J

(2)
ij (k2)

+(τ1 × τ2)a
[
k22 J

(0)(k2)− J (2)(k2)
]
σ1 · k2

]
, (4.6)

while those of c3-c4, c7-c8, and c9-c12 vanish. Corrections proportional to 1/m to topologies
a1 and a2, due to non-static corrections to the energy denominators, that enter at order Q,

vanish after summing over all time orderings. Contributions, coming fromH(2)
πNN andH(2)

2πNN ,
to topologies a1 and a2, that enter at order Q, turn out to vanish. The freedom in the choice
of pion field, parametrized by the parameter α in Appendix A, introduces an α-dependence
in the interaction vertices with three or four pions, see Appendix B. The contributions of
diagrams c4 and c8, which include a 3π vertex, turn out to vanish identically. But in general
this α dependence must cancel out exactly, as is indeed the case for the two-nucleon axial
charge and current operators obtained in this work. The loop functions have been defined
as

I(0)(k) =

∫
dp

(2π)3
f(ω−, ω+) , (4.7)
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J (0)(k) =

∫
dp

(2π)3
g(ω+, ω−) , (4.8)

J (2)(k) =

∫
dp

(2π)3
p2g(ω+, ω−) , (4.9)

J
(2)
ij (k) =

∫
dp

(2π)3
pipj g(ω+, ω−) , (4.10)

with

f(ω−, ω+) =
1

ω+ ω− (ω+ + ω−)
, (4.11)

g(ω−, ω+) =
ω2
+ + ω+ ω− + ω2

−

ω3
+ ω

3
−(ω+ + ω−)

, (4.12)

and

ω± =
√

(p± k)2 + 4m2
π . (4.13)

They are evaluated in dimensional regularization [21]. Insertion of the finite parts of these
loop functions leads to

ρ
(1)
5,a(c1 + c2) = −i gA

128 π2 f 4
π

(τ1 × τ2)a σ1 · k2
s2
k2

ln

(
s2 + k2
s2 − k2

)
, (4.14)

ρ
(1)
5,a(c5 + c6) = −i g3A

128 π2 f 4
π

[
4 τ1,a (σ1 × σ2) · k2

s2
k2

ln
s2 + k2
s2 − k2

−(τ1 × τ2)a σ1 · k2
k22 + 2 s22
k2 s2

ln
s2 + k2
s2 − k2

]
, (4.15)

where

sj =
√

4m2
π + k2

j . (4.16)

The divergent parts read

ρ
(1)
5,a(c1 + c2)|∞ = −i gA

128π2 f 4
π

(τ1 × τ2)a σ1 · k2 (dε − 1) , (4.17)

ρ
(1)
5,a(c5 + c6)|∞ = −i g3A

32π2f 4
π

[
τ1,a (σ1 × σ2) · k2

(
dε −

1

3

)
−3

4
(τ1 × τ2)a σ1 · k2

(
dε +

1

3

)]
, (4.18)

with the constant dε defined as

dε = −2

ε
+ γ − ln 4π + ln

m2
π

µ2
− 1 , (4.19)

where ε = 3− d (d is the number of dimensions), γ is Euler’s constant, and µ is a renormal-
ization scale.
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a1 a2

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

FIG. 2. Diagrams contributing to the OPE axial charge at leading order Q−1 (panels a1 and a2),

and to the TPE axial charge operator at order Q. Nucleons, pions, and axial fields are denoted by

solid, dashed, and wavy lines, respectively. Only a single time ordering is shown for each topology.

B. Contact contributions

At order Q0 there are no contact terms contributing to ρCT
5,a . Those at order Q are given

by (see Appendix C)

ρCT
5,a =

4∑
i=1

ziOi , (4.20)

where the zi are (unknown) LECs and the operators Oi with i = 1, . . . , 4, symmetrized with
respect to the exchange 1 
 2, have been defined as

O1 = i (τ1 × τ2)a (σ1 · k2 − σ2 · k1) , (4.21)

O2 = i (τ1 × τ2)a (σ1 · k1 − σ2 · k2) , (4.22)

O3 = i (σ1 × σ2) · (τ1,a k2 − τ2,a k1) , (4.23)

O4 = (τ1,a − τ2,a) (σ1 − σ2) · (K1 + K2) . (4.24)
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We observe that the loop divergencies from c1-c2 and c5-c6 can be reabsorbed in the LECs
z1 and z3.

V. AXIAL CURRENT

Before considering the two-body contributions, we note that at order Q−1 there are
relativistic corrections to the one-body current represented in diagrams b1 and b2 of Fig. 3,
given by

j
(−1)
5,a (b1) =

gA
4m2

τ1,a

[
K2

1 σ1 +
i

2
k1 ×K1 − σ1 ·K1 K1 +

1

4
σ1 · k1 k1

]
, (5.1)

j
(−1)
5,a (b2) = − q

q2 +m2
π

[
q · j(−1)5,a (b1) +

gA
2m2

τ1,a σ1 ·K1 k1 ·K1

]
, (5.2)

where b2 contains two contributions at order Q−1: one is from the 1/m2 terms originating

from the non-relativistic expansion of the πNN interaction H
(1)
πNN ; the other is due to the

1/m terms in H
(2)
πNN and the (leading) non-static corrections (proportional to 1/m) to energy

denominators. The b1 current has been found to give a significant contribution to the cross
section for proton weak capture on 3He of interest in solar physics [33].

b1 b2

FIG. 3. Diagrams illustrating the relativistic corrections to the one-body axial current. Nucleons,

pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single

time ordering is shown for diagram b2. See text for further explanations.

As for the charge, the two-body current is written as a sum of one-pion exchange (OPE),
multi-pion exchange (MPE), and contact (CT) terms (notation and conventions are as in
Sec. IV),

j5,a = jOPE
5,a + jMPE

5,a + jCT
5,a . (5.3)

We discuss jCT
5,a here. It is well known [33] that a single contact term occurs at order Q0,

which we choose as

jCT
5,a = z0

[
(τ1 × τ2)a σ1 × σ2 −

q

q2 +m2
π

(τ1 × τ2)a q · (σ1 × σ2)
]
, (5.4)

(where the second term of Eq.( 5.4) is the pion-pole contribution) and none at order Q (see
Appendix C). This term is due to the interaction

(
Nγµγ5 uµN

)
NN and, as first pointed

by the authors of Ref. [34], the LEC z0 is related to the LEC cD (in standard notation)
entering the three-nucleon potential at leading order. The two LECs cD and cE which
fully characterize this potential have been recently constrained by reproducing the empirical
value of the Gamow-Teller matrix element in tritium β decay and the binding energies of
the trinucleons [35, 36].

13



A. Leading one-pion and multi-pion exchange and short-range contributions

Leading contributions to jOPE
5,a and jMPE

5,a are shown, respectively, in panels d1-d2, and

panels e1-e23 of Fig. 4. There are no contributions at order Q−1 from diagrams d1 and

d2: in d1 the interaction H
(1)
πNNA contains no coupling to the field Aa, while in d2 the sum

over the 6 time orderings, when leading order vertices from H
(2)
πA, H

(1)
2πNN , and H

(1)
πNN are

considered, vanishes. The first non-vanishing contributions enter at order Q0, and read

j
(0)
5,a(d1)=

gA
2 f 2

π

(τ1 × τ2)a
[
i
K1

2m
− c6 + 1

4m
σ1 × q +

(
c4 +

1

4m

)
σ1 × k2

]
σ2 · k2

1

ω2
2

+
gA
f 2
π

c3 τ2,a k2 σ2 · k2
1

ω2
2

, (5.5)

j
(0)
5,a(d2)=− gA

2 f 2
π

q

q2 +m2
π

[
τ2,a
(
4 c1m

2
π + 2 c3 q · k2

)
− c4 (τ1 × τ2)a σ1 · (q× k2)

]
σ2 · k2

1

ω2
2

−i gA
16mf 2

π

q

q2 +m2
π

(τ1 × τ2)a (2 K1 + iσ1 × k1) · (q + k2) σ2 · k2
1

ω2
2

+i
gA

8mf 2
π

q

q2 +m2
π

(τ1 × τ2)a (K1 · k1 + 2 K2 · k2)σ2 · k2
1

ω2
2

. (5.6)

For the diagrams contributing to jMPE
5,a only a single time ordering is displayed for

each topology. It is understood that denominators involving pion energies in the reducible
topologies of diagrams e1-e2, e6-e7, e8-e10, e13-e14, e20-e21, and e22-e23 are expanded as
in Eq. (3.3). The resulting contributions depend on the off-the-energy-shell prescription
adopted for the non-static corrections to the OPE, TPE, and OPE-contact potentials [23].
Different prescriptions lead to different formal expressions for these corrections as well as
the accompanying weak axial current operators, which, however, are expected to be re-
lated to each other by unitary transformations. This unitary equivalence was discussed in
considerable detail in Ref. [23], where it was explicitly verified to hold in the case of the
electromagnetic charge operator. Here we reiterate that the axial current operators derived
below are obtained by adopting the ν = 0 prescription for the non-static corrections to the
OPE, TPE, and OPE-contact potentials, as given in Eq. (3.15) of the present work and in
Eqs. (19), (B8), (B10), and (B12) of Ref. [23]. We find that the contributions of diagrams
e3, e6-e7, e11-e14, e18-e19, e22-e23 vanish, while those of the remaining diagrams are given
by

j
(1)
5,a(e1) = − g3A

16 f 4
π

τ2,a

[
R

(2)
ij (k2)σ1j − k2R

(0)(k2)σ1 · k2

]
, (5.7)

j
(1)
5,a(e2) = − q

q2 +m2
π

q · j(1)5,a(e1) , (5.8)

j
(1)
5,a(e4) = − g3A

16 f 4
π

τ2,a

[
k21 R

(0)(k1)−R(2)(k1)
]
σ2 , (5.9)

j
(1)
5,a(e5) =

g3A
32 f 4

π

q

q2 +m2
π

[
τ2,a

[
k21 R

(0)(k1)−R(2)(k1)
]

[(10α− 1)σ2 · k2 + σ2 · k1]

− (τ1 × τ2)a R
(2)
ij (k1) (σ1 × k1)i σ2,j

]
, (5.10)
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d1 d2 e1 e2 e3

e4 e5 e6 e7 e8

e9 e10 e11 e12 e13

e14 e15 e16 e17 e18

e19 e20 e21 e22 e23

FIG. 4. Diagrams contributing to the OPE axial current operator at order Q0 and to the MPE

axial current at order Q. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy

lines, respectively. Only a single time ordering is shown for each topology.

j
(1)
5,a(e8) = − g5A

16 f 4
π

[
τ2,a

[
(σ1 × k2)× k2

[
k22 S

(0)(k2)− S(2)(k2)
]

+
[
k22 S

(2)(k2)− S(4)(k2)
]
σ1 −

[
k22 S

(2)
ij (k2)− S(4)

ij (k2)
]
σ1j

]
+

4

3
τ1,a (σ2 × k2)× k2 S

(2)(k2)

]
, (5.11)
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j
(1)
5,a(e9) = − q

q2 +m2
π

q · j(1)5,a(e8) , (5.12)

j
(1)
5,a(e10) =

g3A
32 f 4

π

q

q2 +m2
π

[
(2 τ2,a − τ1,a)

[
k22R

(0)(k2)−R(2)(k2)
]
σ1 · k2

+ (τ1 × τ2)aR
(2)
ij (k1) (σ2 × k2)i σ1j

]
, (5.13)

j
(1)
5,a(e15) =

g3A
32 f 4

π

[
τ2,a (10αq− 3 k1 + k2)

[
k21R

(0)(k1)−R(2)(k1)
]

−4 (τ1 × τ2)a R
(2)
ij (k1) (σ1 × k1)j

]
σ2 · k2

ω2
2

, (5.14)

j
(1)
5,a(e16) =

g3A
64 f 4

π

τ2,a
q

q2 +m2
π

[
2
(
5m2

π + 2 k21 + k22 + q2
) [
k21 R

(0)(k1)−R(2)(k1)
]

+
[
k41 R

(0)(k1)−R(4)(k1)
]
− 20α

(
q2 + k22 + 2m2

π

) [
k21 R

(0)(k1)−R(2)(k1)
]

+ 80αJ12

]
σ2 · k2

ω2
2

+
g3A

16 f 4
π

(τ1 × τ2)a
q

q2 +m2
π

R
(2)
ij (k1) (σ1 × k1)i (k2 + q)j

σ2 · k2

ω2
2

, (5.15)

j
(1)
5,a(e17) =

g3A
8 f 4

π

τ2,a
q

q2 +m2
π

(1− 10α) J12
σ2 · k2

ω2
2

, (5.16)

j
(1)
5,a(e20) =

g3A
3 f 2

π

CT τ1,a J14 σ2 , (5.17)

j
(1)
5,a(e21) = − q

q2 +m2
π

q · j(1)5,a(e20) , (5.18)

where the constants Jmn are as in Eq. (B2), and the loop functions R
(n)
ij have been defined

as

R(0)(k) =

∫
dp

(2π)3
f̃(ω+, ω−) , (5.19)

R(2)(k) =

∫
dp

(2π)3
p2 f̃(ω+, ω−) , (5.20)

R
(2)
ij (k) =

∫
dp

(2π)3
pipj f̃(ω+, ω−) , (5.21)

R(4)(k) =

∫
dp

(2π)3
p4 f̃(ω+, ω−) , (5.22)

