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Abstract

Two-nucleon axial charge and current operators are derived in chiral effective field theory up to
one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancel-
lations between the contributions of irreducible diagrams and the contributions due to non-static
corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated
with the loop corrections are isolated in dimensional regularization. The resulting axial current is
finite and conserved in the chiral limit, while the axial charge requires renormalization. A com-
plete set of contact terms for the axial charge up to the relevant order in the power counting is
constructed.

PACS numbers: 21.45.-v, 23.40-s



I. INTRODUCTION

Chiral symmetry is an approximate symmetry of Quantum Chromodynamics (QCD),
the fundamental theory that describes the interactions of quarks and gluons—the symmetry
becomes exact in the limit of vanishing quark masses. Chiral effective field theory (yEFT) is
the theoretical framework that permits the derivation of nuclear potentials and electroweak
currents from the symmetries of QQCD—the exact Lorentz, parity, and time-reversal symme-
tries, and the approximate chiral symmetry. Pions and nucleons (and low-energy excitations
of the nucleon, such as the A isobar), rather than quarks and gluons, are the degrees of free-
dom of yEFT. Chiral symmetry requires the pion to couple to these baryons, as well as
to other pions, by powers of its momentum () and, as a consequence, the Lagrangian de-
scribing their interactions can be expanded in powers of QQ/A,, where A, ~ 1 GeV is the
chiral symmetry breaking scale. Classes of Lagrangians emerge, each characterized by a
given power of /A, or equivalently a given order in the derivatives of the pion field and/or
pion mass factors, and each containing a certain number of unknown parameters, the so
called low-energy constants (LECs). These LECs could in principle be calculated from the
underlying QCD theory of quarks and gluons, but the non-perturbative nature of this theory
at low energies makes this task extremely difficult. Hence, in practice, the LECs are fixed
by comparison with experimental data, and therefore effectively encode short-range physics
and the effects of baryon resonances, such as the A isobar, and heavy-meson exchanges, not
explicitly retained in the chiral Lagrangians.

Within yEFT a variety of studies have been carried out in the strong-interaction sector
dealing with the derivation of two- and three-nucleon potentials [1-9] and accompanying
isospin-symmetry-breaking corrections [10-13], and in the electroweak sector dealing with
the derivation of parity-violating two-nucleon potentials induced by hadronic weak interac-
tions [14-17] and the construction of nuclear electroweak currents [18-25]. Most of these
studies have been based on a formulation of YEFT in which nucleons and pions are the
explicit degrees of freedom. A few, however, have also retained A isobars as explicit degrees
of freedom.

In this paper, the focus is on nuclear axial charge and current operators. These were
originally derived up to one loop in heavy-baryon covariant perturbation theory (HBPT) in
a pioneering work by Park et al. [18]. Here we re-derive them by employing a formulation
of time-ordered perturbation theory (TOPT), which accounts for cancellations occurring
at a given order in the power counting between the contributions of irreducible diagrams
and the contributions due to non-static corrections from energy denominators of reducible
diagrams [20]. Because of the different treatment of reducible diagrams in the HBPT and
TOPT approaches, we find differences between the operators obtained in these two for-
malisms as well as additional differences due to the omission of a number of contributions
in Ref. [18], as discussed in Sec. VII.

An accurate theory of nuclear electroweak structure and dynamics is relevant in several
areas of current interest. One such area is that of low-energy tests of physics beyond the
Standard Model in S-decay experiments [26]. Phenomenologically, the weak interactions are
known to couple only to left-handed neutrinos, and to violate parity maximally. However,
beyond the Standard Model (BSM) theories have been constructed in which small deviations
from these properties are introduced. These deviations affect the correlation coefficients
entering [-decay rates, and can in principle be detected. For a proper interpretation of
these measurements and, in particular, to unravel possible signatures of BSM physics, it is



crucial to have control of the nuclear structure and weak interactions in nuclei.

Another area of interest is that of neutrino interactions with nuclei and neutron matter.
The low-energy inelastic neutrino scattering from nuclei is important in astrophysics and for
neutrino detectors. The spallation of neutrons from nuclei by neutrino interactions is relevant
in setting the neutron to seed ratio in core-collapse supernovae. Accurate predictions for
neutrino-nucleus scattering cross sections, specifically from the argon nucleus, are key to the
measurements of supernovae neutrino fluxes, a major component of the Deep Underground
Neutrino Experiment (DUNE). At temperatures of a few MeV, neutrino processes are also
very important in core-collapse supernovae. One significant issue is the decoupling of various
flavors of neutrinos and antineutrinos at the surface of the proto-neutron star. This sets
the initial temperatures (flux versus energy) of e, u and 7 neutrinos and antineutrinos.
Understanding this initial flux is critical to interpreting the subsequent evolution of neutrinos
and their role in the r-process. Neutrino and antineutrino interactions in neutron matter are
also of importance in understanding the evolution of the very neutron-rich matter formed
in neutron-star mergers, since they can potentially alter the neutron to proton ratio and
significantly impact the r-process in neutron star mergers, currently considered to be an
important source for r-process nucleosynthesis.

The present paper is organized as follows. In Sec. II pion-nucleon (7N) and pion-pion
(rm) interaction Hamiltonians are constructed from the chiral Lagrangian formulation of
Refs. [27, 28]—for convenience these Lagrangians are listed in Appendix A, where a number
of details relative to the construction of the Hamiltonians up to the relevant chiral order
are also provided. In Sec. III the power counting scheme and TOPT formulation adopted
in the present work are described. These along with the interaction vertices obtained in
Appendix B are utilized to derive two-nucleon axial charge and current operators up to
one loop in Secs. IV and V| respectively. Ultraviolet divergencies associated with the loop
corrections are isolated in dimensional regularization: the resulting axial current is then
found to be finite, while the axial charge requires renormalization. All this along with the
renormalization of the one-pion-exchange (tree-level) axial charge is discussed- in Sec. VI. A
number of details are relegated to Appendix C, where a complete set of contact terms for the
axial charge (up to the relevant order) is constructed, to Appendix D, where loop functions
entering the axial current are defined, and to Appendix E, where a listing of counter-terms
is given. In Sec. VII a summary and discussion of our results as well as a comparison
between the expressions for the axial operators obtained here and those of Park et al. [18]
are provided. Conclusions are summarized in Sec. VIII.

II. INTERACTION HAMILTONIANS FROM CHIRAL LAGRANGIANS

The chiral Lagrangian describing the interactions of pions and nucleons is given by
L= £7‘(‘N + £7r7r ) (21>
where

Lon =LY +2% + 2%+ .,
Low=2L2 424

and the superscript n specifies the chiral order Q" (@) denotes generically the low-momentum
scale), i.e., the number of derivatives of the pion field and/or insertions of the pion mass.
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External fields are counted as being of order (). Since we are interested in deriving nuclear
potentials and currents up one loop, it suffices to retain in £ up to L’g, and Eﬂ. The
Lagrangians Eﬁ:}\), (in fact up to order n = 4) and £ have been given, for example, in
Refs. [27] and [28], respectively, and are listed in Appendix A of the present paper for
completeness. The total Lagrangian can be written as

L :N(ifﬁ—m+F2807ra+A28i7ra+A)N
1 . ~
+§ ((907ra Gab 8071'1, + 8171'(1 Gab (9,-7rb — mi WaHab 7Tb> — f7r A‘s Fab (@ﬂrb) 3 (24)

where 7, is the pion field of isospin component a, N is the iso-doublet of nucleon fields,
A" is the axial-vector field of isospin component a, f; is the pion decay constant, and m
and m, are, respectively, the nucleon and pion masses. The symbols T'?, A’ and A denote
combinations of the pion and axial-vector fields (and their derivatives) and/or of pion mass
factors, having the following expansions

% =r1%0)+1%1) +1%2), (2.5)

and similarly for A’ and
A=A(1)+A2)+A@3), (2.6)

where the argument n in T'%(n), A’(n), and A(n) specifies the power counting Q". The

symbols G, éab, H,, and F;, denote three-by-three matrices in isospin space, containing
powers of the pion field and/or pion mass. A listing of all these quantities, limited to the
terms relevant for the construction of the currents at one loop, is provided in Appendix A.
At this stage the various fields, masses, and coupling constants are to be understood as bare
(un-renormalized) quantities.

From the Lagrangian £ in Eq. (2.4) the conjugate momenta relative to the pion and
nucleon fields follow as

oL —
It = —iNA° 2.7
aaN) N (2.7)
HZA:G O'my, — fr Fp Ay + NTON (2.8)
a 8(807Ta) ab b 7w Lab 1y a ) .
and the Hamiltonian then reads
H =T 0yN + 1,0y, — L =Ho+ Hy , (2.9)
where H,,
1 i 2 ENT N
Ho = 3 (Ha I, — 0'm, Oy + mi 7ra7ra) + N (—m 0; + m) N, (2.10)

is the free pion and nucleon Hamiltonian, while H; is the Hamiltonian accounting for the
interactions between pions and nucleons as well as between these and the external field. By
only keeping terms linear in the latter, the interaction Hamiltonian is given by

1 1 ~
o= TG = bl o § [0 (67),, (VTO) + e
#5 [ (67, Rl he] = 5 [(VEIN) (67), B AL+ e



L @rN) (6, (FIYN) - N (AL dm, + A) N

2
1 . ~ ) 2
_5 azﬂ-a (Gab - 6ab) aiﬂ-b + f7r A; Fab az’ﬂ-b + %ﬂ-a (Hab - 5ab) Ty - (211>

It admits the following expansion in powers of ):
Hy=HY + 1P + 1P+ (2.12)

and the vertices corresponding to the various interaction terms are listed in Appendix B.

III. FROM AMPLITUDES TO CURRENTS

The expansion of the transition amplitude for a given process is based on TOPT. Terms
in this expansion are conveniently represented by diagrams. We distinguish between re-
ducible diagrams (diagrams which involve at least one pure nucleonic intermediate state)
and irreducible diagrams (diagrams which include pionic and nucleonic intermediate states).
The former are enhanced with respect to the latter by a factor of () for each pure nucleonic
intermediate state (see below). In the static limit—in the limit m — oo, i.e., neglecting
nucleon kinetic energies—reducible contributions are infrared-divergent. The prescription
proposed by Weinberg [29] to treat these is to define the nuclear potential and currents as
given by the irreducible contributions only. Reducible contributions, instead, are generated
by solving the Lippmann-Schwinger (or Schrodinger) equation iteratively with the nuclear
potential (and currents) arising from irreducible amplitudes.

The formalism developed by some of the present authors is based on this prescription [20].
However, the omission of reducible contributions from the definition of nuclear operators
needs to be dealt with care when the irreducible amplitude is evaluated under an approxi-
mation. It is usually the case that the irreducible amplitude is evaluated in the static limit
approximation. The iterative process will then generate only that part of the reducible
amplitude including the approximate static nuclear operators. The reducible part obtained
beyond the static limit approximation needs to be incorporated order by order—along with
the irreducible amplitude—in the definition of nuclear operators. This scheme in combina-
tion with TOPT, which is best suited to separate the reducible content from the irreducible
one, has been implemented in Refs. [21, 23, 25] and is briefly described below. The method
leads to nuclear operators which are not uniquely defined due to the non-uniqueness of the
transition amplitude off-the-energy shell. While non unique, the resulting operators are
nevertheless unitarily equivalent, and therefore the description of physical systems is not
affected by this ambiguity [23, 30].

We note that an alternative approach, implemented to face the difficulties posed by the
reducible amplitudes, has been introduced by Epelbaum and collaborators [31]. The method,
referred to as the unitary transformation method, is based on TOPT and exploits the Okubo
(unitary) transformation [32] to decouple the Fock space of pions and nucleons into two sub-
spaces, one containing only pure nucleonic states and the other involving states that retain
at least one pion. In this decoupled space, the amplitude does not involve enhanced con-
tributions associated with the reducible diagrams. The subspaces are not-uniquely defined,
since it is always possible to perform additional unitary transformations onto them, with
a consequent change in the formal definition of the resulting nuclear operators. This, of
course, does not affect physical representations.



The two TOPT-based methods outlined above lead to formally equivalent operator struc-
tures for the nuclear potential and electromagnetic charge and current up to loop corrections
included, which makes it plausible to conjecture that the two methods are closely related.
However, this topic has not been investigated further. In what follows, we focus on the
method developed in Refs. [21, 23, 25] and show how nuclear operators are derived from
transition amplitudes. Here, we are especially interested in the construction of the two-body
weak axial charge and current operators. We will not discuss the aforementioned unitary
equivalence between operators corresponding to different off-the-energy-shell extrapolations
of the transition amplitudes. This issue has already been addressed in considerable detail
in Ref. [23] for the case of the two-body nuclear potential and electromagnetic charge and
current operators. Similar considerations apply to the present case.

The starting point is the conventional perturbative expansion for the amplitude

U170 =01 1Y () 1) .)

where |7) and | f) represent the initial and final states, respectively | NyNoA) and | N{ NJ)
(A denotes generically the external axial field), of energies E; and E; with E; = Ey, Hy is
the Hamiltonian describing free pions and nucleons, and H; is the Hamiltonian describing
interactions among these particles (Hy = [ dx Ho(x) and similarly for H;, with Ho and H; as
defined in Sec. IT with the various fields taken in the Schrodinger picture). The evaluation of
this amplitude is carried out in practice by inserting complete sets of H, eigenstates between
successive terms of Hy. Power counting is then used to organize the expansion in powers of
Q/A, < 1.

In the perturbative series, Eq. (3.1), a generic (reducible or irreducible) contribution
is characterized by a certain number, say N, of vertices, each scaling as Q% x Q P/?
(1=1,...,N), where «; is the power counting implied by the specific term in the inter-
action Hamiltonian H; under consideration and f; is the number of pions in and/or out of
the vertex, a corresponding N—1 number of energy denominators, and L loops. Out of these
N-1 energy denominators, N of them will involve only nucleon kinetic energies and possi-
bly, depending on the particular time ordering under consideration, the energy w, associated
with the external field, both of which scale as ), while the remaining N — Nx — 1 energy
denominators will involve, in addition, pion energies, which are of order ). Loops, on the
other hand, contribute a factor Q% each, since they imply integrations over intermediate
three momenta. Hence the power counting associated with such a contribution is

N
<H Qaiﬁi/2> « [Qf(NfNKfl) Q72NK:| > QSL . (32)
i=1
Clearly, each of the N — Ng — 1 energy denominators can be further expanded as

— . o (3.3)

1 1 E,—E; (B — E))?
1 BB B

E,— Er —w, War W w

where F; denotes the energy of the intermediate state (including the kinetic energies of the
two nucleons and, where appropriate, the energy of the external field), and w, the pion
energy (or energies, as the case may be)—the ratio (F; — Ey)/w;, is of order ). The leading
order term —1/w, represents the static limit, while the sub-leading terms involving powers
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of (E; — Er)/w, represent non-static corrections of increasing order; elsewhere [20, 21], we
have referred to these as recoil corrections.

Interactions with the external axial field are treated in first order in Eq. (3.1), and in-
spection of the () scaling of the various terms shows that the associated transition amplitude
admits the following expansion

Ty=T D+ 182 410 (3.4)

where Té") is of order )". Next, we denote the two-nucleon strong-interaction potential
with v and the weak-interaction potential with vs = A? Psa — Aq - Js.q, Where ps, and js 4
are, respectively, the nuclear weak axial charge and current operators and A* = (A% A,)
is the external axial field. We construct v 4+ vs by requiring that iterations of v + vs in the
Lippmann-Schwinger equation [23]

(v+wvs)+ (v+vs5)Go(v+v5) + (v+v5) Go (v +v5) Gy (V+v5) + ..., (3.5)

match the 75 amplitude, on the energy shell &; = F, order by order in the power counting;
here Gy denotes the propagator Gy = 1/(E; — E; + in). The potentials v and vs have the
following expansions

= o® 4@ 4@ 4 (3.6)

Us —v( )+v( )+v( 1)+v(0)+vél)—l—..., (3.7)
Where the potentials v™ have been derived in Refs. [21, 23], in particular v(!) vanishes [23],
and v5 AO p5a A, - Jéng The superscript (n) on vs and T5 only refers to the power

counting of p57a and jgz, and does not include the power of () associated with the external

field. The matching between Ty" (™) and v5 ) Jeads to the following relations [23]

o 1Y, _ (3.8)
o =T [0 G v® + 0@ Gyl | (3.9)
oY =1 -vé_?’) Go v Gyo @ + permutations]

—| 2 Gov© + ¢ va | : (3.10)

véo) _ TS(O)_ Uéfi%) Gov'? Gy v G, U(O) + permutations}
_ U§*2) Gov® Gy v + permutations]

—- Y G0 400 Gv5 1)}

— [0l Gy v® + 0@ Gy ol }, (3.11)

o) = T~ ol Gy Gy o Gy v Gyo® + permutations|

— vé_Q) Go v Gy v Gy o @ + permutations}

— vé_l) Gov Gov + permutations]
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— [0 Gy 0@ + 0@ G, 1}&0)}
_ Ué—i’)) Gov® Gov® + permutations}

— vé_Q) Go v@ 4@ Go vé_z)}

— [oE® Gy v® 4 0@ Gyl 3.12
5 5 ’

and a similar set of relations is obtained between T™ and v, i.e., the amplitudes and po-
tentials in the presence of strong interactions only [23]. These relations allow us to construct
o™ and v from T™ and T{™.