R
(4)
ij (k) =

∫
dp

(2π)3
pipj p

2 f̃(ω+, ω−) , (5.23)

(5.24)

with

f̃(ω+, ω−) =
1

ω2
+ ω

2
−
. (5.25)
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The loop functions S
(n)
ij are defined similarly with f̃(ω+, ω−) replaced by

g̃(ω+, ω−) =
ω2
+ + ω2

−

ω4
+ ω

4
−

= −1

4

d

dm2
π

f̃(ω+, ω−) . (5.26)

After dimensional regularization, we obtain

R(0)(k) =
1

16π

∫ 1

0

dz
1

M(k, z)
, (5.27)

R(2)(k) = − 3

4 π

∫ 1

0

dz

[
M(k, z)− 1

12

(z − z)2

M(k, z)
k2
]
, (5.28)

R
(2)
ij (k) = − 1

4 π

∫ 1

0

dz

[
δijM(k, z)− 1

4

(z − z)2

M(k, z)
kikj

]
, (5.29)

R(4)(k) =
5

π

∫ 1

0

dz

[
M(k, z)3 − 1

2
(z − z)2M(k, z) k2 +

1

80

(z − z)4

M(k, z)
k4
]
, (5.30)

R
(4)
ij (k) =

5

3π

∫ 1

0

dz

[
δij

[
M(k, z)3 − 3

20
(z − z)2M(k, z) k2

]
−21

20

[
(z − z)2M(k, z)− 1

28

(z − z)4

M(k, z)
k2
]
kikj

]
, (5.31)

where
M(k, z) =

√
zz k2 +m2

π , (5.32)

and
z = 1− z . (5.33)

The regularized S
(n)
ij (k) loop functions easily follow from Eq. (5.26). Inserting these relations

into the equations above, and noting that the α dependence cancels out upon summing the
contributions of diagrams e5, e15, e16, and e17, we obtain the expressions reported in
Appendix D. No divergencies occur in these loop corrections at order Q, consistently with
the fact that there are no contact terms in the axial current at this order. Contributions
coming from L(3)

πN , proportional to di’s, that enter through topologies d1 and d2 turn out to
vanish.

VI. RENORMALIZATION OF THE ONE-PION EXCHANGE AXIAL CHARGE

We now proceed to renormalize the order Q loop corrections to the OPE axial charge
operator (as shown below, no renormalization at this order is needed for the loop corrections
to the OPE axial current). We first construct the set of relevant counter-terms, and then
carry out the renormalization of the nucleon and pion masses, field rescaling factors Zπ and
ZN , pion decay constant fπ, nucleon axial coupling constant gA, and, lastly, loop corrections
to the OPE axial charge. We define

πa =
√
Zπ π

r
a , N =

√
ZN N

r , (6.1)

where πra and N r denote, respectively, the renormalized pion and nucleon fields, and Zπ and
ZN are the corresponding field rescaling constants, assumed to have the following expansions

Zπ = 1 + δZπ , δZπ ∼ Q2 , (6.2)
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ZN = 1 + δZN , δZN ∼ Q2 . (6.3)

We also define the physical pion mass mr
π and nucleon mass mr as

mr 2
π = m2

π + δm2
π , δm2

π ∼ Q4 , (6.4)

mr = m+ δm , δm ∼ Q2 . (6.5)

As illustrated in Appendix E, the total Lagrangian can be written as

L = N
r (
i /∂ −mr + Γ0 ′

a ∂0π
r
a + Λi ′

a ∂iπ
r
a + ∆′

)
N r

+
1

2

(
∂0πraG

′
ab ∂0π

r
b + ∂iπra G̃

′
ab ∂iπ

r
b −mr 2

π πraH
′
ab π

r
b

)
− fπ Aµa F ′ab ∂µπrb

+δmN
r
N r + δZN N

r
(iγµ∂µ −mr)N r +

δm2
π

2
πraπ

r
a , (6.6)

which is then expressed in terms of renormalized fields and masses, but bare coupling con-
stants gA and fπ and LECs. This Lagrangian has essentially the same form as the bare
one in Eq. (2.4) (the primed quantities are defined in Appendix E), and leads to a similar
interaction Hamiltonian as in Eq. (2.11),

HI = HI

[
Eq. (2.11) with primed quantities and renormalized fields and masses

]
−δmN

r
N r − δZN N

r (
iγi∂i −mr

)
N r − δm2

π

2
πraπ

r
a . (6.7)

In addition to the vertices listed in Appendix B, this Hamiltonian generates vertices cor-
responding to the set of counter-terms in Eqs. (E9)–(E15), explicit expressions for which
follow from those in Appendix B.

A. Field and mass renormalization

The determination of the scaling factors Zπ = 1+δZπ and ZN = 1+δZN for the pion and
nucleon fields, and the renormalization of the pion and nucleon masses have been discussed
recently and in considerable detail in Ref. [17]. We only quote the results here:

δm2
π = 2 l3

mr 4
π

f 2
π

+
mr 2
π

4f 2
π

J01 , δZπ = −2
mr 2
π

f 2
π

l4 +
10α− 1

2f 2
π

J01 , (6.8)

δm = −4mr 2
π c1 −

3 g2A
8 f 2

π

J12 , δZN = −3 g2A
8 f 2

π

J13 , (6.9)

where the constants Jmn are defined in Eq. (B2). Only leading Q2 corrections are provided
above, but for δm which also includes the sub-leading term of order Q3 proportional to J12.
The sign for δm differs from that in Ref. [17], since there mr = m− δm.

B. Renormalization of the pion decay constant fπ

The relevant interaction Hamiltonians are

H
(2) ′
πA =fπ

∫
dx
(
Ai · ∂iπr + A0 ·Πr

)
, (6.10)
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H
(2) ′
3πA =

1

2fπ

∫
dx
[
2 (1− 2α)Ai · πr πr · ∂iπr − (2α + 1)Ai · ∂iπr πr · πr

+2 (α− 1/2)A0
a π

r
b Πr

a π
r
b + 2αA0

a (πra π
r ·Πr + Πr · πr πra )

]
, (6.11)

H
(4) ′
πA =

∫
dx

[
2mr 2

π l4
fπ

Ai · ∂iπr−
δZπ

2
fπ
(
−Ai · ∂iπr+A0 ·Πr

)]
, (6.12)

where H
(2) ′
πA and H

(2) ′
3πA are the same as in Eqs. (B42) and (B46) but in terms of renormal-

ized pion field and mass, while H
(4) ′
πA relative to Eq. (B43) includes counter-terms. The

contributions illustrated in Fig. 5 read

a1 = −ifπ
(
k ·Aa − ωA0

a

)
, (6.13)

a2 = − i

2fπ
J01

[
− (5α + 1/2) Aa · k− (5α− 3/2)A0

a ω
]
, (6.14)

a3 = −2 i
mr 2
π l4
fπ

k ·Aa + i
δZπ

2
fπ
(
−k ·Aa − ωA0

a

)
. (6.15)

We now require that the renormalized (physical) pion decay constant is equal to

a1 a2 a3

FIG. 5. Diagrams relevant for the renormalization of fπ.

−if rπ
(
k ·A− ωA0

a

)
= a1 + a2 + a3 , (6.16)

implying

f rπ = fπ

(
1 +

mr 2
π l4
f 2
π

− J01
2 f 2

π

)
, (6.17)

which to the order Q2 of interest also gives

fπ = f rπ

(
1− mr 2

π l4
f r 2π

+
J01

2 f r 2π

)
. (6.18)

This result is in accord with that obtained in Ref. [37].

C. Renormalization of the πN coupling constant gA/fπ

Apart from H
(1) ′
πNN and H

(1) ′
3πNN , which are similar to those in Eqs. (B3) and (B15) (but

again expressed in terms of renormalized nucleon and pion fields, and pion mass), the other
interaction Hamiltonian needed is

H
(3) ′
πNN =

∫
dx

[
mr 2
π

fπ
(2 d16 − d18) +

gA
2fπ

(
δZN +

δZπ
2

)]
N
r
τ · ∂iπrγiγ5N r . (6.19)
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We find that the contributions of the diagrams in Fig. 6 are given by

b1 = i
gA
2fπ

σ · k τa , (6.20)

b2 = −i gA
8f 3

π

(10α− 1) J01 σ · k τa , (6.21)

b3 = i
g3A

48f 3
π

J13 σ · k τa , (6.22)

b4 = i

[
mr 2
π

fπ
(2 d16 − d18)−

3 g3A
16f 3

π

J13

+
gA
4f 3

π

(
−2mr 2

π l4 +
10α− 1

2
J01

)]
σ · k τa , (6.23)

and in terms of renormalized grA and f rπ it must be

i
grA

2 f rπ
σ · k τa = b1 + b2 + b3 + b4 , (6.24)

which leads to the following relation valid to order Q2

grA
f rπ

=
gA
fπ

[
1 +

2mr 2
π

gA
(2 d16 − d18)−

g2A
3f 2

π

J13 −
mr 2
π l4
f 2
π

]
=
gA
fπ

(
1 +

4mr 2
π

grA
d16 −

gr 2A
3f r 2π

J13 −
mr 2
π l4
f r 2π

)(
1− 2mr 2

π

grA
d18

)
, (6.25)

where in the second line, in the terms of order Q2, we have replaced gA and fπ by their renor-
malized values grA and f rπ, which is correct at this order, and have isolated the Goldberger-
Treiman discrepancy. The above relations are in agreement with Eqs. (102) and (103) of
Ref. [17].

b1 b2 b3 b4

FIG. 6. Diagrams relevant for the renormalization of gA/fπ.

Since fπ has already been renormalized, we can use Eq. (6.25) to independently renor-
malize gA. We find up to order Q2

grA = gA

[
1− 1

2 f r 2π
J01 −

gr 2A
3 f r 2π

J13 +
4mr 2

π

grA
d16

](
1− 2mr 2

π

grA
d18

)
. (6.26)

As a check of this result, in the next subsection we provide a direct renormalization of gA
by considering the coupling of the axial field Aa to the nucleon.
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D. Renormalization of the axial coupling constant gA

The relevant interaction Hamiltonians are H
(1) ′
ANN and H

(1) ′
2πNNA in Eqs. (B20) and (B30),

and

H
(3) ′
ANN =−

∫
dxN

r
(

2mr 2
π d16 τ ·Aiγ

iγ5 + δZN
gA
2
τ ·Aiγ

iγ5 +
d22
2
τ · ∂jFijγ

iγ5

)
N r . (6.27)

We consider a similar set of diagrams as in Fig. 6, but for the incoming pion line replaced
by the external field. Their contributions are given by

b1 =
gA
2
τa σ ·Aa , (6.28)

b2 = − gA
4f 2

π

J01 τa σ ·Aa , (6.29)

b3 =
g3A

48f 2
π

J13 τa σ ·Aa , (6.30)

b4 =
(gA

2
δZN + 2mr 2

π d16

)
τa σ ·Aa +

d22
2
τa
(
q q · σ − q2σ

)
·Aa , (6.31)

and sum up to g rA σ τa/2, with the renormalized axial coupling constant (to order Q2) ob-
tained as

g rA = gA

[
1− 1

2 f r 2π
J01 −

gr 2A
3 f r 2π

J13 +
4mr 2

π

grA
d16

]
, (6.32)

and g rA, apart from the Goldberger-Treiman discrepancy, is in agreement with Eq. (6.26). It
is also in agreement with the results, to order Q2, reported by Schindler et al. in Ref. [38].
The term proportional to d22 quadratic in q contributes to the nucleon axial radius [38].

d1 d2 d3 d4 d5 d6

FIG. 7. Pion-pole diagrams.

E. Renormalization of pion-pole contributions

We examine the pion-pole contributions illustrated in Fig. 7. We obtain

d1 = −gA
2

Aa · q
q · σ

q2 +mr 2
π

τa , (6.33)

d2 + d3 =
gA
2f 2

π

(
−mr 2

π l4 +
J01
2

)
Aa · q

q · σ
q2 +mr 2

π

τa , (6.34)

d4 =
gA
8f 2

π

(10α− 1) J01 Aa · q
q · σ

q2 +mr 2
π

τa , (6.35)
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d5 = − g3A
48f 2

π

J13 Aa · q
q · σ

q2 +mr 2
π

τa , (6.36)

d6 =

[
−mr 2

π (2 d16 − d18) +
3 g3A
16f 2

π

J13

− gA
4f 2

π

(
−2mr 2

π l4 +
10α− 1

2
J01

)]
Aa · q

q · σ
q2 +mr 2

π

τa . (6.37)

Their sum reads

d1 + · · ·+ d6 = −gA
2

[
1− 1

2 f r 2π
J01 −

gr 2A
3 f r 2π

J13 +
4mr 2

π

grA
d16

](
1− 2mr 2

π

grA
d18

)
×Aa · q

q · σ
q2 +mr 2

π

τa , (6.38)

and therefore the renormalized grA follows exactly as in Eq. (6.26), including the Goldberger-
Treiman discrepancy. The renormalized (single-nucleon) current is then given by

j5,a = −g
r
A

2
σ τa +

g rA
2

q
q · σ

q2 +mr 2
π

τa , (6.39)

and this current is conserved in the chiral limit (mπ → 0), since in that limit grA = g rA.

F. Renormalization of OPE axial charge

We begin by discussing the non-pion-pole contributions illustrated in Fig. 8. In diagrams
g2, g4, g6, g8, g11, and g14, the solid dot represents the interaction −δm− 4mr 2

π c1, where
δm is the nucleon mass counter-term. The contributions associated with diagrams g1-g2,
g3-g4, g5-g6, g7-g8, g9-g11, and g12-g14 represent the renormalization of nucleon external
lines and, with the choice of δm in Eq. (6.8), they are seen to vanish.

Next, the solid square in diagrams g16, g18, and g20 represents the interaction

H
(4) ′
2π = −

∫
dx

(
mr 2
π l4
f 2
π

+
δZπ

2

)(
Πr ·Πr + ∂iπr · ∂iπr

)
+

∫
dx

[
mr 4
π (l3 + l4)

f 2
π

+
mr 2
π

2
δZπ −

δm2
π

2

]
πr · πr , (6.40)

with vertex (in the convention of Appendix B)

〈0 | H(4) ′
2π |k1, a1; k2, a2〉 = δa1,a2

[(
2mr 2

π l4
f 2
π

+ δZπ

)
(ω1ω2 − k1 · k2)

+
2mr 4

π (l3 + l4)

f 2
π

+mr 2
π δZπ − δm2

π

]
, (6.41)

With δZπ and δm2
π as given in Eq. (6.8), the contributions of diagrams g15-g20 cancel out.

The remaining loop contributions in diagrams g21-g29 are given by

ρ
(1)
5,a(g21) = ρ

(−1)
5,a (a1)

1

4 f 2
π

(1− 10α)J01 , (6.42)
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g1 g2 g3 g4 g5 g6 g7 g8

g9 g10 g11 g12 g13 g14

g15 g16 g17 g18 g19 g20

g21 g22 g23 g24 g25 g26

g27 g28 g29 g30 g31 g32

FIG. 8. Half of the possible time-ordered non-pole corrections to the OPE axial charge at order

Q. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. See

text for further explanations.

ρ
(1)
5,a(g22) = ρ

(−1)
5,a (a1)

5

8 f 2
π

(1− 4α)J01 , (6.43)

ρ
(1)
5,a(g23 + g24) = ρ

(−1)
5,a (a1)

g2A
24 f 2

π

J13 , (6.44)

ρ
(1)
5,a(g25 + g26) = −ρ(−1)5,a (a1)

g2A
8 f 2

π

J13 , (6.45)

ρ
(1)
5,a(g27 + g28 + g29) = ρ

(−1)
5,a (a1)

1

4 f 2
π

J01 , (6.46)

while those in diagrams g30-g32 vanish identically. Here ρ
(−1)
5,a (a1) is defined as in Eq. (4.3).

Finally, one needs to include the contributions due to the interactions H
(3) ′
πNN in Eq. (6.19)

and

H
(3) ′
πNNA = − (δZN + δZπ/2)

1

4 fπ

∫
dxN

r
A0 · (τ × πr) γ0N r , (6.47)

in the OPE axial charge, which simply lead to the correction of order Q[
2 δZN + δZπ +

2mr 2
π

gA
(2 d16 − d18)

]
ρ
(−1)
5,a (a1) . (6.48)

Thus, the sum of the order Q corrections to the axial charge from non-pole contributions,

denoted as ρ
(1)
5,a(npp), reads

ρ
(1)
5,a(npp) = ρ

(−1)
5,a (a1)

[
1

f 2
π

(
9

8
− 5α

)
J01 −

g2A
12 f 2

π

J13 + 2 δZN
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+ δZπ +
2mr 2

π

gA
(2 d16 − d18)

]
, (6.49)

which, which after insertion of δZN and δZπ, is expressed as

ρ
(1)
5,a(npp) = i

grA
8 f r 2π

(τ1 × τ2)a σ2 · k2
1

ω2
2

[
5

8 f r 2π
J01 −

5 gr 2A
6 f r 2π

J13

−2mr 2
π

f r 2π
l4 +

2mr 2
π

grA
(2 d16 − d18)

]
, (6.50)

where the bare gA and fπ have been replaced by their respective renormalized values—this
replacement is correct to the order of interest here. The complete non-pole axial charge,
denoted as ρOPE

5,a (npp) below, results from the sum of the leading-order contribution in

Eq. (4.3) with the ratio gA/f
2
π replaced by its renormalized value

gA
f 2
π

=
grA
f r 2π

[
1− 1

2 f r 2π
J01 +

gr 2A
3 f r 2π

J13 +
2mr 2

π

f r2π
l4 −

2mr 2
π

grA
(2 d16 − d18)

]
, (6.51)

and the contribution ρ
(1)
5,a(npp). We obtain

ρOPE
5,a (npp) = i

grA
8 f r 2π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(
1 +

1

8 f r 2π
J01 −

gr 2A
2 f r 2π

J13

)
. (6.52)

The diagrams describing the pole corrections are illustrated in Fig. 9 (only representative
diagrams for each of the relevant classes are drawn for brevity), and are similar to those in
Fig. 8. A slightly more complicated analysis along the lines illustrated above leads to a pole

OPE axial charge, denoted ρ
(1)
5,a(pp), given by

ρOPE
5,a (pp) = i

grA
8 f r 2π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(
1− 1

8 f r 2π
J01 −

gr 2A
2 f r 2π

J13

)
. (6.53)

The sum of the npp and pp contributions evaluated in dimensional regularization is

ρOPE
5,a (npp + pp) = i

grA
8 f r 2π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(
1− gr 2A

f r 2π
J13

)
= ρ

(−1)
5,a (a1)

[
1− 3mr 2

π

8π2 f r 2π
gr 2A

(
dε −

1

3

)]
. (6.54)

There are additional loop corrections to the OPE axial charge, see Fig. 10. Their contribu-
tions are obtained as

ρ
(1)
5,a(f1 + f2) = − gr 2A

2 f r 2π
ρ
(−1)
5,a (a1)

[
k21 I

(0)(k1)− I(2)(k1)
]
, (6.55)

ρ
(1)
5,a(f3 + f4) = − 1

8 f r 2π
ρ
(−1)
5,a (a1)L(k1) , (6.56)

where ρ
(−1)
5,a (a1) is again defined as in Eq. (4.3), except that gA and fπ are replaced by their

renormalized values grA and f rπ. The loop function I(0)(k) has been defined in Eq. (4.7),
while I(2)(k) and L(k) read

I(2)(k) =

∫
dp

(2π)3
p2 f(ω−, ω+) , (6.57)
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h1 h2

h3 h4 h5 h6

h7 h8 h9 h10

h11 h12 h13

h14 h15 h16 h17

FIG. 9. Representative diagrams for each of the relevant classes contributing to pole corrections to

the OPE axial charge at order Q. Nucleons, pions, and axial fields are denoted by solid, dashed,

and wavy lines, respectively. More than a single time ordering is shown for some of the diagrams.

f 1 f 2 f 3 f 4 f 5 f 6

FIG. 10. Additional loop and tree-level corrections of order Q to the OPE axial charge. Nucleons,

pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single

time ordering is shown for each topology. See text for further explanations.

L(k) =

∫
dp

(2π)3
(ω+ − ω−)2 f(ω−, ω+) . (6.58)

Evaluation in dimensional regularization leads to

ρ
(1)
5,a(f1 + f2) = ρ

(−1)
5,a (a1)

gr 2A
48π2 f r 2π

[
s1
k1

ln

(
s1 + k1
s1 − k1

)(
5 k21 + 8mr 2

π

)
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+ k21

(
5 dε −

13

3

)
+ 18mr 2

π

(
dε −

2

9

)]
, (6.59)

ρ
(1)
5,a(f3 + f4) = ρ

(−1)
5,a (a1)

1

48π2 f r 2π

[
s31
k1

ln
s1 + k1
s1 − k1

− 8mr 2
π + k21

(
dε −

5

3

)]
, (6.60)

with dε as given in Eq. (4.19). We also need to account for tree-level contributions of order
Q originating from the vertices 2πNN and NNπA0 in Eqs. (B14) and (B29), denoted by
the solid diamonds in Fig. 10. They can be written as

ρ
(1)
5,a(f5 + f6) = 2 ρ

(−1)
5,a (a1)

(
d̃1 k

2
1 + d̃2 k

2
2 + d̃3 q

2 + d̃4m
r 2
π

)
+ i

grA
2 f r 2π

d̃5 τ2,a σ1 · (q× k2) σ2 · k2
1

ω2
2

, (6.61)

where we have introduced the following combinations of LECs

d̃1 = 2 d2 + d6 , (6.62)

d̃2 = 4 d1 + 2 d2 + 4 d3 − d6 , (6.63)

d̃3 = −2 d2 + d6 , (6.64)

d̃4 = 4 d1 + 4 d2 + 4 d3 + 8 d5 , (6.65)

d̃5 = d15 + 2 d23 . (6.66)

The divergent parts of the di’s (and hence d̃i’s) have been identified in the heavy-baryon
formalism, without considering any specific process, with the background-field and heat-
kernel methods, see Ref. [39] and references therein. We report below the expressions for
these divergent parts from Table 4 of that work:

di =
βi
f 2
π

λ+ dri (µ) , (6.67)

where, in the conventions adopted in the present work,

λ =
1

32 π2

(
dε + ln

µ2

m2
π

)
, (6.68)

dri (µ) =
βi

32 π2 f 2
π

ln
m2
π

µ2
+ dri (mπ) . (6.69)

The βi functions of interest here are

β1 = −g
4
A

6
, β2 = − 1

12
− 5 g2A

12
, β3 =

1

2
+
g4A
6
, (6.70)

β5 =
1

24
+

5 g2A
24

, β6 = −1

6
− 5 g2A

6
, β15 = β23 = 0 , (6.71)

and β5 is from Eq. (B13) of Ref. [39] which corresponds to our choice of operator basis in

L(4)
ππ . For the combinations d̃i above we obtain

d̃1 = − 1

96 π2 f 2
π

(1 + 5 g2A) dε + d̃ r1 , (6.72)
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d̃2 =
1

16π2 f 2
π

dε + d̃ r2 , (6.73)

d̃4 =
1

16π2 f 2
π

dε + d̃ r4 , (6.74)

and d̃3 = d̃ r3 and d̃5 = d̃ r5 . We observe that the divergence proportional to m2
π from loop

corrections in ρOPE
5,a (npp + pp) cancels exactly that present in f1 + f2. Next, the divergent

part of d̃1 cancels exactly the term proportional to k21 dε present in f1 + f2 and f3 + f4. The

divergent parts of d̃2 and d̃4 are the same, and therefore can be reabsorbed in the LEC z2
multiplying the contact term O2. Those of d̃3 and d̃5 vanish, which is consistent with the

fact that there are no divergencies proportional to q2 or in the operator multiplying d̃5.
Combining Eqs. (6.52), (6.53), (6.59), (6.60), and (6.61), we then find that the renormal-

ized OPE contributions up to order Q included read as

ρOPE
5,a = i

grA
4 f r 2π

(τ1 × τ2)a σ2 · k2
1

ω2
2

[
1 +

gr 2A
96π2 f r 2π

[(
5 k21 + 8mr 2

π

)s1
k1

ln
s1 + k1
s1 − k1

−13

3
k21 + 2m2

π

]
+

1

96π2 f r 2π

(
s31
k1

ln
s1 + k1
s1 − k1

− 5

3
k21 − 8mr 2

π

)
+
(
d̃ r1 k

2
1 + d̃ r2 k

2
2

+d̃ r3 q
2 + d̃ r4 m

r 2
π

)]
+ i

grA
2 f r 2π

d̃ r5 τ2,a σ1 · (q× k2) σ2 · k2
1

ω2
2

. (6.75)

G. OPE axial current

The loop corrections to the OPE axial current are shown in Figs. 9 and 11. Those
associated with panels h1-h17 are easily seen to vanish, while the contributions of diagrams
m1-m2 are obtained as

j
(1)
5,a(m1) = − gr 5A

96 f r 4π
J14 [ 9 τ2,a k2 − (τ1 × τ2)a (σ1 × k2)]σ2 · k2

1

ω2
2

, (6.76)

j
(1)
5,a(m2) = − q

q2 +m2
π

q · j(1)5,a(m1) , (6.77)

In dimensional regularization we find the finite result

j
(1)
5,a(m1) =

gr 5A mr
π

256 πf r 4π
[ 9 τ2,a k2 − (τ1 × τ2)a (σ1 × k2)]σ2 · k2

1

ω2
2

. (6.78)

No renormalization is necessary in this case, since loop corrections to diagrams d1-d2 of
Fig. 4 enter at order Q2, and are beyond the scope of the present work.

VII. DISCUSSION

In this section we report the complete (and renormalized) expressions for the weak axial
charge and current operators, compare these expressions to those obtained by the authors of
Ref. [18], and discuss current conservation in the chiral limit. For simplicity, the superscript
r has been removed from the pion and nucleon masses mπ and m, the nucleon axial coupling
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m1 m2

FIG. 11. The only non-vanishing loop corrections to the OPE axial current. Nucleons, pions, and

axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time ordering

is shown for each topology.

constant gA, and pion decay constant fπ. However, all these quantities are understood to
have been renormalized.

The one-body operators and two-body contact operators are those listed, respectively, in
Eqs. (3.13)–(3.14) and Eqs. (5.1)–(5.2), and in Eqs. (4.20) and (5.4), while the two-body
operators involving OPE, TPE or MPE, and short-range terms follow in the next subsection.
Relativistic corrections (proportional to 1/m3) in the one-body axial charge are neglected,
those in the one-body axial current (proportional to 1/m2) are retained in Eqs. (5.1)–(5.2),
since they are known to be important in weak transitions such as the proton weak capture
on 3He at low energies [33].