~ ¥

I

at a2 c

FIG. 1. Diagrams al and a2 contribute to the one-body axial current operator at order Q(~3).
Diagram ¢ contributes to the one-body axial charge operator at order Q(~2). Nucleons, pions,
and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time
ordering is shown for diagrams a2 and c. The full dot in ¢ is from the interaction vertex H. @

TNN>
see Appendix B.

The weak axial charge and current operators at leading order consist of the single-nucleon
contributions shown in Fig. 1 and are given by

- g
pra (@) = =m0 (B +p1) (20)°0(py+a - )+ (1=2) . (3.13)
. (— g q
Jé,a?))(Q) =24 la |01 — 5 &5 'q (27T)35(P1 +q-— p/1) + (1 = 2) ) (3'14)

2 Z+mz’!
where q is the momentum carried by the external field, and p, and p; are the initial and
final momenta of nucleon i. The counting @3 of js, (panel al in Fig. 1) follows from the
product of a factor Q° associated with the ANN current vertex (recall that the @ scaling
of the external field is not counted), and a factor @2 due to the momentum-conserving ¢-
function § (p, — p2) implicit in disconnected terms of this type. Evaluation of the pion-pole
contribution (panel c), in which the axial source couples directly to the pion which is then
absorbed by the nucleon, leads to the pé:f) expression in Eq. (3.13). In this disconnected
term, the counting Q=2 accounts for the Q2 factor due to d (py — p2), the factors @ and @*
of the mA and 7NN vertices, respectively, and the factor Q=2 from the pion field normal-
ization and energy denominator associated with the intermediate state. A similar counting
is applied to panel a2 in Fig. 1 contributing to js 4.

There is no direct coupling of the nucleon to A%: the interaction —(g4/2)N 7-Agv°y°> N
in

~NA@2)N ,
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with A(2) as given by Eq. (A59) occurs with the opposite sign in
—(f=/2) [NTQ()N (GTY),, Fre A2 +hee] |

with T9(1) as in the first term of Eq. (A57) and (G).,' = Fay = 0 up to m,m, or m2 terms,
and hence cancels out in Eq. (2.11). The single-nucleon axial charge of the correct sign and
strength follows from the sum of the two time-ordered contributions of diagram ¢ with the
full dot representing the interaction (ga/2f,) N T -I17°y° N from

—(1/2) [, (G™"),, NTR(1) N +hc.] .

Because of the different power counting of the leading order terms in the current and
charge operators, the strong interaction potentials needed to construct these operators up
to order n = 1 include corrections up to n = 3, i.e., v®, in the case of the current and up
ton = 2, i.e., v, in the case of the charge. The leading order (LO) term v(® consists of
(static) one-pion-exchange (OPE) and contact interactions, while the next-to-leading order
(NLO) term v(!) (as already noted) vanishes (see Ref. [23]). The next-to-next-to leading
order (N2LO) term v® contains two-pion-exchange (TPE) and contact interactions, the
latter involving two gradients of the nucleon fields. The v(® term was originally derived in
Ref. [1], and is well known. However, at N2LO there is also a recoil correction to the OPE,
which we write as [30]

(1 —v)[(E] — B1)* + (B — B5)*] — 2v (B} — E)(E; — B)

D) = v (k 3.15
WD) = 9 K = @)
where v (k) is the leading order OPE potential, defined as
g
Uﬁo)(k):—rf?ﬁ'ﬁ 01'k02'kw—]z, (3.16)

E; (p;) and E! (p}) are the initial and final energies (momenta) of nucleon i, and k = p; —p/.
There is an infinite class of corrections v7(r2)(1/), labeled by the parameter v, which, while
equivalent on the energy shell (E] + Ej = E; + E,) and hence independent of v, are different
off the energy shell. Friar [30] has in fact shown that these different off-the-energy-shell
extrapolations v7(r2)(1/) are unitarily equivalent.

The next-to-next-to-next-to-leading order (N3LO) term v includes interactions gen-

erated by vertices from the sub-leading Lagrangian ,Cg,—these are of no interest for the
present discussion—as well as non-static corrections to the N2LO potentials v?). Among

these, the TPE correction vé?r)(l/) (from direct and crossed box diagrams) depends on the

specific choice made for w@(y). However, as shown in Ref. [23], the unitary equivalence
3)

Y

remains valid also for vé (v). In the derivation of the axial current Jéncz at n = 1 below, the

choice v = 0 is made for w@(u) and Uéi)(l/), specifically Eq. (3.15) above and Eq. (19) of
Ref. [23]. The remaining non-static corrections in the potential v®) are as given in Egs. (B8),
(B10), and (B12) of that work. Clearly, different choices in the off-the-energy-shell extrap-
olations of these potentials will lead to different forms for (some of) the ,]glg(u) corrections
to the axial current. As shown in the case of the electromagnetic charge operator [23], one
would expect these different forms to be unitarily equivalent. However, this has not been

verified explicitly in the present case.



IV. AXIAL CHARGE

The nuclear weak axial charge two-body operator can be written as

P50 = psoaPE + p5TaPE + p5CaT : (4.1)

namely as a sum of terms due to one-pion exchange (OPE), two-pion exchange (TPE), and
contact contributions (CT). We defer the discussion of loop corrections to the OPE axial
charge (and current) and of their renormalization to a later section. In the following, and in
Sec. V as well, contributions to the OPE and TPE (or MPE in Sec. V) operators are labeled
by the power counting superscript (n). While each individual contribution is not explicitly
identified as being OPE and TPE (or MPE), this is obvious from the context.

Here and throughout this paper, we adopt the following conventions. The momenta k;
and K, are defined as

K;=(p; +pi) /2, ki=p; —pi, (4.2)

where p; (p}) is the initial (final) momentum of nucleon i. A symmetrization (1 = 2) and
an overall momentum-conserving d-function (27)38(k; + ks — q) are understood in all terms
listed below unless otherwise noted.

A. Leading one-pion and two-pion exchange contributions

Diagrams contributing to pOPE at leading order and to pTPE are shown, respectively,
in panels al and a2, and panels cl-c12 of Fig. 2. The contributions of al-a2, and cl-c2 and
cb-c6 are given by

1
p(5 u )(al) =1 8_f2 (11 X 1), 09 - ko 2 (4.3)
Pha (a2) = i, ;><a1> , (44)
/055 3(01 +c2) = (11 X T2)q 01 - ko IO (k) (4.5)

Z16f4
3

(1) —

4Tla011 (0'2 X kg) Jl(JQ)(kQ)

‘l‘(’Tl X Tz)a [k’g J(O)(k‘z) — J(Q)(k’g)] g - kg s (46)

while those of ¢3-c4, ¢7-¢8, and ¢9-c12 vanish. Corrections proportional to 1/m to topologies
al and a2, due to non-static corrections to the energy denominators, that enter at order @,
vanish after summing over all time orderings. Contributions, coming from Hf]z, y and Héi)N N
to topologies al and a2, that enter at order (), turn out to vanish. The freedom in the choice
of pion field, parametrized by the parameter « in Appendix A, introduces an a-dependence
in the interaction vertices with three or four pions, see Appendix B. The contributions of
diagrams c4 and c8, which include a 37 vertex, turn out to vanish identically. But in general
this a dependence must cancel out exactly, as is indeed the case for the two-nucleon axial
charge and current operators obtained in this work. The loop functions have been defined
as

10(k) = / (ij)gﬂw_,m , (4.7)
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JO(k) = / 2n)? g(wi,w_), (4.8)
TP (k) = / (;:)3 Pglwy,w-) , (4.9)
T (k) = / (;:)3 pipj 9(wy,w) (4.10)
with
1
f(w_,w+) - W w_ (w+ + w_) ’ (4'11)
o o= et
and
wi =+ (pEtk)?2+4m2 . (4.13)

They are evaluated in dimensional regularization [21]. Insertion of the finite parts of these
loop functions leads to