A. Two-body axial charge and current operators up to one loop: summary

The (renormalized) OPE contributions to the axial charge are given in Eq. (6.75), while
those corresponding to the axial current read

j̃ OPE
5,a = j OPE

5,a − q

q2 +m2
π

q · j OPE
5,a − gA

2 f 2
π

q

q2 +m2
π

[
4m2

π c1 τ2,a

− i

2m
(τ1 × τ2)a (K1 · k1 + K2 · k2)

]
σ2 · k2

1

ω2
2

, (7.1)

where

j OPE
5,a =

gA
2 f 2

π

[(
2 c3 −

9

128π

g4Amπ

f 2
π

)
τ2,a k2 + (τ1 × τ2)a

[
i

2m
K1 −

c6 + 1

4m
σ1 × q

+

(
c4 +

1

4m
+

1

128π

g4Amπ

f 2
π

)
σ1 × k2

]]
σ2 · k2

1

ω2
2

. (7.2)

The TPE axial charge, and MPE and short-range axial current can be written, respectively,
as

ρTPE
5,a = i

g3A
128π2f 4

π

[
(τ1 × τ2)a σ1 · k2

(
3− 1

g2A
− 4m2

π

k22 + 4m2
π

)
− 4 τ1,a (σ1 × σ2) · k2

]
×s2
k2

ln

(
s2 + k2
s2 − k2

)
, (7.3)
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with with sj defined as in Eq. (4.16), and

j̃ MPE
5,a = jMPE

5,a − q

q2 +m2
π

q · jMPE
5,a

+
g3A

128 πf 4
π

q

q2 +m2
π

[
τ2,a

[
Z1(k1)σ2 · (k1 − k2) + Z2(k1)σ2 · k2

1

ω2
2

]
+ (2 τ2,a − τ1,a)Z1(k2)σ1 · k2 + (τ1 × τ2)a

[
Z3(k1)

[
(σ1 × σ2) · k1

−2 (σ1 × k1) · (k2 + q)σ2 · k2
1

ω2
2

]
+ Z3(k2) (σ1 × σ2) · k2

]]

+
g3A

128 πf 4
π

τ2,a Z1(k1)

[
(k2 − 3 k1)σ2 · k2

1

ω2
2

− 2σ2

]
+

g3A
32 πf 4

π

(τ1 × τ2)a Z3(k1)σ1 × k1 σ2 · k2
1

ω2
2

, (7.4)

where

jMPE
5,a =

g3A
64πf 4

π

τ2,a [W1(k2)σ1 +W2(k2) k2 σ1 · k2 ]

+
g5A

64 πf 4
π

τ1,aW3(k2) (σ2 × k2)× k2 −
g3Amπ

8 π f 2
π

CT τ1,a σ2 , (7.5)

and the loop functions Zi and Wi are listed in Appendix D.

B. Current conservation in the chiral limit

In the chiral limit (mπ → 0) the axial current is conserved and

q · j5,a = [H , ρ5,a ] , (7.6)

with the two-nucleon Hamiltonian given by

H = T (−1) + v(0) + v(2) + . . . , (7.7)

where the superscripts denote the power counting, the v(n) are the two-nucleon potentials
defined in Sec. III, and the kinetic energy T (−1) (in momentum space) is

T (−1) =
p2
1

2m
(2π)3δ(p′2 − p2) + (1 
 2) . (7.8)

Here, the potentials and axial charge and current operators (including the axial coupling
and pion decay constants and LECs entering them) are to be understood in the chiral limit.
Order by order in the power counting, current conservation implies the following set of
relations

q · j(−3)5,a = 0 , (7.9)

q · j(−1)5,a =
[
T (−1), ρ

(−2)
5,a

]
, (7.10)
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q · j(0)5,a =
[
T (−1), ρ

(−1)
5,a

]
+
[
v(0), ρ

(−2)
5,a

]
, (7.11)

q · j(1)5,a =
[
T (−1), ρ

(0)
5,a

]
+
[
v(0), ρ

(−1)
5,a

]
, (7.12)

where we have only kept up to terms of order Q2. Note that the commutators implicitly
bring in factors of Q3. The first of these relations is obviously satisfied, see Eqs. (3.14)
or (6.39). The second relation has

q · j(−1)5,a = − gA
2m2

τ1,a k1 ·K1 σ1 ·K1 + (1 
 2) , (7.13)

where j
(−1)
5,a is given by the sum of the contributions in Eqs. (5.1) and (5.2), and is also

satisfied. The left-hand-side of the third relation has

q · j(0)5,a = i
gA

4mf 2
π

(τ1 × τ2)a σ2 · k2
1

ω2
2

(k1 ·K1 + k2 ·K2) + (1 
 2) , (7.14)

and this matches the first commutator on the right-hand side,
[
T (−1), ρ

(−1)
5,a

]
with ρ

(−1)
5,a given

by

ρ
(−1)
5,a = i

gA
4 f 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

+ (1 
 2) , (7.15)

i.e., the sum of terms a1 and a2 in Eqs. (4.3) and (4.4). There are additional contributions

to j
(0)
5,a, which arise from non-static corrections to the denominators involving pion energies

in the diagrams illustrated in Fig. 12, where the crossed circle (cross) means that the these
denominators are expanded as indicated in Eq. (3.3) to orderQ (Q2) beyond the leading-order

static term. These contributions are needed in order to satisfy the commutator
[
v(0), ρ

(−2)
5,a

]
,

but have been neglected in the present work.

FIG. 12. Illustration of some of the non-static corrections to the axial current ignored in this work.

Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. See

text for further explanations.

Lastly, we consider the fourth relation, Eq. (7.12). The axial current j
(1)
5,a obtained here

is in the static limit, and one expects q · j(1)5,a to satisfy the commutator[
v(0) , ρ

(−1)
5,a

]
= − g3A

16 f 4
π

(τ1,a − τ2,a)
[[
k22 R

(0)(k2)−R(2)(k2)
]
σ1 · k2
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−
[
k21 R

(0)(k1)−R(2)(k1)
]
σ2 · k1

]
+

g3A
16 f 4

π

(τ1 × τ2)a
[
R

(2)
ij (k2)σ1,i (σ2 × k2)j

−R(2)
ij (k1)σ2,i (σ1 × k1)j

]
, (7.16)

where the loop functions R(n)(k) and R
(2)
ij (k) in the chiral limit read

R(0)(k)→ 1

16

1

k
, (7.17)

R(2)(k)→ − 1

16
k , (7.18)

R
(2)
ij (k)→ − 1

32
k δij + . . . , (7.19)

and the . . . indicate a term proportional to ki kj, which vanishes when inserted in Eq. (7.16).
The current-conservation constraint is seen to be satisfied by noting the only non-vanishing

contributions to q · j(1)5,a are those due to diagrams e4, e5, e10, e15, e16, and e17 in Fig. 4,
proportional to the combination of coupling constants g3A/f

4
π . In particular the contributions

of the purely irreducible diagrams e4, e5, e15, e16, and e17 combine to give

q · j(1)5,a(e4 + e5 + e15 + e16 + e17) = − g3A
32 f 4

π

[
τ1,a

[
k22 R

(0)(k2)−R(2)(k2)
]
σ1 · k2

+ τ2,a

[
k21 R

(0)(k1)−R(2)(k1)
]
σ2 · k1

]
+

g3A
32 f 4

π

(τ1 × τ2)a
[
R

(2)
ij (k2)σ1,i (σ2 × k2)j

−R(2)
ij (k1)σ2,i (σ1 × k1)j

]
, (7.20)

with the remaining “missing” term being provided by q · j(1)5,a(e10). The remaining commuta-

tor
[
T (−1), ρ

(0)
5,a

]
has a factor 1/m, and therefore non-static corrections need to be included

in j
(1)
5,a, if the latter is to satisfy the complete Eq. (7.12). These corrections have been ignored

in the present work.

C. Comparison

We compare the one- and two-body axial charge and current operators derived here with
those obtained by Park et al. in Refs. [18] and [33] in the heavy-baryon (HB) formulation of
covariant perturbation theory. The one-body axial charge and current operators at leading
order in Eqs. (3.13) and (3.14) are the same as those listed in Eqs. (B1) and (A3) of Ref. [33],

except for the pion-pole contribution to j
(−3)
5,a , which, while nominally of the same order (Q−3)

as the non-pole contribution, is nevertheless suppressed at low momentum transfer q and
is therefore ignored in Ref. [33] (we note incidentally that in that work k1 = −q, i.e., the
opposite convention adopted here). Of course, this pion-pole contribution is crucial for
current conservation in the chiral limit. We have neglected the 1/m2 relativistic corrections
to the leading order axial charge. They are retained in Eq. (17) of Ref. [33]. However, the
1/m2 corrections to the leading order axial current in Eq. (5.1) are in agreement with those
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given in Eq. (A3) of Ref. [33], except for the last term proportional to q (σ1 · q), which is
again ignored in that work.

a b

FIG. 13. Feynman amplitudes contributing to the one-body axial charge at leading order.

Before moving on to the two-body contributions, it is worthwhile discussing how the
one-body axial charge operator emerges in covariant perturbation theory. The relevant
interaction Hamiltonian densities are

HπA(x) = fπ A0(x) ·Π(x) , (7.21)

H(a)
πNN(x) =

gA
2fπ

N(x)τ ·Π(x)γ0γ5N(x) , (7.22)

H(b)
πNN(x) =

gA
2fπ

N(x)τ · ∂iπ(x)γiγ5N(x) , (7.23)

where all fields are in interaction picture. The S-matrix elements associated with the Feyn-
man amplitudes in Fig. 13 are given by

S
(γ)
fi = −1

2

∫
d4x d4y 〈p′, λ′|T

[
HπA(x)H(γ)

πNN(y) +H(γ)
πNN(x)HπA(y)

]
|p, λ〉 , (7.24)

where γ = a or b, T denotes the usual chronological product, and |p, λ〉 and |p′, λ′〉 are the
initial and final nucleon states with momenta p and p′ in spin-isospin states χλ and χλ′ ,
respectively. Then for γ = a we obtain

S
(a)
fi = − gA

8m
χ†λ′ σ · (p

′ + p) A0
c τd χλ

∫
d4x d4y

[
ei(p

′−p)·y−iq·x〈0|T [Πc(x) Πd(y)] |0〉

+ ei(p
′−p)·x−iq·y〈0|T [Πd(x) Πc(y)] |0〉

]
, (7.25)

where we have considered the leading order in the non-relativistic expansion of the nucleon
matrix element. Since in the interaction picture the conjugate field momentum Πc(x) =
∂0πc(x), it is easily seen that (see also Ref. [40])

〈0|T [Πc(x) Πd(y)] |0〉 = ∂0x ∂
0
y 〈0|T [πc(x) πd(y)] |0〉 − i δcd δ(x0 − y0) δ(x− y)

= −i δcd
∫

d4k

(2π)4
e−ik·(x−y)

(
1 +

k20
m2
π − k2 − iε

)
, (7.26)

with the Feynman propagator defined by

〈0|T [πc(x) πd(y)] |0〉 =

∫
d4k

(2π)4
−i δcd

m2
π − k2 − iε

e−ik·(x−y) . (7.27)
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The T -matrix element Tfi obtained from Sfi = −i (2π)4 δ(p′ − p− q)Tfi reads

T
(a)
fi = − gA

4m
A0
c χ
†
λ′ σ · (p

′ + p) τc χλ

(
1 +

q20
m2
π + q2 − q20 − iε

)
, (7.28)

where the term proportional to q0 = p′0−p0 is suppressed by Q2 in the power counting. The
leading order term leads to the axial charge operator in Eq. (3.13). A similar analysis shows

that the leading-order contribution to S
(b)
fi vanishes.

As already noted, the interaction Hamiltonian in Eq. (2.11) contains no direct coupling
of A0

a to the nucleon. However, diagrams of the type illustrated in Fig. 13 are not considered
in Refs. [18, 33]. It would appear that their contribution is accounted for by retaining the
term −i δcd δ(x − y) in Eq. (7.26), which effectively leads to a direct coupling between A0

a

and the nucleon.
Turning to the OPE contributions at tree level, we find that the order Q−1 contribution

to the axial charge, ρ
(−1)
5,a , in Eq. (6.75) reproduces the corresponding contribution, given by

Eqs. (B2), (B3), and (B5) of Ref. [33] with F V
1 (t) = 1, while the order Q0 contribution to

the axial current, j
(0)
5,a, in Eq. (7.1) is the same as in Eq. (A5) of Ref. [33]. We stress again

that, while diagram a2 in Fig. 2 is not explicitly considered in Refs. [18, 33], the OPE axial
charge operator derived there has the correct strength. The contact terms contributing to
the Q0 axial current in Eq. (A6) of Ref. [33] can be reduced through Fierz identities to the
form given in Eq. (5.4).

n1 n2 n3

FIG. 14. Diagrams contributing to the axial charge (n1-n2) and current (n3) at order Q consid-

ered in Ref. [18]. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,

respectively. Only a single time ordering is shown for each of the possible 12 (n1) and 60 (n2 and

n3) cross-box topologies.

Next we consider loop corrections to the axial charge. The contributions of c3-c4, c7-c8,
and c9-c12 in Fig. 2 are found to vanish in both approaches, here and in Refs. [18, 33]. The
contributions of diagrams c1 and c2 are the same as those for A(0)(a + b) in Eq. (93) of
Ref. [18]. The contributions of diagrams c5 and c6 are different from those for A(0)(c + d)
reported in Eq. (94) of Ref. [18] because of the different treatment of reducible topologies
for these types of terms. Indeed, if only the (irreducible) cross-box topologies are retained
for diagrams c5 and c6, as illustrated in Fig. 14, then the resulting operator is the same as
in Eq. (94). The OPE axial charge operator in Eqs. (74) and (90) of Ref. [18] reads in our
notation

ρOPE
5,a (Park et al.) = i

gA
4 f 2

π

(τ1 × τ2)a σ2 · k2
1

ω2
2

[
1− k22

f 2
π

(
17 g2A + 4

144 π2
+ cr3

)
− m2

π g
2
A

12 π2f 2
π

+
g2A

96 π2f 2
π

s2
k2

ln

(
s2 + k2
s2 − k2

)(
5 k22 + 8m2

π

)
+

1

96 π2f 2
π

[
s32
k2

ln

(
s2 + k2
s2 − k2

)
− 8m2

π

]]
. (7.29)
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Provided we define

d̃ r1 + d̃ r2 − d̃ r4 −
(5 + 13 g2A)

288
= −(17 g2A + 4)/(144π2 f 2

π)− c r3 ,

the expression above is in agreement with our Eq. (6.75) in the limit q = 0 (or k1 = −k2)
which is assumed in Refs. [18, 33], except for the term proportional to m2

π in the first line.
Lastly, the term proportional to the LEC c3 in Ref. [18] (in the HB formulation) is given

by

i
c3
f 2
π

N vα
[
Dβ , [Dα , Dβ ]

]
N ,

which can be re-expressed as

i
c3

2 f 2
π

N
[
Dβ , F+

0β

]
N + . . . ,

and matches the term proportional to d6 in the HB limit of L(3)
πN [27]—in the relation above

vα is the velocity, vα = (1,0).
Moving on to the loop corrections to the axial current, the sum of the contributions

due to diagram m1 of Fig. 11 and diagram e15 of Fig. 4 gives the same expression as in
Eq. (A7) of Ref. [33], provided the parameter α in the 3π A vertex of diagram e15 is set
to 1/6—the authors of Refs. [18, 33] use the exponential parametrization for the pion field.
The irreducible contributions of diagrams e1 and e4 in Fig. 4 are the same as reported
for, respectively, Aa

12(2π:b) and Aa
12(2π:a) of Eq. (A13) of Ref. [33], while the contributions

associated with the cross-box topologies of diagram e8 in Fig. 4 and illustrated in panel n3 of
Fig. 14, lead to the expression for Aa

12(2π:c) in Eq. (A13). Non-vanishing pion-pole diagrams
e2, e5, e9, e10, e16, and e17 as well as diagrams e20-e21 (e22 and e23 vanish) in Fig. 4 have
not been considered in Refs. [18, 33]. In particular, because of this incomplete treatment,
loop corrections to the axial current are α-dependent in Refs. [18, 33]. Furthermore, the
current is not conserved in the chiral limit.

Finally, the OPE axial current at tree-level listed in the recent Ref. [41] (and including
pion-pole contributions) is different from that obtained in the present work in Eqs. (5.5)–
(5.6). Moreover, it is not conserved in the chiral limit.

VIII. CONCLUSIONS

In the present work we have carried out an analysis of the weak axial charge and current
operators in a two-nucleon system up to one loop (i.e., including corrections up to order Q
in the power counting) in χEFT. The formalism used in the derivation is based on standard
TOPT, but accounts for cancellations between the contributions of irreducible diagrams
and the contributions due to non-static corrections from energy denominators of reducible
diagrams. A detailed comparison between the results of this work and those of the early
studies of Park et al. [18, 33] in the HB formulation of χEFT indicates that there are
differences in some of the loop corrections and in the renormalization of the OPE axial
charge, the former due to a different prescription adopted by the authors of those papers,
one in which only a subset of the irreducible contributions are retained in the perturbative
expansion—for example, in the case of box diagrams, only cross-box ones are considered.
Furthermore, while the contribution illustrated by panel e15 in Fig. 4 is accounted for in
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Refs. [18, 33], additional ones involving three- and four-pion vertices, such as those in panels
e5, e16, and e17, have been ignored. As a consequence, the one-loop axial current derived
there depends on the parametrization of the pion field—it is α-dependent—and, furthermore,
is not conserved in the chiral limit.

The order Q loop corrections in the axial current are finite, consistently with the fact
that there are no contact terms at this order. There is a single LEC (denoted as z0 here
and as dR in Ref. [33]) which enters at lower order Q0. On the other hand, four independent
LECs (denoted as zi, with i = 1, . . . , 4) multiply contact terms in the axial charge at order
Q, two of which are needed to reabsorb the divergencies from loop corrections in the TPE
axial charge. The loop corrections to the OPE axial charge instead lead to renormalization

of d̃1 which is expressed as linear combinations of the LECs di in the L(3)
πN Lagrangian—some

of these di having been determined in fits to πN scattering data [42]. The LEC z0 has been
recently fixed by reproducing the empirical value of the Gamow-Teller matrix element in 3H
β-decay [36]. However, that calculation ignored MPE loop corrections in j5a, and therefore a
refitting of z0 will be necessary. Most calculations of nuclear axial current matrix elements,
such as those reported in Refs. [33, 43] for the pp and p 3He weak fusions and in Ref. [36]
for muon capture on 2H and 3He, have used axial current operators up to order Q0 (one
exception is Ref. [44], which included effective one-body reductions, for use in a shell-model
study, of the TPE corrections to the axial current derived in Ref. [33]). Lastly, there remains
the problem of determining the zi’s in the contact axial charge. It should be possible to fix at
least some of these LECs by studying muon capture in the few-nucleon systems, for example,
by reproducing data on angular correlation parameters for the process 3He(µ−, νµ)3H [45],
or cross sections for transitions from the bound state to breakup channels, such as the 2H-n
two-body breakup, for which data are available [46].

On a longer time scale, it should be possible to use the weak axial operators constructed
here in quantum Monte Carlo (QMC) [47] calculations of β-decays and electron- and muon-
captures in heavier nuclei with mass number A > 4 (see Ref. [48] for an earlier study
of these processes in 6He and 7Be in the conventional meson-exchange framework) and of
neutrino inclusive cross sections off light nuclei at low energy and momentum transfers [49].
As a matter of fact, the very recent development of “realistic” and mildly non-local chiral
potentials in configuration space [50], in which QMC methods are presently formulated,
makes it possible to carry out these calculations in a consistent χEFT framework (i.e.,
chiral potentials and currents), and hence offers the opportunity to provide first-principles
(and numerically exact) predictions, rooted in QCD, for the rates and cross sections of these
weak processes.
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Appendix A: Chiral Lagrangians

We adopt the notation and conventions of Ref. [27] for the various fields and covariant
derivatives, which we summarize below:

U = 1 +
i

fπ
τ · π − 1

2 f 2
π

π2 − i α

f 3
π

π2 τ · π +
8α− 1

8 f 4
π

π4 + . . . , (A1)

u =
√
U = 1 +

i

2 fπ
τ · π − 1

8 f 2
π

π2 − i (8α− 1)

16 f 3
π

π2 τ · π +
(32α− 5)

128 f 4
π

π4 + . . . , (A2)

uµ = i
[
u†(∂µ − i rµ)u− u (∂µ − i lµ)u†

]
, (A3)

DµU = ∂µU − i rµ U + i U lµ , (A4)

DµN = (∂µ + Γµ)N = ∂µN +
1

2

[
u†(∂µ − i rµ)u+ u (∂µ − i lµ)u†

]
N , (A5)

F±µν = u† FR
µν u± uFL

µν u
† , (A6)

FR
µν = ∂µrν − ∂νrµ − i [ rµ , rν ] , rµ = vµ + aµ , (A7)

FL
µν = ∂µlν − ∂νlµ − i [ lµ , lν ] , lµ = vµ − aµ , (A8)

χ± = u† χu± uχ† u = m2
π

(
U † ± U

)
. (A9)

The parameter α is arbitrary because of the freedom in the choice of pion field—the only
constraint is that U be unitary with detU = 1. Common choices are α = 0 and α = 1/6
corresponding, respectively, to the non-linear sigma model U = (σ + i τ · π)/fπ with σ =√
f 2
π − π2 and to the exponential parametrization U = exp(i τ · π/fπ). In the following

we consider only the coupling to the axial-vector field; further, we ignore isospin-symmetry-
breaking effects as well as the coupling to the isoscalar component of the axial-vector field,
and hence

rµ = −lµ =
1

2
τ ·Aµ , (A10)

FR
µν =

1

2
τ · (∂µAν − ∂νAµ + Aµ ×Aν) , (A11)

FL
µν = −1

2
τ · (∂µAν − ∂νAµ −Aµ ×Aν) . (A12)

Inserting the expansions for U and u and keeping terms linear in the axial-vector field, we
find:

uµ = − 1

fπ

(
1− α

f 2
π

π2

)
τ · ∂µπ +

4α− 1

2 f 3
π

τ · ππ · ∂µπ

+ τ ·Aµ +
1

2 f 2
π

[(τ × π)× π] ·Aµ + . . . , (A13)

DµU = i τ ·
[

1

fπ
∂µπ −

(
1− π2

2 f 2
π

)
Aµ

]
− 1

f 2
π

π · ∂µπ +
1

fπ
π ·Aµ + . . . , (A14)

DµN =

[
∂µ +

i

4 f 2
π

(τ × π) · ∂µπ −
i

2 fπ

(
1− απ

2

f 2
π

)
(τ × π) ·Aµ

+i
(8α− 1)

16 f 4
π

π2 ∂µπ · (π × τ ) + . . .

]
N , (A15)
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F+
µν =

1

fπ
(τ × π) · Fµν + . . . , (A16)

F−µν =

[
τ +

1

2 f 2
π

(τ × π)× π
]
· Fµν + . . . , (A17)

χ+ = m2
π

(
2− π

2

f 2
π

)
+ . . . , (A18)

χ− = −2 i

fπ
m2
π τ · π + . . . , (A19)

where Fµν ≡ ∂µAν − ∂νAµ and the . . . denote higher powers of the pion field than shown.

1. πN sector

The πN Lagrangians up to order Q3 read:

L(1)
πN = N

(
i /D −m+

gA
2
/u γ5

)
N , (A20)

L(2)
πN =

7∑
i=1

ciN O
(2)
i N , (A21)

L(3)
πN =

23∑
i=1

diN O
(3)
i N , (A22)

with the operators O
(2)
i and O

(3)
i defined as in Ref. [27]. Here gA is the nucleon axial

coupling constant, and the ci and di are LECs. Below, the γµ, γ5, and σµν are γ matrices
and combinations of γ matrices in standard notation [51], and εµνρσ is the Levi-Civita tensor
with ε0123 = +1.

In terms of the expansions above, L(1)
πN is given by

L(1)
πN = N

[
i /∂ −m− 1

4 f 2
π

(τ × π) · /∂ π − gA
2 fπ

(
1− α

f 2
π

π2

)
τ · /∂ π γ5

+
gA

4 f 3
π

(4α− 1) τ · ππ · /∂ π γ5 +
(1− 8α)

16 f 4
π

π2 /∂ π · (π × τ )

+
1

2 fπ

(
1− α

f 2
π

π2

)
(τ × π) · /A +

gA
2
τ · /A γ5 +

gA
4 f 2

π

[(τ × π)× π] · /A γ5

]
N ,

(A23)

where /∂ = γµ∂µ and /A = γµAµ. The operators O
(2)
i in the L(2)

πN Lagrangian are expressed as
(below the notation χ̃+ = χ+− 〈χ+〉/2 is used, where 〈. . . 〉 implies a trace in isospin space)

O
(2)
1 = 〈χ+〉 −→ 4m2

π

(
1− π2

2 f 2
π

)
, (A24)

O
(2)
2 = − 1

8m2
〈uµuν〉Dµν + h.c. −→ 1

f 2
π

∂0π · ∂0π −
2

fπ
∂0π ·A0

+
1

mfπ

(
1

fπ
∂0π · ∂iπ − ∂0π ·Ai − ∂iπ ·A0

)
γ0 i
←→
∂ i (A25)
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O
(2)
3 =

1

2
〈uµuµ〉 −→

1

f 2
π

∂µπ · ∂µπ −
2

fπ
∂µπ ·Aµ , (A26)

O
(2)
4 =

i

4
[uµ , uν ]σ

µν −→ 1

2
τ ·
(
− 1

f 2
π

∂µπ × ∂νπ +
2

fπ
Aµ × ∂νπ

)
σµν , (A27)

O
(2)
5 = χ̃+ −→ 0 , (A28)

O
(2)
6 =

1

8m
F+
µν σ

µν −→ 1

4mfπ
(τ × π) · ∂µAν σ

µν , (A29)

O
(2)
7 =

1

8m
〈F+

µν〉σµν −→ 0 , (A30)

while those in the L(3)
πN Lagrangian reduce to

O
(3)
1 = − 1

2m
[uµ , [Dν , u

µ]]Dν + h.c. −→ 2

fπ
τ ·
(
− 1

fπ
∂µπ × ∂0∂µπ + Aµ × ∂0∂µπ

−∂0Aµ × ∂µπ
)
γ0 , (A31)