(1) . g4 82 Sg + ko
p5,a(C1 + C2) = —Z—128 71'2 f# (7-1 X T2)a o - kQ k—z In (82 — kQ) R (414)
3
(1) _ . 9a Sg . 8o+ ko
p5,a(C5 + C6) = —Zm |:4 Tl,a (0'1 X 0'2) . k2 ]{;_2 In 5y — k2
k2 + 2 82 S9 + ]{72

_ Loy ky 225 4.15
(T1><'T2) o 2 k‘232 n32—/{;2:| , ( )

where

55 =/4m2 + K2 . (4.16)

The divergent parts read

ga

pg()l(cl +¢2)|oo = —i W(ﬁ X Ty)q01 ko (de — 1), (4.17)
o) 9 1
p57a(c5 —+ C6)|oo = —1 327_[.2](,;1 |:7—1,a (0’1 X 0'2) . kg <d€ — g)
3 1
—— (M x 7)ok (det+5 | |, (4.18)
4 3
with the constant d, defined as
2 2
do=—"4~y—lndr+In"2 1, (4.19)
€ 1

where € = 3 — d (d is the number of dimensions), 7 is Euler’s constant, and p is a renormal-
ization scale.
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FIG. 2. Diagrams contributing to the OPE axial charge at leading order Q! (panels al and a2),
and to the TPE axial charge operator at order (). Nucleons, pions, and axial fields are denoted by
solid, dashed, and wavy lines, respectively. Only a single time ordering is shown for each topology.

B. Contact contributions
At order Q° there are no contact terms contributing to pg;]j . Those at order () are given
by (see Appendix C)
4
pSe=> 20, (4.20)

1=1

where the z; are (unknown) LECs and the operators O; with ¢ = 1,..., 4, symmetrized with
respect to the exchange 1 = 2, have been defined as

O =1i(m x1), (01-ka —02-ky) (4.21)
Oy =1i(m xT), (01 -k1 —o3-ks) , (4.22)
O3 =i (01 X03) (Tioks — 2o ki) , (4.23)
Oy = (T10a — T2a) (01 —02) - (K1 + Ks) . (4.24)
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We observe that the loop divergencies from c1-c2 and ¢5-c¢6 can be reabsorbed in the LECs
z1 and zs.

V. AXIAL CURRENT

Before considering the two-body contributions, we note that at order Q' there are
relativistic corrections to the one-body current represented in diagrams b1l and b2 of Fig. 3,
given by

(= 7 1

Jé,al)(bl) = 4‘222 Tl,a |:](12 (o8] + 5 kl X Kl — 01 - K1 K1 + Z o - k1 k1:| s (51)
«(— q o(— A

Jé,al)(b2) = _q2+—m? [q ‘Jé,al)(bl) + 9 m2 Te01 - Ky ky - Kl] ) (5.2)

1

where b2 contains two contributions at order Q~!: one is from the 1/m? terms originating

from the non-relativistic expansion of the 7NN interaction Hg\), ~; the other is due to the

1/m terms in H 7(3\), n and the (leading) non-static corrections (proportional to 1/m) to energy
denominators. The bl current has been found to give a significant contribution to the cross
section for proton weak capture on *He of interest in solar physics [33].

bt b2

FIG. 3. Diagrams illustrating the relativistic corrections to the one-body axial current. Nucleons,
pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single
time ordering is shown for diagram b2. See text for further explanations.

As for the charge, the two-body current is written as a sum of one-pion exchange (OPE),
multi-pion exchange (MPE), and contact (CT) terms (notation and conventions are as in

Sec. 1V),

T S L T (5.3)
We discuss ng here. It is well known [33] that a single contact term occurs at order Q°,
which we choose as

:CT

J5a = 20| (11 X T), 01 X 03 — (11 x ), q- (o1 x 03) ], (5.4)

q¢* +m3
(where the second term of Eq.( 5.4) is the pion-pole contribution) and none at order @ (see
Appendix C). This term is due to the interaction (N7“75 u, N ) NN and, as first pointed
by the authors of Ref. [34], the LEC zj is related to the LEC ¢p (in standard notation)
entering the three-nucleon potential at leading order. The two LECs c¢p and cg which
fully characterize this potential have been recently constrained by reproducing the empirical
value of the Gamow-Teller matrix element in tritium /S decay and the binding energies of
the trinucleons [35, 36].
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A. Leading one-pion and multi-pion exchange and short-range contributions

Leading contributions to _]OPE and JMPE are shown, respectively, in panels d1-d2, and
panels el-e23 of Fig. 4. There are no contributions at order Q~! from diagrams d1 and
d2: in d1 the interaction Hfrl]\), N4 contains no coupling to the field A,, while in d2 the sum
over the 6 time orderings, when leading order vertices from Hg, H2(71r)NN, and H S\),N are
considered, vanishes. The first non-vanishing contributions enter at order Q°, and read

©0)/ 11\ 94 Ki o+ 1 1 1
‘]5’(1((11)—77%(T1X72)a l%— i o, Xq+ C4+m 0'1><k2 02-k2;§
1
f2 C3T2,q kg g9 - k2 (,u2 (55)
.]éo)(dQ) ga L[T2a(401m2+263q‘k2) — Cy (Tl X’TQ) Ul'(quz)} 0'2'1{2i
a 222y m2 U m @ w3
. 9A q . 1
—1 16mf7% q2+m72r (Tl XTQ)Q(2K1+ZO'1 Xkl)‘ (q+k2) o kg—%
i A 4 (nxm) (Kl-k1+2K2-k2)az-k2i. (5.6)
8m f2 % + m? ‘ wj

For the diagrams contributing to JMPE only a single time ordering is displayed for
each topology. It is understood that denominators involving pion energies in the reducible
topologies of diagrams el-e2, e6-e7, e8-e10, el3-el4, e20-e21, and e22-e23 are expanded as
in Eq. (3.3). The resulting contributions depend on the off-the-energy-shell prescription
adopted for the non-static corrections to the OPE, TPE, and OPE-contact potentials [23].
Different prescriptions lead to different formal expressions for these corrections as well as
the accompanying weak axial current operators, which, however, are expected to be re-
lated to each other by unitary transformations. This unitary equivalence was discussed in
considerable detail in Ref. [23], where it was explicitly verified to hold in the case of the
electromagnetic charge operator. Here we reiterate that the axial current operators derived
below are obtained by adopting the v = 0 prescription for the non-static corrections to the
OPE, TPE, and OPE-contact potentials, as given in Eq. (3.15) of the present work and in
Egs. (19), (B8), (B10), and (B12) of Ref. [23]. We find that the contributions of diagrams
e3, e6-e7, ell-el4, el8-el9, e22-e23 vanish, while those of the remaining diagrams are given

by
3
. g
.]éi(el) = - 161}4 7-2,(1 |:R§]2) (k2) Ulj - k2 R(0)<k2) g - kg] 5 (57)
+(1) — q (1)
Jsa(€2) = —q2+—m2q Jsa(el) (5.8)
Jialed) = 1?}4 a0 [ RO (k) = RO (k)| 72 (59)

9 q
.]éla)t( 5) = 32—1};—1m |:7—2,a [k% R(O)(k’l) — R(2)<I€1)i| [(100& — 1) g9 - kg + o9 - kl]

— (11 x ), R (ki) (o1 % kl)ﬁ&a} , (5.10)
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dt é a2 el § e2 g e3
e4 e5 % eb e’ e8
- B //—/ //_/
- - - % // ~
— — % /
% e // //
eg § el10 el % el2 e13
//— <~ 7 AN ( - \\
< e - ~ ﬁ/ -
el4 els §e16 §e17 el8
C D I | _
~ k | |
| | |
§ | | ;

e19 e20 e21 e22 e23

FIG. 4. Diagrams contributing to the OPE axial current operator at order Q¥ and to the MPE
axial current at order ). Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy
lines, respectively. Only a single time ordering is shown for each topology.

5
i) (e8) = -4 [m{(al X o) % ko |3 SO (kz) — S (k)|

16 f2

—|—[k;§ 5(2)(k:2) _ 5(4)(1{;2)}0-1 — [k:g Si(jQ) (ko) — Sz'(;l)(kQ)} Ulj:|

4
+ 3 T1.q (02 X ko) X ko SQ)U@)] ; (5.11)
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i (e9) =

i (e10) =

i (e15) =

i (e16) =

i (e17) =

i$(e20) =

i (e21) = —

o (e (5.12)
33/}# o [(2@@ —71a) [BRO (k) = RO (ko) | -k
+ (11 x ), B (k1) (073 % kz)ialjl , (5.13)
gi {m (10aq -3k +ke) [KRO (k) ~ R (k)|
32 f3
—4 (11 x ), RY (ki) (01 % ky) j] "2&)';2 , (5.14)

g q
6412 2 2+ m2

+ [ RO (ky) — RY(ky)] — 200 (¢? + k2 + 2m2) [kf RO(k,) — R<2>(k;1)]

{2 (52 + 202 + k2 + @) [K2 B (ky) — RO (ky)]

k
+80CJ(J12:| T2 %2
w3
9a q &) oy - ks
+16 fA (11 % T2)a 2 + m2 Rzg (ki) (o1 kl) (ko + q) 2 (5.15)
s e 2
3
gA q o9 kg
8f47'2,a 2+m3r( 10@) Ji2 w2 , (516)
f2 Mo 10z, (5.17)
q
Zrm 4 J5(e20) (5.18)

where the constants J,,, are as in Eq. (B2), and the loop functions RE?) have been defined

as

with

ROW) = [ 585 flwrw). (5.19)
RO = [ B Flonwn) (5.20)
R?) (k) :/(2‘2’)3 pip; flwy,w-) (5.21)
RO = [ Bt Floswn) (5.22)
R (k) = / (2dp>3 pip; P flwi,wo) (5.23)
(5.24)

Flww ) = w;wg (5.25)



The loop functions SZ-(;L) are defined similarly with f(w,,w_) replaced by

2 2
_ wi + w2 1 d -
)= = ). 5.26

After dimensional regularization, we obtain

“1ox | (5.27)
R®(k :——/ dz[ (k2) = = kaij kQ} , (5.28)
RY (k) = _E 0 i {5” M(k, z) — 411 5\‘2(_]2; k:k:]] : (5.29)
RW (k) = g/ol dz [M(k, 2)% — % (z—2)2 M(k,2) k* + % 5\24(_1;; k‘*} : (5.30)
RV (k) = 357T / dz {5 [M(k:,z) — o5 (2 =2 M(k,2) /ﬂ
% [z 2P0 (. ) - % 5\2(_]{2); d m@] | (5.31)
where M(k,z) = \/2Zk2 +m2 | (5.32)
and

Z=1-2z. (5.33)

The regularized Sfjn)(k:) loop functions easily follow from Eq. (5.26). Inserting these relations
into the equations above, and noting that the o dependence cancels out upon summing the
contributions of diagrams eb, el5, el6, and el7, we obtain the expressions reported in
Appendix D. No divergencies occur in these loop corrections at order (), consistently with
the fact that there are no contact terms in the axial current at this order. Contributions
coming from Eg,, proportional to d;’s, that enter through topologies d1 and d2 turn out to
vanish.

VI. RENORMALIZATION OF THE ONE-PION EXCHANGE AXIAL CHARGE

We now proceed to renormalize the order () loop corrections to the OPE axial charge
operator (as shown below, no renormalization at this order is needed for the loop corrections
to the OPE axial current). We first construct the set of relevant counter-terms, and then
carry out the renormalization of the nucleon and pion masses, field rescaling factors Z, and
Zn, pion decay constant f., nucleon axial coupling constant ¢4, and, lastly, loop corrections
to the OPE axial charge. We define

=/Z.7l,  N=+/ZyN", (6.1)

where 7/ and N" denote, respectively, the renormalized pion and nucleon fields, and Z, and
Zn are the corresponding field rescaling constants, assumed to have the following expansions

Z,=1+062,, 87, ~ Q% (6.2)
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Zy=1+62x, 6§y ~ Q* . (6.3)

We also define the physical pion mass m! and nucleon mass m" as

mi? =m2 4+ om?2 | om2 ~ Q" (6.4)

s

m"=m+dm , om ~ Q* . (6.5)
As illustrated in Appendix E, the total Lagrangian can be written as
L=N"(i¢§—m"+T% oyrl + AL O + A') N
1 L
+5 (072 Gl oy + 07, Gy Oy — iy Hiy iy ) — fo Al Fly Oy
N VL VA r r 5m72r r,r
+0mN N"+6Zy N (iv"0, —m") N" + 5 Tala s (6.6)

which is then expressed in terms of renormalized fields and masses, but bare coupling con-
stants g4 and f, and LECs. This Lagrangian has essentially the same form as the bare
one in Eq. (2.4) (the primed quantities are defined in Appendix E), and leads to a similar
interaction Hamiltonian as in Eq. (2.11),

Hr=H; [Eq. (2.11) with primed quantities and renormalized fields and masses]

BNV NS i r 6m3r r_r
—mN N"—6Zy N (278 m') N" — 5 TaTa (6.7)
In addition to the vertices listed in Appendix B, this Hamiltonian generates vertices cor-
responding to the set of counter-terms in Eqs. (E9)—(E15), explicit expressions for which
follow from those in Appendix B.

A. Field and mass renormalization

The determination of the scaling factors Z, = 1+6Z, and Zy = 1+0Zy for the pion and
nucleon fields, and the renormalization of the pion and nucleon masses have been discussed
recently and in considerable detail in Ref. [17]. We only quote the results here:

m?'4 m’? mr? 10 —1
om: = 213—=- f2 4f2 ——Jo1 , 0L, = —2 fg Iy + 2f2 Jo1 (6.8)
3 3
5m = —4m;2 C1 — 8?2 J12 s 5ZN = 8?;3 J13 s (69)

where the constants J,,,, are defined in Eq. (B2). Only leading Q? corrections are provided
above, but for ém which also includes the sub-leading term of order Q* proportional to .Jjs.
The sign for dm differs from that in Ref. [17], since there m" = m — dm.

B. Renormalization of the pion decay constant f,

The relevant interaction Hamiltonians are

Hﬂ':fﬂ/dx (A" 9" + A° 1T | (6.10)
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1 | |
éix:ﬁ/dxp(l_Qa)Al'ﬂ'T - or" — 2a+ 1A' O w" - w”
2 (o= 1/2) AU Ty + 20040 (i 0+ T0 ") | (611)
2 r2l ) .
Hglz/dx{ n?fw TA O (—A“aﬂr%AO'HT)] : (6.12)

where H(al and H:g?)f{ are the same as in Eqgs. (B42) and (B46) but in terms of renormal-

ized pion field and mass, while H ¢ A/ relative to Eq. (B43) includes counter-terms. The
contributions illustrated in Fig. 5 read

al = —ifr (k- A, —wA)) , (6.13)

a2:—?<]01[ (5a+1/2) Aa-k—(5a—3/2)A2w} : (6.14)
7"2

a3 = —2i ;; L k-A, %fw (k- A, —wA)) . (6.15)

We now require that the renormalized (physical) pion decay constant is equal to

FIG. 5. Diagrams relevant for the renormalization of f.

—ify (k- A —wA)) =al+a2+a3, (6.16)
implying
. mr?1 J
fr=f (1 + =5 1 23;) : (6.17)
which to the order Q? of interest also gives
mr?l Ji
fo=f" (1 - fm“ + 2}?;) . (6.18)

This result is in accord with that obtained in Ref. [37].

C. Renormalization of the 7N coupling constant g4/ f:

Apart from H(]\)]N and H37r)NN7 which are similar to those in Egs. (B3) and (B15) (but
again expressed in terms of renormalized nucleon and pion fields, and pion mass), the other
interaction Hamiltonian needed is

(3)/ mr2 5Z7" N r_ 1. 5 nATT
Hiyy = [ dx 7 (2d16_d18)+7 0ZNn + 5 N 107"y’ N" . (6.19)
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We find that the contributions of the diagrams in Fig. 6 are given by

blzi%a’-kra,
b2——i8g—%(1004—1)J010'~kTa,
95
b3:i48f7§J130'kTa,
mr2 393
bd =i|— (2dig — dig) — —A ]
Z{fﬂ ( 16 18) 16f7§ 13
10— 1
+f—‘%(—2m;2l4+7¢]01):|0"k7'a,

and in terms of renormalized ¢’ and fI it must be

r

. gda
o fr

o-k7,=bl+b2+b3+bd,

which leads to the following relation valid to order Q?

gh _ 9a 2m;? 94 my?ly
B e S e - =
4mr2 r2 mr2l er2
= g_A (1+ rﬂ d16_ g[:"2 J13_ 7rr24) (1_ rﬂ
fTI' gA 3f7r f7r gA

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

where in the second line, in the terms of order %, we have replaced g4 and f, by their renor-
malized values ¢y and fI, which is correct at this order, and have isolated the Goldberger-
Treiman discrepancy. The above relations are in agreement with Eqgs. (102) and (103) of

Ref. [17].