O
(3)
2 = − 1

2m
[uµ , [Dµ , uν ]]D

ν + h.c. −→ 2

fπ
τ ·
(
− 1

fπ
∂µπ × ∂µ∂0π + Aµ × ∂0∂µπ

−∂µA0 × ∂µπ
)
γ0 , (A32)

O
(3)
3 =

1

12m3
[uµ , [Dν , uρ]]D

µνρ + h.c. −→ 2

fπ
τ ·
(
− 1

fπ
∂0π × ∂20π + A0 × ∂ 2

0 π

−∂0A0 × ∂0 π
)
γ0 , (A33)

O
(3)
4 = − 1

2m
εµναβ 〈uµuνuα〉Dβ + h.c. −→ 0 , (A34)

O
(3)
5 =

i

2m
[χ− , uµ]Dµ + h.c. −→ −4m2

π

fπ
τ ·
[
π ×

( 1

fπ
∂0π −A0

)]
γ0 , (A35)

O
(3)
6 =

i

2m
[Dµ , F̃+

µν ]D
ν + h.c. −→ ∂iF+

i 0 γ
0 , (A36)

O
(3)
7 =

i

2m
[Dµ , 〈F+

µν〉]Dν + h.c. −→ 0 , (A37)

O
(3)
8 =

i

2m
εµναβ 〈F̃+

µνuα〉Dβ + h.c. −→ 0 , (A38)

O
(3)
9 =

i

2m
εµναβ 〈F+

µν〉uαDβ + h.c. −→ 0 , (A39)

O
(3)
10 =

1

2
γµγ5 〈u · u〉uµ −→ 0 , (A40)

O
(3)
11 =

1

2
γµγ5 〈uµuν〉uν −→ 0 , (A41)

O
(3)
12 = − 1

8m2
γµγ5 〈uλuν〉uµDλν + h.c. −→ 0 , (A42)

O
(3)
13 = − 1

8m2
γµγ5 〈uµuν〉uλDλν + h.c. −→ 0 , (A43)

O
(3)
14 =

i

4m
σµν〈[Dλ , uµ]uν〉Dλ + h.c. −→ 1

fπ

( 1

fπ
∂0∂iπ · ∂jπ − ∂0∂iπ ·Aj

−∂0Ai · ∂jπ
)
σijγ0 , (A44)
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O
(3)
15 =

i

4m
σµν〈uµ[Dν , uλ]〉Dλ + h.c. −→ 1

fπ

( 1

fπ
∂iπ · ∂0∂jπ − ∂iπ · ∂jA0

−Ai · ∂0∂jπ
)
σijγ0 , (A45)

O
(3)
16 =

1

2
γµγ5 〈χ+〉uµ −→ 2m2

π τ ·
(
− 1

fπ
∂iπ + Ai

)
γiγ5 , (A46)

O
(3)
17 =

1

2
γµγ5 〈χ+ uµ〉 −→ 0 , (A47)

O
(3)
18 =

i

2
γµγ5 [Dµ , χ−] −→ m2

π

fπ
τ · ∂iπ γiγ5 , (A48)

O
(3)
19 =

i

2
γµγ5 [Dµ , 〈χ−〉] −→ 0 , (A49)

O
(3)
20 = − i

8m2
γµγ5 [F̃+

µν , uλ]D
λν + h.c. −→ 0 , (A50)

O
(3)
21 =

i

2
γµγ5 [F̃+

µν , u
ν ] −→ 0 , (A51)

O
(3)
22 =

1

2
γµγ5 [Dν , F−µν ] −→

1

2
τ · ∂νFiν γ

iγ5 , (A52)

O
(3)
23 =

1

2
γµγ5 ε

µναβ 〈uνF−αβ〉 −→ −
1

fπ
εiναβ∂νπ · Fαβ γiγ5 . (A53)

Several comments are now in order. First, the expressions above for L(1)
πN , L(2)

πN , and L(3)
πN

retain all terms relevant in the present study. Typically, these include at most three pion,

two pion, and one pion fields for n = 1, 2, 3 in L(n)
πN , respectively. In some instances, for

example in O
(3)
1 , terms with two pion fields are also considered for reasons having to do with

the treatment of tadpole-type contributions (see below). The Lagrangian
∑

n L
(n)
πN can now

conveniently be expressed as given in Eq. (2.4) with the quantities Γ0
a(n), Λi

a(n), and ∆(n),
defined in Eqs. (2.5)–(2.6), given at leading order by

Γ0
a(0) = − 1

4 f 2
π

(τ × π)a γ
0 +

8α− 1

16 f 4
π

π2 (τ × π)a γ
0, (A54)

Λi
a(0) = − gA

2 fπ

(
1− α

f 2
π

π2

)
τa γ

iγ5 +
gA

4 f 3
π

(4α− 1)(τ · π) πa γ
iγ5 , (A55)

∆(1) =
gA
2
τ ·Ai γ

iγ5 +
1

2 fπ

(
1− α

f 2
π

π2

)
(τ × π) ·A0 γ

0

+
gA

4 f 2
π

[(τ × π)× π] ·Ai γ
iγ5 ; (A56)

at next-to-leading order by

Γ0
a(1) = − gA

2 fπ

(
1− α

f 2
π

π2

)
τa γ

0γ5 +
gA

4 f 3
π

(4α− 1)(τ · π)πa γ
0γ5 − 2

c2 + c3
fπ

A0
a , (A57)

Λi
a(1) = − 1

4 f 2
π

(τ × π)a γ
i +

c3
f 2
π

∂iπa − 2
c3
fπ
Aia −

c4
fπ

(τ ×Aj)a σ
ij

+
c4

2 f 2
π

(τ × ∂jπ)a σ
ij +

(1− 8α)

8 f 4
π

π2 (π × τ )a γ
i , (A58)

39



∆(2) =
gA
2
τ ·A0 γ

0γ5 +
1

2 fπ

(
1− α

f 2
π

π2

)
(τ × π) ·Ai γ

i +
gA
4f 2

π

[(τ × π)× π] ·A0 γ
0γ5

+4m2
π c1

(
1− π2

2 f 2
π

)
+

c6
4mfπ

(τ × π) · ∂iAj σ
ij ; (A59)

and at next-to-next-to-leading order by

Γ0
a(2) =

c2
mfπ

(
1

fπ
∂iπa − Ai,a

)
γ0 i
←→
∂ i +

c4
fπ

[
1

fπ
(τ × ∂iπ)a − (τ ×Ai)a

]
σ0i

+2
d1 + d2
f 2
π

[(
τ × ∂i∂iπ

)
+
(
τ × ∂iπ

) ←̃→
∂ i

]
γ0

+2
d1 + d2 + d3

fπ

[
−m

2
π

fπ
(τ × π)a −

1

fπ

(
τ × ∂i∂iπ

)
a

+
(
τ × ∂iAi

)
a

]
γ0

−4 d5
m2
π

f 2
π

(τ × π)a γ
0 +

d14 − d15
fπ

[
1

fπ
∂iπa σ

ij←̃→∂ j + ∂iAj,a σ
ij

+Aj,a σ
ij←̃→∂ i

]
γ0 +

d23
fπ
ε0ijkFjk,a γiγ5 , (A60)

Λi
a(2) = − c2

mfπ
A0,a γ

0 i
←→
∂ i +

c4
fπ

(τ ×A0)a σ
0i − 2

d1
fπ

(
τ × ∂0Ai

)
a
γ0

−2
d2
fπ

(
τ × ∂iA0

)
a
γ0 − d6

fπ

(
τ × Fi 0

)
a
γ0

+
d14
fπ
∂0Aj,aσ

ijγ0 − d15
fπ
∂jA0,aσ

ijγ0

−m
2
π

fπ
(2 d16 − d18) τa γiγ5 + 2

d23
fπ

εijk0Fk0,aγjγ5 , (A61)

∆(3)=
c6

4mfπ
(τ × π) · (∂0Ai − ∂iA0)σ

0i − 2
d1 + d2 + d3

fπ
(τ ×A0) ·

(
∂i∂iπ +m2

ππ
)
γ0

+4 d5
m2
π

fπ
τ · (π ×A0) γ

0 +
d6
fπ

(τ × π) · ∂iFi 0 γ
0 + 2m2

π d16 τ ·Ai γ
iγ5

+
d22
2
τ · ∂νFiνγ

iγ5 . (A62)

Second, the various derivatives act only on the field to their immediate right, for example

∂0π ·A0 means (∂0π) ·A0. However, the symbols
←→
∂ i =

−→
∂ i −

←−
∂ i and

←̃→
∂ i =

−→
∂ i +

←−
∂ i in

Eqs. (A25) and (A60)–(A61) denote derivatives acting only on the right and left nucleon
fields, respectively.

Third, the power counting Qn of L(n)
πN counts powers of derivatives of the pion field (or of

pion mass factors) and factors of Aµa and its derivatives (note that Aµa is counted as being of
order Q). However, the Lorentz structure of the terms may lead to additional suppression.

For example, in L(1)
πN a term like

− 1

4 f 2
π

(τ × π) · ∂0π γ0 ,
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is of order Q, but a term like

− gA
2 fπ

(
1− α

f 2
π

π2

)
τ · ∂0π γ0γ5 ,

which is nominally of order Q, is in fact of order Q2, since Nγ0γ5N couples the lower to the
upper components of the spinors, and therefore involves the three-momenta of the initial
and final nucleons (of order Q). We have taken advantage of this suppression in some of

the terms O
(3)
i in L(3)

πN by retaining only the diagonal piece in their Lorentz structure, for

example in term O
(3)
14 .

Fourth, time derivatives of the nucleon fields in L(2)
πN and L(3)

πN are removed by making
use of the equation of motion (to order Q)

∂0N = −im γ0N +
[
−γ0γi∂i + i γ0 Γ0

a(0) ∂0πa + i γ0Λi
a(0) ∂iπa + i γ0 ∆(1)

]
N , (A63)

implying that

∂20N=−m2N − im γ0
[
. . .
]
N − im

[
. . .
]
γ0N (A64)

=−m2N +
[
− mgA

fπ
τ · ∂iπ γiγ5 +mgA τ ·Ai γ

iγ5 −
m

fπ
τ · (A0 × π)γ0

]
N , (A65)

where in the second line we have ignored non-linear terms in the pion field, since they do
not contribute to the order of interest here.

Fifth, double time derivatives of the pion fields in L(3)
πN are removed by making use of

the equation of motion, see Eq. (A72) below. Terms containing both one time derivative
and one space derivative of the pion fields have been rewritten by integrating by parts. For

example, in L(3)
πN a term like

2
d1 + d2
f 2
π

N
(
τ × ∂0∂iπ

)
· ∂iπN ,

can be re-expressed, modulo a total divergence, as

−2
d1 + d2
f 2
π

N

[
(τ × ∂0π) · ∂i∂iπ + (τ × ∂0π) · ∂iπ

←̃→
∂ i

]
N .

2. ππ Sector

The ππ Lagrangians up to order Q4 read [28]:

L(2)
ππ =

f 2
π

4
〈DµU (DµU)† + χ+ 〉 (A66)

L(4)
ππ =

l1
4
〈DµU (DµU)†〉 〈DνU (DνU)†〉+

l2
4
〈DµU (DνU)†〉 〈DµU (DνU)†〉+

l3
16
〈χ+ 〉2

+
l4
16

[
2 〈DµU (DµU)† 〉〈χ+ 〉+ 2 〈χ†U χ†U + χU †χU †〉 − 〈χ−〉2 − 4 〈χ†χ〉

]
+l5

(
〈FR

µν U F
µν
L U †〉 − 1

2
〈FL

µνF
µν
L + FR

µνF
µν
R 〉
)
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+i
l6
2
〈FR

µν D
µU (DνU)† + FL

µν (DµU)† DνU〉 − l7
16
〈χ−〉2 +

h1 + h3
4
〈χχ†〉

+
h1 − h3

16

(
〈χ+〉2 + 〈χ−〉2 − 2 〈χU † χU † + U χ† U χ†〉

)
−2h2〈FL

µν F
µν
L + FR

µν F
µν
R 〉 , (A67)

where in the absence of isospin symmetry breaking (which is assumed throughout the present
work) χ is proportional to the identity matrix, namely χ = m2

π, and 〈χ−〉 vanishes. Further-
more, the terms proportional to the LECs l1, l2, l5, l6, and hi do not contribute to the order

of interest. The symmetric matrices G̃ab, Gab, Hab, and Fab in the Lagrangian of Eq. (2.4)
are obtained as

G̃ab =

(
1− 2α

f 2
π

π2 + 2 l4
m2
π

f 2
π

)
δab −

4α− 1

f 2
π

πaπb , (A68)

Gab = G̃ab + 2
c2 + c3
f 2
π

NN δab , (A69)

Hab =

[
1− 8α− 1

4 f 2
π

π2 + 2 (l3 + l4)
m2
π

f 2
π

]
δab , (A70)

Fab =

(
1− 2α + 1

2 f 2
π

π2 + 2 l4
m2
π

f 2
π

)
δab −

2α− 1

f 2
π

πaπb . (A71)

By retaining only terms linear in the pion field and external axial field, the equation of

motion implied by L(2)
ππ is

∂ 2
0 π = −

(
∂i∂i +m2

π

)
π + fπ∂0A

0 + fπ∂iA
i . (A72)