VO \
N ) e
// ,/ - // / //
b1 b2 b3 b4

FIG. 6. Diagrams relevant for the renormalization of g4/ fr.

Since f has already been renormalized, we can use Eq. (6.25) to independently renor-

malize g4. We find up to order Q?

1 922 4mr2 er2
ga=9a |l — s—5Jon — o5 s+ —"dis| | 1 — —F
A 2 fr2 3fr? 9a 9a

(6.26)

As a check of this result, in the next subsection we provide a direct renormalization of g4

by considering the coupling of the axial field A, to the nucleon.
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D. Renormalization of the axial coupling constant g4

The relevant interaction Hamiltonians are HS]{/N and HQ(jr)]\/]N 4 in Egs. (B20) and (B30),

and
. ‘ _ d o
H/(;Q’K/N: —/ dxN (2 m:2die T - Aiy'ys + 5ZN97AT A s+ %‘T . (WFiﬂz%) N™. (6.27)

We consider a similar set of diagrams as in Fig. 6, but for the incoming pion line replaced
by the external field. Their contributions are given by

bl = %"‘ Too - A, | (6.28)
b2 = —49—‘2% J()l Ta O - Aa s (629>
gi
b3 = 48f7% J13 Ta O Aa s (630)
d
bd = (%“ §Zx +2m:> d16> Ta0o - Ay + %ra (aq-o—¢°o) - A, , (6.31)

and sum up to g% o 7,/2, with the renormalized axial coupling constant (to order Q?) ob-
tained as

—r 1 g5z 4m"?
ga=9a [1 Y Jo1 — 3 fr2 Jis + 7 dig| , (6.32)

and g4, apart from the Goldberger-Treiman discrepancy, is in agreement with Eq. (6.26). It
is also in agreement with the results, to order %, reported by Schindler et al. in Ref. [38].
The term proportional to dys quadratic in q contributes to the nucleon axial radius [38].

di az d3 d4 ds dé

FIG. 7. Pion-pole diagrams.

E. Renormalization of pion-pole contributions

We examine the pion-pole contributions illustrated in Fig. 7. We obtain

ga q-o
dl=—-—"A, - q——= T, , 6.33
2 qq?—l—m;‘r2 K (6.33)
_ga r2 Jo1 q-o
d2 + d3 = Q_ﬁ (—mw l4 + 7) Aa . qu_'_—WTa, (634)
ga q-o
d4:8_f7%(10a_1) JOlAa'qua s (635)
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gA q-o

d5:_48f7§ 13 a'qq2+—7n;27_aa (6-36)
46 = "2(2dys — d 394
=|—m."(2dis — 18)4—@ 13
ga ’o 10a—1 q-o
_4_f7% (—Qmw l4+TJ01> }Aa.qu—F—m;QTa . (637)
Their sum reads
ga 1 g 4my? 2my?
dl+---+d6=—">=|1— ——Jy — —=—J d 1— d
e ao =G 1o = P S (12 ZEE
49 (6.38)

XAa'qu_i_—m;QTcm

and therefore the renormalized ¢’y follows exactly as in Eq. (6.26), including the Goldberger-
Treiman discrepancy. The renormalized (single-nucleon) current is then given by
9a gp A0

Jso=—"7T0T,+ QWTa>

; 5 (6.39)

and this current is conserved in the chiral limit (m, — 0), since in that limit ¢/, = g}.

F. Renormalization of OPE axial charge

We begin by discussing the non-pion-pole contributions illustrated in Fig. 8. In diagrams
g2, g4, g6, g8, g11, and gl4, the solid dot represents the interaction —dm — 4m”? ¢y, where
om is the nucleon mass counter-term. The contributions associated with diagrams gl-g2,
g3-g4, g5-g6, g7-g8, g9-gl1, and gl2-gl4 represent the renormalization of nucleon external
lines and, with the choice of ém in Eq. (6.8), they are seen to vanish.

Next, the solid square in diagrams g16, g18, and g20 represents the interaction

20, 657, |
H{)' = —/dx (m}z 4+ 2 > (I - I + Oirc” - ;")

mr4 (13 + l4) m” 5m2
T s Z _ g 7’- T .4
+/dx{ 72 +2(5,r 2}77 ", (6.40)

with vertex (in the convention of Appendix B)

4 2771;2 l4
<0| HQ(W)/ ‘k1>al;k2,a2> = 5a1,a2 { ( 72

2 m:r4 (lg + l4)
+T

With §Z, and dm? as given in Eq. (6.8), the contributions of diagrams g15-g20 cancel out.
The remaining loop contributions in diagrams g21-g29 are given by

+ 5Zﬂ-) ((JJl(JJg - k1 : k2)

+mli? 07, — (5m72r} , (6.41)

_ 1
phia(g21) = pé,al)(al)rﬁ(l —10a)Jor (6.42)
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FIG. 8. Half of the possible time-ordered non-pole corrections to the OPE axial charge at order
Q. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. See
text for further explanations.

_ 15)
) (922) = pé,;’<a1>8—ﬁ<1 —da)Jo (6.43)
(D693 + ¢94) = p=Y J 6.44
p5,a(g +g )_pS,a ( ) 2713 > ( : )
24 f
P25 +826) = —pf, (a1) fQJlg, (6.45)
P (827 + g28 + g29) = p5a><a1>—Jm, (6.46)

4 f2
while those in diagrams g30-g32 vanish identically. Here pé D(al) is defined as in Eq. (4.3).

Finally, one needs to include the contributions due to the interactions H. ®) Xy in Eq. (6.19)
and

Hw]\)/NA = — (025 + 62, /2) 17 /deer (T x 7w )N, (6.47)
in the OPE axial charge, which simply lead to the correction of order @)
2 mrQ 1
25ZN + (SZTI- + g (2 dlg — dlg) p5 a (al) . (648)
A

Thus, the sum of the order () corrections to the axial charge from non-pole contributions,

denoted as pél)(npp), reads

,a

1 /9 g4
om) = 000 | 25 (5 =50 ) = 2+ 202
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2 r2
Y82, + Z’“ (2dys — dlg)} , (6.49)
A
which, which after insertion of 6Zy and 67, is expressed as
(1) _ - 94 1 5 5%
Ps5,.(nPP) = ng,,Q (11 X T3), 02" ke LU“J - WJB
_2m 2m’?
fr; l4 grﬂ- (2 d16 — dlg):| , (650)
A

where the bare g4 and f; have been replaced by their respective renormalized values—this
replacement is correct to the order of interest here. The complete non-pole axial charge,
denoted as pOPE(npp) below, results from the sum of the leading-order contribution in
Eq. (4.3) with the ratio ga/f? replaced by its renormalized value

ga  Ga gy 2m"? 2m??
= = 1——=J J l 2dig —d 6.51
E 2f7”2 gt Tl B 18)}’ (021
and the contribution pgg(npp). We obtain
OPE . 4 1 1 g5’
Ps5.q (npp) = 18 2 (11 X T2), 09 k2 1+ fTQ 2f;2 Jis | . (6.52)

The diagrams describing the pole corrections are illustrated in Fig. 9 (only representative
diagrams for each of the relevant classes are drawn for brevity), and are similar to those in
Fig. 8. A slightly more complicated analysis along the lines illustrated above leads to a pole

OPE axial charge, denoted pgc)t(pp), given by

OPE _ . 94 1 gA
Psa (PP) = 28f7'§2 (11 X 72), 02 - k2w—%<1 s Jo1 — 3 fr2 J13> : (6.53)

The sum of the npp and pp contributions evaluated in dimensional regularization is

r r2
OPE . 9a 1 9a
Psq (UPP + PP) = ZSf;ﬁ (11 X 1), 09 k2w2 (1 — I J13)

_ 3mr? 1
= Al 1- e (a3 . (654

There are additional loop corrections to the OPE axial charge, see Fig. 10. Their contribu-
tions are obtained as

9

PE(EL +£2) = ; 5 05 (a1) [KE IO (ky) — 1P (ky)] (6.55)
(W (¢ __ 1 ey

Ps a( 3 +f4) - _8](-7.2 p5,a (al) L(kl) ) (656>

where pé;n(al) is again defined as in Eq. (4.3), except that g4 and f, are replaced by their

renormalized values ¢’y and f7. The loop function I® (k) has been defined in Eq. (4.7),
while 1 (k) and L(k) read

1) = [ 58 o o). (657
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FIG. 9. Representative diagrams for each of the relevant classes contributing to pole corrections to
the OPE axial charge at order (). Nucleons, pions, and axial fields are denoted by solid, dashed,
and wavy lines, respectively. More than a single time ordering is shown for some of the diagrams.

f1 f2 f3 f4 f5 fé6

FIG. 10. Additional loop and tree-level corrections of order ) to the OPE axial charge. Nucleons,
pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single
time ordering is shown for each topology. See text for further explanations.

L(k) = / (ij)gm ) o) (6.58)

Evaluation in dimensional regularization leads to

r2
W (51 12y = pD(al) 94| Sty (S1ERLY g g
p5,a( + ) p5,a (a“ )487T2 f77;2 kl n s1 — kl ( 1 + m7T )
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1 2
+ k7 <5 de — ;) + 18 m.? <d€ — 5) ] : (6.59)
1 S? S1 + l{?l 5
1 —8m"P+ kA (d — = 6.60
|:k1 n $p — kl mﬂ + 1 3 ) ( )

with d. as given in Eq. (4.19). We also need to account for tree-level contributions of order
Q originating from the vertices 2r NN and NN7A° in Egs. (B14) and (B29), denoted by
the solid diamonds in Fig. 10. They can be written as

(1) _ (1)
P5,0(£3 +14) = py , (al)W

P85 + 16) = 20 (a1) (3 K3 + o 3 + ds g* + dymr?)
y 1

ga 7
3 fr2 ds o401 (q X ka) 02 - ko w_§ , (6.61)

+1

where we have introduced the following combinations of LECs

dy =2dy + d | (6.62)
dy =4dy +2dy +4ds — dg (6.63)
dy = —2dy + dg , (6.64)
dy=4dy +4dy+4ds+8ds (6.65)
ds = dys + 2dos . (6.66)

The divergent parts of the d;’s (and hence d;’s) have been identified in the heavy-baryon
formalism, without considering any specific process, with the background-field and heat-
kernel methods, see Ref. [39] and references therein. We report below the expressions for
these divergent parts from Table 4 of that work:

Bi .
d; = F)\ +di(n) , (6.67)
where, in the conventions adopted in the present work,
1 2
A= de +In— :
32712(6+ nmgr) , (6.68)
, 2
&) = =2 2 4 drm,) (6.69)

LN R

The S; functions of interest here are

4 2 4
_9a __1 594 _ 1. 94
B G B 19 19 By = 5 + G (6.70)
1 5434 1 5¢%
_ 1 _ L 094 — By = 71
Bs 24+ 2 Be 6 6 Bis = B2z =0, (6.71)

and [ is from Eq. (B13) of Ref. [39] which corresponds to our choice of operator basis in
£7(r472. For the combinations d; above we obtain

dy = (1+5¢%)d. +dI | (6.72)

9672 f2
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1 Tr
dg = ]_67'{‘—2][2 de + d2 s (673)

1 T
d4 = 1677'—2](2 de + d4 s (674)

and 673 = Elvr and c% = Jg . 'We observe that the divergence proportional to m?2 from loop

OPE(

corrections in p npp + pp) cancels exactly that present in f1 + 2. Next, the divergent

part of dl cancels exactly the term proportional to k% d. present in fl + f2 and £3 + f4. The
divergent parts of dg and d4 are the same, and therefore can be reabsorbed in the LEC 2z,
multiplying the contact term Oy. Those of d3 and d5 vanish, which is consistent with the

fact that there are no divergencies proportional to ¢ or in the operator multiplying Elv5
Combining Egs. (6.52), (6.53), (6.59), (6.60), and (6.61), we then find that the renormal-
ized OPE contributions up to order () included read as

OPE _ . 9a 1 9gi’ [( 2 > 1 31+k’1
ko= |1+ ————=|(0ki+8m." | —In
Pra =iy (X M), 0 %@{ T 96 fr2 * ki s — Ky
1 53 S +k1 ~
R 2} S (O e der dr k2
3 1 H2amy +967T2f;2 kst — Ky 1+ dy Ky
+d q +d4 ):| + Z2§é2 C’ingﬂa'l . (q X kg) o9 - kgw—% . (675)

G. OPE axial current

The loop corrections to the OPE axial current are shown in Figs. 9 and 11. Those
associated with panels h1-h17 are easily seen to vanish, while the contributions of diagrams
ml-m2 are obtained as

r5
. 1
Jham) = g M [9male = (nx m), (o1 K)o de oy (676)
s 2
. q .
ng)z(mQ) = o m2 q 'Jéi(ml) ; (6.77)

TS T
1 9 1
Jé’i(m1>:—25g7rf;4[97—2ak2 (7-1 XTQ)a<0'1 ng)]O’g'ka—% . (678)

No renormalization is necessary in this case, since loop corrections to diagrams d1-d2 of
Fig. 4 enter at order Y%, and are beyond the scope of the present work.

VII. DISCUSSION

In this section we report the complete (and renormalized) expressions for the weak axial
charge and current operators, compare these expressions to those obtained by the authors of
Ref. [18], and discuss current conservation in the chiral limit. For simplicity, the superscript
r has been removed from the pion and nucleon masses m, and m, the nucleon axial coupling
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mi m2

FIG. 11. The only non-vanishing loop corrections to the OPE axial current. Nucleons, pions, and
axial fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time ordering
is shown for each topology.

constant g4, and pion decay constant f,. However, all these quantities are understood to
have been renormalized.

The one-body operators and two-body contact operators are those listed, respectively, in
Egs. (3.13)—(3.14) and Egs. (5.1)—(5.2), and in Eqgs. (4.20) and (5.4), while the two-body
operators involving OPE, TPE or MPE, and short-range terms follow in the next subsection.
Relativistic corrections (proportional to 1/m?) in the one-body axial charge are neglected,
those in the one-body axial current (proportional to 1/m?) are retained in Egs. (5.1)-(5.2),
since they are known to be important in weak transitions such as the proton weak capture
on 3He at low energies [33].

A. Two-body axial charge and current operators up to one loop: summary

The (renormalized) OPE contributions to the axial charge are given in Eq. (6.75), while
those corresponding to the axial current read

7OPE _ ; OPE _ q :OPE 94
.] 5,a .] 5,a q +m2q .]5@ 2f2 q +m_2|: m CIT2a
[ 1
—2— (’7'1 X TQ)CL (Kl 'k1 +K2 'kg)]UQ k2—2 , (71)
m W)
where
.OPE _ 94 9 gamg, i ce + 1
2¢3 — .k — K, —
Joa HJ( 1%njﬁ>”’2+@xnhhm VT Ty,
1 1 gjm,r 1
k ko — . 7.2
+(c4+4m+1287T 72 )am<4]m 2 2 (7.2)

The TPE axial charge, and MPE and short-range axial current can be written, respectively,
as

3 2
TPE _. 9 1 Am?
p5a _Zw;gfll[(‘rl X ’TQ)aal 'k2 (3—3 — M) —47'1@(0'1 X 0'2) 'kg
SQ+]€2
Zn 7.3
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with with s; defined as in Eq. (4.16), and

TMPE _ .MPE q - MPE
J5.a =Jsa q2+—m2q J5a

94 q
128 f2 ¢ +m2

1
T2 |:Zl(k1)a'2 (k1 — ko) + Zy(ky) o2 - ko E}
2

+ (27’27(1 — Tl,a) Zl(kg) o1 k2 + (7'1 X Tg)a |:Zg(kf1) |:(0'1 X 0'2) . k1

—2 (o1 xky) - (kg +q)os - ko le } + Z3(ks) (01 X 032) - kQH

3

1
+12891’?Tf# TQ,a Z1<]€1) |:(k2 — 3k1) (o250 kg QT% — 20’2:|

3

+329—7ff;* (11 X Ty), Z3(k1) o1 x ky 02 - ko w_g ; (7.4)
where
3
J&MPE 64g—Af47'2,a [Wi(ks) oy + Wa(ks) ko o1 - ko |
95 gim
+64 7 T1.0 Wa(k2) (02 X ko) X ko — S /2 S Cr .02, (7.5)

and the loop functions Z; and W; are listed in Appendix D.