Appendix B: Interaction vertices

In this appendix we report expressions for the vertices corresponding to the interaction
terms in the Hamiltonian of Eq. (2.11), which we write as

HI =
3∑

n=1

[ (
H

(n)
πNN +H

(n)
2πNN +H

(n)
3πNN + · · ·

)
+
(
H

(n)
NNA +H

(n)
πNNA +H

(n)
2πNNA + · · ·

) ]
+

2∑
m=1

[ (
H

(2m)
2π +H

(2m)
4π + · · ·

)
+
(
H

(2m)
πA +H

(2m)
3πA + · · ·

) ]
, (B1)

where the superscript n denotes the power counting Qn and the subscript specifies the num-
ber of pion, nucleon, and axial fields entering a given interaction term. We use the following
notation: λ = pστ (λ′ = p′ σ′τ ′) are the momentum and spin and isospin projections of
the initial (final) nucleon; k1,k2, . . . and a1, a2, . . . are the momenta and isospin projec-

tions of pions 1, 2, . . . with energies ω1, ω2, . . . , where ωi =
√
k2i +m2

π; q and a denote the
momentum and isospin projection of the external axial field with energy ωq and its spatial
and time derivatives expressed as ∇Aµa −→ iqAµa and ∂0A

µ
a −→ −i ωq Aµa . We also define

P = (p′ + p)/2 and the (infinite) constants

Jmn =

∫
dl

(2π)3
l 2m

ω n
l

. (B2)
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1. πNN vertices

The interaction terms read

H
(1)
πNN =

gA
2fπ

∫
dxNτ · ∂iπγiγ5N , (B3)

H
(2)
πNN =

gA
2fπ

∫
dxNτ ·Πγ0γ5N , (B4)

H
(3)
πNN =

m2
π

fπ
(2 d16 − d18)

∫
dxNτ · ∂iπγiγ5N , (B5)

from which the following vertices for pion absorption are obtained

〈λ′ | H(1)
πNN |λ; k, a〉 = i

gA
2fπ

τa σ · k , (B6)

〈λ′ | H(2)
πNN |λ; k, a〉 = −i gA

2mfπ
τa ωσ ·P , (B7)

〈λ′ | H(3)
πNN |λ; k, a〉 = i

m2
π

fπ
(2 d16 − d18)τa σ · k + i

gA
8m2fπ

τa

[
2σ ·P k ·P

−σ · (p′ − p)
(p′ − p) · k

2
− 2P 2 σ · k− ik · (p′ − p)×P

]
,(B8)

where on the r.h.s. of the above equations the 1/
√

2ω normalization factor from the pion
field expansion in normal modes, the initial and final spin-isospin states of the nucleons,
and the three-momentum conserving δ-function (2π)3δ(p′ − p − k) have been dropped for
simplicity. We will continue to do so in the equations to follow. Vertices in which the
pion is in the final state (pion emission) are obtained from those above by the replacements
ω,k −→ −ω,−k. Lastly, only the leading order is retained in the non-relativistic expansion
of the Lorentz structures associated with the various interaction terms (here and to follow)
unless otherwise noted.

2. 2πNN vertices

The interaction term reads

H
(1)
2πNN =

1

4f 2
π

∫
dxN Π · (τ × π) γ0N , (B9)

H
(2)
2πNN =

∫
dxN

[
1

4f 2
π

∂iπ · (τ × π) γi + c1
2m2

π

f 2
π

π2 − c3
f 2
π

∂iπ · ∂iπ +

−c2 + c3
f 2
π

Π ·Π +
c4

2f 2
π

τ · (∂iπ × ∂jπ)σij
]
N , (B10)

H
(3)
2πNN =

∫
dxN

[
− 2

d1 + d2 + d3
f 2
π

(τ ×Π) ·
(
∂i∂iπ +m2

ππ
)
γ0 − 4

d5m
2
π

f 2
π

(Π× π) · τγ0

+2
d1 + d2
f 2
π

(τ ×Π) ·
(
∂i∂iπ + ∂iπ

←̃→
∂ i

)
γ0 +

d15 − d14
f 2
π

Π · ∂iπ σij
←̃→
∂ j γ

0

]
N ,

(B11)
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from which the vertex follows as

〈λ′ | H(1)
2πNN |λ; k1, a1; k2, a2〉 =

i

4f 2
π

εa1a2c τc (ω1 − ω2) , (B12)

〈λ′ | H(2)
2πNN |λ; k1, a1; k2, a2〉 = − i

4f 2
π

2 P + iσ × (p′ − p)

2m
· (k1 − k2) εa1a2aτa + 4 c1

m2
π

f 2
π

δa1,a2

−2 c3
f 2
π

k1 · k2 δa1,a2 +
2 (c2 + c3)

f 2
π

ω1ω2 δa1,a2

− c4
f 2
π

σ · (k1 × k2) εa1a2aτa , (B13)

〈λ′ | H(3)
2πNN |λ; k1, a1; k2, a2〉 = i(ω1 − ω2)

[
εa1a2cτc

(
− 2

d1 + d2 + d3
f 2
π

ω1ω2 + 4
d5m

2
π

f 2
π

+ 2
d1 + d2
f 2
π

k1 · k2

)
+
d15 − d14

f 2
π

(k1 × k2) · σ δa1,a2
]

(B14)

and vertices in which either or both pions are in the final state are obtained from the equation
above by replacing ki, ωi −→ −ki,−ωi.

3. 3πNN vertices

The interaction terms read

H
(1)
3πNN = − gA

2f 3
π

∫
dxN

[
απ2 τ · ∂iπ +

1

2
(4α− 1)τ · ππ · ∂iπ

]
γiγ5N , (B15)

which leads to the following interaction vertex

〈λ′ | H(1)
3πNN |λ; k1, a1; k2, a2; k3, a3〉 = − i gA

2 f 3
π

σ ·
[
τa1δa2,a3 [(2α− 1/2) (k2 + k3) + 2αk1]

+τa2δa1,a3 [(2α− 1/2) (k1 + k3) + 2αk2]

+τa3δa1,a2 [(2α− 1/2) (k1 + k2) + 2αk3]
]
. (B16)

The corresponding tadpole contribution is

〈λ′ | H(1)
3πNN |λ; k, a〉 = −i gA

8f 3
π

(10α− 1) J01 τa σ · k , (B17)

where J01 has been defined in Eq. (B2).

4. 4πNN vertices

The interaction term reads

H
(1)
4πNN =

1

32 f 4
π

∫
dxN

(
Πa π

2 + π2 Πa

)
(τ × π)a γ

0N (B18)

and the tadpole contribution follows as

〈0 | H(1)
4πNN |k1, a1; k2, a2〉 =

5 i

32 f 4
π

J01 εa1a2c τc(ω1 − ω2) . (B19)
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5. ANN vertices

The interaction terms read

H
(1)
ANN = −gA

2

∫
dxN τaA

i
a γi γ

5N , (B20)

H
(3)
ANN = −

∫
dxN

(
2m2

πd16 τ ·Aiγ
iγ5 +

d22
2
τ · ∂jFijγ

iγ5

)
N , (B21)

from which the vertices follow as

〈λ′ | H(1)
ANN |λ〉 =

gA
2
τa

[
σ − 1

2m2
P 2 σ − i

4m2
(p′ − p)×P +

1

2m2
σ ·P P

− 1

8m2
σ · (p′ − p) (p′ − p)

]
·Aa , (B22)

〈λ′ | H(3)
ANN |λ〉 = 2m2

π d16 τa σ ·Aa +
d22
2
τa
(
q q · σ − q2σ

)
·Aa , (B23)

where in Eq. (B22) terms of order Q2 have been retained in the expansion of the bilinear
Nγγ5N , since they have been shown to generate significant corrections to the single-nucleon
axial current [33].

6. πNNA vertices

The interaction terms read

H
(1)
πNNA = − 1

4fπ

∫
dxNA0 · (τ × π) γ0N , (B24)

H
(2)
πNNA =

∫
dxN

[
− 1

2fπ
(τ × π) ·Aiγ

i − c6
4mfπ

(τ × π) · ∂iAj σ
ij +

2 c3
fπ

Ai · ∂iπ

+
c4
fπ

(∂iπ × τ ) ·Aj σ
ij

]
N , (B25)

H
(3)
πNNA =

∫
dxN

[
2 d2 + d6

fπ
(∂iπ × τ ) · ∂iA0γ0 +

d15
fπ
∂jA

0 · ∂iπσijγ0

+2
d23
fπ
ε0ijk ∂iπ · ∂kA0 γjγ

5 − d6
fπ

(τ × π) · ∂i∂iA0γ0

+2
d1 + d2
fπ

(τ ×A0) · (∂i∂iπ + ∂iπ
←̃→
∂ i)γ

0 +
d15 − d14

fπ
∂iπ ·A0σ

ij←̃→∂ j + . . .

]
N ,

(B26)

where the dots indicate terms which do not contribute in tree-level diagrams of order Q, for
example ∫

dxN

[
− 2

d23
fπ
ε0ijk γiγ

5 Π · ∂jAk − 2
d1 + d2 + d3

fπ
τ ·
(
∂iA

i ×Π
)
γ0
]
N ,

or

2
d1 + d2 + d3

fπ

∫
dxN τ · (∂0A0 ×Π) γ0N ,
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and ∂0A0 → −i ωqA0 is of order Q3, since in our counting the energy of the external field is
of order Q2. The interactions in Eqs. (B24)–(B26) lead to the following vertices

〈λ′ | H(1)
πNNA |λ; k, a〉 = − 1

4fπ
εabcA

0
b τc , (B27)

〈λ′ | H(2)
πNNA | λ; k, a〉 = − 1

2mfπ
εabc τb Ac ·

[
P +

i

2
σ × (p′ − p)

]
−i c6

4mfπ
εabc τb Ac · (σ × q) + 2i

c3
fπ

k ·Aa

−i c4
fπ
εabc τb Ac · (σ × k) , (B28)

〈λ′ | H(3)
πNNA | λ; k, a〉 =

2d1 − d6
fπ

(A0 × τ )a q · k +
d14 + 2 d23

fπ
σ · (q× k)A0

a

−d6
fπ

(A0 × τ )a q2 . (B29)

7. 2πNNA vertices

The interaction term reads

H
(1)
2πNNA = − gA

4f 2
π

∫
dxNAi · [(τ × π)× π] γiγ5N , (B30)

which leads to the following vertex and tadpole contributions

〈λ′ | H(1)
2πNNA |λ; k1, a1; k2, a2〉 =

gA
4f 2

π

(δa,a1 τa2 + δa,a2 τa1 − 2 δa1,a2 τa) Aa · σ , (B31)

〈λ′ | H(1)
2πNNA |λ〉 = − gA

4f 2
π

J01 τa Aa · σ . (B32)

8. 3πNNA vertices

The interaction term reads

H
(1)
3πNNA =

4α− 1

16 f 3
π

∫
dxN π2 A0 · (τ × π) γ0N , (B33)

from which the tadpole contribution is obtained as

〈λ′ | H(1)
3πNNA |λ; k, a〉 = −5 (4α− 1)

32 f 3
π

J01
(
τ ×A0

)
a
. (B34)

9. 2π vertices

The interaction terms read

H
(4)
2π =

∫
dx

[
−m

2
π l4
f 2
π

(
Π ·Π + ∂iπ · ∂iπ

)
+
m4
π (l3 + l4)

f 2
π

π · π
]
, (B35)
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from which the vertex is obtained as

〈0 | H(4)
2π |k1, a1; k2, a2〉 = δa1,a2

[
2m2

π l4
f 2
π

(ω1ω2 − k1 · k2) +
2m4

π (l3 + l4)

f 2
π

]
, (B36)

where, as noted earlier, the momentum-conserving δ-function (2π)3δ(k1 + k2) and the pion
field normalization factor 1/

√
4ω1ω2 are understood. Vertices in which one or both pions

are in the final state follow by replacing ωi,ki −→ −ωi,−ki. Enforcing the δ function
requirement k1 = −k2 = k and ω1 = ω2 = ω, the vertex in Eq. (B36) reduces to

〈0 | H(4)
2π |k, a;−k, a〉 =

4m2
π l4
f 2
π

ω2 +
2m4

π l3
f 2
π

. (B37)

Similarly, we find

〈k, a | H(4)
2π |k, a〉 =

2m4
π l3
f 2
π

, (B38)

according to the prescription given above. Apart from the factor 1/(2ω), which is not
included in the equations above, these vertices are the same as given in Appendix F of
Ref. [17].

10. 4π vertices

The interaction terms read

H
(2)
4π =

∫
dx

[
4α− 1

2f 2
π

(
π ·Π Π · π + ∂iπ · π ∂iπ · π

)
+
α

f 2
π

(
πa Π ·Π πa + π2∂iπ · ∂iπ

)
− 8α− 1

8f 2
π

m2
ππ

4

]
, (B39)

which leads to the following vertex

〈0 | H(2)
4π |k1, a1; k2, a2; k3, a3; k4, a4〉 =

1

f 2
π

×
[
δa1,a2δa3,a4

[
−2α(ω1 + ω2 + ω3 + ω4)

2 +m2
π + (k3 + k4)

2 + (ω1 + ω2)(ω3 + ω4)
]

+δa1,a3δa2,a4
[
−2α(ω1 + ω2 + ω3 + ω4)

2 +m2
π + (k1 + k3)

2 + (ω1 + ω3)(ω2 + ω4)
]

+δa1,a4δa2,a3
[
−2α(ω1 + ω2 + ω3 + ω4)

2 +m2
π + (k1 + k4)

2 + (ω1 + ω4)(ω2 + ω3)
] ]

, (B40)

and the corresponding tadpole contribution is

〈0 | H(2)
4π |k1, a1; k2, a2〉 = δa1,a2 J01

[
1− 10α

2 f 2
π

(ω1ω2 − k1 · k2)−
20α− 3

4 f 2
π

m2
π

]
, (B41)

and the constant J01 has been defined in Eq. (B2).
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11. πA vertices

The interaction terms read

H
(2)
πA = fπ

∫
dx
(
Ai · ∂iπ +A0 ·Π

)
, (B42)

H
(4)
πA =

2m2
π l4
fπ

∫
dx Ai · ∂iπ , (B43)

from which the vertices are obtained as

〈0 | H(2)
πA |k, a〉 = i fπ

(
k ·Aa − ω A0

a

)
, (B44)

〈0 | H(4)
πA |k, a〉 = 2 i

m2
π l4
fπ

k ·Aa . (B45)

12. 3πA vertices

The interaction terms read

H
(2)
3πA =

1

2fπ

∫
dx
[
2 (1− 2α)Ai · π π · ∂iπ − (2α + 1)Ai · ∂iπ π · π

+2 (α− 1/2)A0
a πb Πa πb + 2αA0

a (πa π ·Π + Π · π πa )
]
, (B46)

which lead to the following vertices

〈0 | H(2)
3πA |k1, a1; k2, a2; k3, a3〉 =

i

fπ

[
δa2,a3 Aa1 · [(2α− 1) q− 2 k1]

+δa1,a3 Aa2 · [(2α− 1) q− 2 k2]

+δa1,a2 Aa3 · [(2α− 1) q− 2 k3]

−δa2,a3 A0
a1

[2α (ω1 + ω2 + ω3)− ω1]

−δa1,a3 A0
a2

[2α (ω1 + ω2 + ω3)− ω2]

−δa1,a2A0
a3

[2α (ω1 + ω2 + ω3)− ω3]
]
, (B47)

where in the first three lines use has been made of the δ-function (2π)3δ(k1 + k2 + k3 + q).
The tadpole contribution is found to be

〈0 | H(2)
3πA |k, a〉 = − i

2fπ
J01

[
(5α + 1/2) Aa · k + (5α− 3/2)A0

a ω
]
. (B48)

Appendix C: Contact terms at order Q

The weak-interaction potential v5 = A0
a ρ5,a−Aa · j5,a is parity (P) and time-reversal (T )

invariant, which implies that ρ5,a
P−→ −ρ5,a and j5,a

P−→ j5,a, and ρ5,a
T−→ (−)a+1 ρ5,a and

j5,a
T−→ (−)a j5,a. At order Q0 there is no momentum dependence, and consequently there

are no contact terms which can be constructed for ρ5,a, while two such terms occur for j5,a, of
which only one is independent (Fierz identities, see below) and is given in Eq. (5.4). At order
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Q the contact terms in ρ5,a and j5,a must be linear in either ki = p′i−pi or Ki = (p′i + pi) /2
with i = 1 and 2. None can be constructed for j5,a. A complete, but non minimal, set of
hermitian operators for the axial charge ρ5,a is the following:

Õ1 = (τ1,a + τ2,a) (σ1 + σ2) · (K1 + K2) ,

Õ2 = (τ1,a + τ2,a) (σ1 − σ2) · (K1 −K2) ,

Õ3 = i (τ1,a + τ2,a) (σ1 × σ2) · (k1 − k2) ,

Õ4 = (τ1,a − τ2,a) (σ1 − σ2) · (K1 + K2) ,

Õ5 = (τ1,a − τ2,a) (σ1 + σ2) · (K1 −K2) ,

Õ6 = i (τ1,a − τ2,a) (σ1 × σ2) · (k1 + k2) ,

Õ7 = i (τ1 × τ2)a (σ1 − σ2) · (k1 + k2) ,

Õ8 = i (τ1 × τ2)a (σ1 + σ2) · (k1 − k2) ,

Õ9 = (τ1 × τ2)a (σ1 × σ2) · (K1 + K2) .

The antisymmetry of initial and final two-nucleon states requires

Õi = −P τP σP spaceÕi , (C1)

where P space is the space exchange operator, and P σ and P τ are the spin and isospin exchange
operators with P σ = (1 + σ1 · σ2) /2 and similarly for P τ . Exchange of the final momenta
of the two nucleons p′1 
 p′2 leads to

P space(k1 + k2) = k1 + k2 , P space(k1 − k2) = 2 (K2 −K1) , (C2)

P space(K1 + K2) = K1 + K2 , P space(K1 −K2) = (k2 − k1) /2 , (C3)

while spin exchange implies

P σ (σ1 + σ2) = σ1 + σ2 , P
σ (σ1 − σ2) = i (σ1 × σ2) , P σ (σ1 × σ2) = −i (σ1 − σ2) ,

(C4)
and similar relations follow under isospin exchange. The following (Fierz) identities are
obtained from Eq. (C1):

Õ2 = Õ3/2 , Õ4 = Õ9 , Õ5 = Õ8/2 , Õ6 = −Õ7 , (C5)

while Õ1 is required to vanish. Hence only 4 of the above 9 operators are independent, and
a convenient set is

O1 =
(
Õ7 − Õ8

)
/2 , O2 =

(
Õ7 + Õ8

)
/2 , O3 =

(
Õ6 − Õ3

)
/2 , O4 = Õ4 . (C6)

We note that O1 and O3 have the same operator structures associated with the divergent
parts of the loop diagrams.

Appendix D: Regularized loop contributions to jMPE
5,a

The regularized contributions of diagrams in Fig. 4 read:

j
(1)
5,a(e1)=

g3A
64 πf 4

π

τ2,a

∫ 1

0

dz

[
σ1M(k2, z) + k2 σ1 · k2

zz

M(k2, z)

]
, (D1)

49



j
(1)
5,a(e4) = − g3A

64 πf 4
π

τ2,a σ2

∫ 1

0

dz

[
k21zz

M(k1, z)
+ 3M(k1, z)

]
, (D2)

j
(1)
5,a(e5) =

g3A
128πf 4

π

q

q2 +m2
π

∫ 1

0

dz

[
τ2,a σ2 · (k1 − k2)

[
k21 zz

M(k1, z)
+ 3M(k1, z)

]

− (τ1 × τ2)a (σ1 × σ2) · k1M(k1, z)

]
, (D3)

j
(1)
5,a(e8) = − g5A

64 πf 4
π

∫ 1

0

dz

[
τ2,a

[
5σ1M(k2, z) +

k2

2
σ1 · k2

[
k22 (zz)2

M(k2, z)3
+

1− 7zz

M(k2, z)

]
+
k22
2
σ1

[
10 zz − 1

M(k2, z)
+

1

4

zz (1− 8zz)

M(k2, z)3

]]
+ 2 τ1,a (σ2 × k2)× k2

×
[

1

4M(k2, z)
+

1
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k22 (2z − 1)2

M(k2, z)3

]]
, (D4)

j
(1)
5,a(e10) =

g3A
128π f 4

π

q

q2 +m2
π

∫ 1

0

dz

[
(2 τ2,a − τ1,a)

[
k22

M(k2, z)
+ 3M(k2, z)

]
σ1 · k2

+ (τ1 × τ2)aM(k2, z) (σ1 × σ2) · k2

]
, (D5)

j
(1)
5,a(e15) =

g3A
128π f 4

π

∫ 1

0

dz

[
τ2,a

[
k21 zz

M(k1, z)
+ 3M(k1, z)

]
(k2 − 3 k1)

+4 (τ1 × τ2)a (σ1 × k1)M(k1, z)

]
σ2 · k2

ω2
2

, (D6)

j
(1)
5,a(e16) =

g3A
128π f 4

π

q

q2 +m2
π

∫ 1

0

dz

[
τ2,a

[
− 10M(k1, z)

3 +M(k1, z)(15m2
π + 11 k21

+3 k22 + 3 q2 − 20 k21zz) +
k21 zz

M(k1, z)
(5m2

π + k22 + q2 + 3 k21 − 2 k21zz)

]
−2 (τ1 × τ2)a (σ1 × k1) · (k2 + q)M(k1, z)

]
σ2 · k2

ω2
2

, (D7)

j
(1)
5,a(e17) =

g3A
32π

m3
π

f 4
π

τ2,a
q

q2 +m2
π

σ2 · k2

ω2
2

, (D8)

j
(1)
5,a(e20) = −g

3
Amπ

8π f 2
π

CT τ1,a σ2 , (D9)

where M(k, z) and z have been defined in Eqs. (5.32) and (5.33). The contributions corre-
sponding to diagrams e2, e9, and e21 easily follow from those for e1, e8, and e20.

The loop functions Wi and Zi introduced in Eqs. (7.4) and (7.5) are defined as

W1(k) =

∫ 1

0

dz

[(
1− 5 g2A

)
M(k, z)− g2A k

2

2

[
10 z z − 1

M(k, z)
+
z z (1− 8 z z)

4M(k, z)3

]]
, (D10)

W2(k) =

∫ 1

0

dz

[
− g

2
A z z k

2

M(k, z)3
+
z z (7 g2A + 2)− g2A

2M(k, z)

]
, (D11)
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W3(k) =
1

2

∫ 1

0

dz

[
k2 (z − z )2

12M(k, z)3
+

1

M(k, z)

]
, (D12)

Z1(k) =

∫ 1

0

dz

[
z z k2

M(k, z)
+ 3M(k, z)

]
, (D13)

Z2(k) =

∫ 1

0

dz

[
4m3

π − 10M(k, z)3 +M(k, z) (15m2
π + 14 k2 − 6 q · k + 6 q2

−20 z z k2) +
z z k2

M(k, z)

(
5m2

π + 4 k2 + 2 q2 − 2 q · k− 2 k2 z z
) ]

, (D14)

Z3(k) =

∫ 1

0

dzM(k, z) . (D15)

Appendix E: Counter-terms to order Q3

Having made the replacements in Eqs. (6.1)–(6.5), the bare Lagrangian L can be rewritten
in terms of the renormalized fields and physical masses as

L = Lr + δLr , (E1)

where Lr is the same as in Eq. (2.4) but now in terms of renormalized fields and masses,
and δLr includes the set of counter-terms

δLr=δmN
r
N r + δZNN

r
(iγµ∂µ −mr)N r + δZNN

r [
Γ0,r
a (0)∂0π

r
a + Λi,r

a (0)∂iπ
r
a + ∆r(1)

]
N r

+δZπN
r
[ [

Γ0,r(0) + δΓ0,r
a (0)

]
∂0π

r
a +

[
Λi,r
a (0)/2 + δΛi,r

a (0)
]
∂iπ

r
a + δ∆r(1)

]
N r

+
δm2

π

2
πraπ

r
a +

δZπ
2

[
∂0π

r
a

(
G̃r
ab + δG̃r

ab

)
∂0πrb + ∂iπ

r
a

(
G̃r
ab + δG̃r

ab

)
∂iπrb

−mr 2
π πra (Hr

ab + δHr
ab) π

r
b

]
− δZπ fπ Aµa(F r

ab/2 + δF r
ab)∂µπ

r
b , (E2)

where Γ0,r
a (0), Λi,r

a (0) and ∆r(1) are the field combinations defined in Eqs. (A54), (A55)
and (A56) expressed in terms of renormalized fields and physical masses. The remaining
quantities are given by

δΓ0r
a (0) =

8α− 1

8 f 4
π

πr · πr (τ × πr)a γ
0 , (E3)

δΛi,r
a (0) =

gA
4f 3

π

[
2απr · πr τa + (4α− 1) τ · πrπra

]
γiγ5 , (E4)

δ∆r(1) =
1

4fπ

(
1− 3α

f 2
π

πr · πr
)

(τ × πr) ·A0γ
0

+
gA
4f 2

π

[
(τ × πr)× πr

]
·Ai γ

iγ5 , (E5)

δG̃r
ab = −2α

f 2
π

πr · πr δab +
1− 4α

f 2
π

πraπ
r
b , (E6)

δHr
ab =

1− 8α

4f 2
π

πr · πr δab , (E7)
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δF r
ab = −2α + 1

2f 2
π

πr · πrδab +
1− 2α

f 2
π

πra π
r
b . (E8)

It is convenient to define

G̃ ′ab = G̃r
ab + δZπ

(
G̃r
ab + δG̃r

ab

)
, (E9)

G ′ab = G̃ ′ab + 2
c2 + c3
f 2
π

N
r
N rδab , (E10)

F ′ab = F r
ab + δZπ (F r

ab/2 + δF r
ab) , (E11)

H ′ab = Hr
ab + δZπ (Hr

ab + δHr
ab) , (E12)

Γ0 ′
a = Γ0,r

a + δZN Γ0,r
a (0) + δZπ

[
Γ0,r
a (0) + δΓ0,r

a (0)
]
, (E13)

Λi ′
a = Λi,r

a + δZNΛi,r
a (0) + δZπ

[
Λi,r
a (0)/2 + δΛi,r

a (0)
]
, (E14)

∆ ′ = ∆r + δZN ∆r(1) + δZπ δ∆
r(1) , (E15)

which then leads to the Lagrangian as given in Eq. (6.6).
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