B. Current conservation in the chiral limit

In the chiral limit (m, — 0) the axial current is conserved and

q-jsa=[H, psal (7.6)

with the two-nucleon Hamiltonian given by
H=TY 40O 4@ 4 (7.7)

where the superscripts denote the power counting, the v(™ are the two-nucleon potentials
defined in Sec. III, and the kinetic energy 7"V (in momentum space) is

2
70 = PL(or)35(p) —py) + (1=2) . (7.8)
2m
Here, the potentials and axial charge and current operators (including the axial coupling
and pion decay constants and LECs entering them) are to be understood in the chiral limit.
Order by order in the power counting, current conservation implies the following set of
relations

a- Jéa)

0, (7.9)
T (7.10)

q- J5a
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q-if) = [T(’”, pé;l)} + [U(O), pé}f)] , (7.11)
q-ish = [T(‘”, pé?i] + [U(O), péfa”} : (7.12)

where we have only kept up to terms of order Q2. Note that the commutators implicitly
bring in factors of @®. The first of these relations is obviously satisfied, see Eqs. (3.14)
or (6.39). The second relation has

(1) gA
q'.]5,a - 2m2

ok - Kiop Ky + (1=2), (7.13)

where jé:ll) is given by the sum of the contributions in Egs. (5.1) and (5.2), and is also
satisfied. The left-hand-side of the third relation has
(0) _ . ga 1 .
q.JS,a = Z4mf3 (7'1 X 7-2)@0-2 . k2w—§ (kl . K1 +k2 . KQ) + (1 — 2) s (714)

and this matches the first commutator on the right-hand side, [T (1), péjal)} with péjal) given
by
(-1) _ . 9a 1 .
p5,a —Zm (’7'1 XTg)aﬂg'kQW—%+(1 \—2) s (715)
i.e., the sum of terms al and a2 in Eqs. (4.3) and (4.4). There are additional contributions
to j1), which arise f stati tions to the denominators involving pi i
J5.0> Which arise from non-static corrections to the denominators involving pion energies
in the diagrams illustrated in Fig. 12, where the crossed circle (cross) means that the these
denominators are expanded as indicated in Eq. (3.3) to order @ (Q?) beyond the leading-order

static term. These contributions are needed in order to satisfy the commutator [v(o), péj)] ,

but have been neglected in the present work.

®. v

AN
AN

- ® g § N
FIG. 12. Hlustration of some of the non-static corrections to the axial current ignored in this work.

Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines, respectively. See
text for further explanations.

Lastly, we consider the fourth relation, Eq. (7.12). The axial current Jél()l obtained here
is in the static limit, and one expects q - ‘]élt)l to satisfy the commutator

3
[v(o) : pé;l)} _ _%Afll (Th.a — Toa) Hkg R(O)(kg) _ R@)(@)] o - ko
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- [kf RO(k) — R<2>(k1)} oy - kl}

3
+%l};rl (T1 X TQ)a |:R£]2)(k2> 01, (0'2 X kg)j

_Rz(?)(kl)ffu (01 % k1)j] ; (7.16)

where the loop functions R™ (k) and Rg)(k:) in the chiral limit read

11
(0) — -
ROM) > 1 (7.17)
1
(2) 1

and the ... indicate a term proportional to k; k;, which vanishes when inserted in Eq. (7.16).
The current-conservation constraint is seen to be satisfied by noting the only non-vanishing
contributions to q ‘]élt)l are those due to diagrams e4, 5, el0, el5, el6, and el7 in Fig. 4,
proportional to the combination of coupling constants g%/ f2. In particular the contributions

of the purely irreducible diagrams e4, e5, el5, el6, and el7 combine to give

3
q- i) (4 + 5+ e15 + ¢16 + e17) = —331}4 [ﬁ,a [ RO (k) = RO (k)] o1 - Ko

3

+7—2,a [k/’% R(O)(k’l) — R(Q)(kfl)i| oy - k1:| + 331}4 (Tl X Tg)a |:R£]2)(k:2) 01,4 (0’2 X kg)j

— R (k1) 0 (0 % kl)j] , (7.20)

)

with the remaining “missing” term being provided by q- jga

(e10). The remaining commuta-

tor [T(_l), péog} has a factor 1/m, and therefore non-static corrections need to be included

in jggl, if the latter is to satisfy the complete Eq. (7.12). These corrections have been ignored
in the present work.

C. Comparison

We compare the one- and two-body axial charge and current operators derived here with
those obtained by Park et al. in Refs. [18] and [33] in the heavy-baryon (HB) formulation of
covariant perturbation theory. The one-body axial charge and current operators at leading

order in Egs. (3.13) and (3.14) are the same as those listed in Eqgs. (B1) and (A3) of Ref. [33],

except for the pion-pole contribution to jéj’), which, while nominally of the same order (Q3)

as the non-pole contribution, is nevertheless suppressed at low momentum transfer ¢ and
is therefore ignored in Ref. [33] (we note incidentally that in that work k; = —q, i.e., the
opposite convention adopted here). Of course, this pion-pole contribution is crucial for
current conservation in the chiral limit. We have neglected the 1/m? relativistic corrections
to the leading order axial charge. They are retained in Eq. (17) of Ref. [33]. However, the
1/m? corrections to the leading order axial current in Eq. (5.1) are in agreement with those
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given in Eq. (A3) of Ref. [33], except for the last term proportional to q (o - q), which is
again ignored in that work.

d] 2

FIG. 13. Feynman amplitudes contributing to the one-body axial charge at leading order.

Before moving on to the two-body contributions, it is worthwhile discussing how the
one-body axial charge operator emerges in covariant perturbation theory. The relevant
interaction Hamiltonian densities are

Haon(z) = fr A(z) - TI(z) , (7.21)
H%M@z%%WWVJH@WfN@% (7.22)
H%N@»=§%N@h~@ﬂm¢wau (7.23)

where all fields are in interaction picture. The S-matrix elements associated with the Feyn-
man amplitudes in Fig. 13 are given by

1 / !/
SW=—§/¢%¥MPAH“MA®H%MM+H%M@HM@ﬂmA% (7.24)

where v = a or b, T denotes the usual chronological product, and |p, A) and |p’, \') are the
initial and final nucleon states with momenta p and p’ in spin-isospin states y, and x,
respectively. Then for v = a we obtain

i) = o (4 p) AT [ Aty 60O ) )] )

oW O[T [[1(2) ()] [0)] (7:25)

where we have considered the leading order in the non-relativistic expansion of the nucleon
matrix element. Since in the interaction picture the conjugate field momentum Il.(z) =
Om.(z), it is easily seen that (see also Ref. [40])

(0|7 [Me(x) Ma(y)] 10) = 95 0y 01T [me(@) ma(y)] [0) — i 6ea 0(a” — y°) 6(x = y)

4 2
— 5cd/ d*k e~k (z—y) (1 + —ko ) , (7.26)
m

(2m)4 2 — k2 —ie

with the Feynman propagator defined by

O (o) ma)] 10) = [ et 00 7.7
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The T-matrix element Ty; obtained from Sy, = —i (2m)*6(p' — p — q) T}; reads

2
a ga qp
T = 24 A0\t o (p'4+p) v [ 1+ : 7.28

fi 4m =€ XA (p p) XA m72r + q2 _ Q(2) — e ( )
where the term proportional to gy = pf, — po is suppressed by @Q? in the power counting. The
leading order term leads to the axial charge operator in Eq. (3.13). A similar analysis shows

that the leading-order contribution to S}?) vanishes.

As already noted, the interaction Hamiltonian in Eq. (2.11) contains no direct coupling
of A? to the nucleon. However, diagrams of the type illustrated in Fig. 13 are not considered
in Refs. [18, 33]. It would appear that their contribution is accounted for by retaining the
term —id.q0(x — y) in Eq. (7.26), which effectively leads to a direct coupling between A9
and the nucleon.

Turning to the OPE contributions at tree level, we find that the order Q! contribution
to the axial charge, pf—,;l), in Eq. (6.75) reproduces the corresponding contribution, given by
Egs. (B2), (B3), and (B5) of Ref. [33] with () = 1, while the order Q° contribution to
the axial current, jé?zl, in Eq. (7.1) is the same as in Eq. (A5) of Ref. [33]. We stress again
that, while diagram a2 in Fig. 2 is not explicitly considered in Refs. [18, 33], the OPE axial
charge operator derived there has the correct strength. The contact terms contributing to
the Q" axial current in Eq. (A6) of Ref. [33] can be reduced through Fierz identities to the
form given in Eq. (5.4).

ni é n2 n3

FIG. 14. Diagrams contributing to the axial charge (n1-n2) and current (n3) at order ) consid-
ered in Ref. [18]. Nucleons, pions, and axial fields are denoted by solid, dashed, and wavy lines,
respectively. Only a single time ordering is shown for each of the possible 12 (n1) and 60 (n2 and
n3) cross-box topologies.

Next we consider loop corrections to the axial charge. The contributions of ¢3-c4, c7-c8,
and ¢9-c12 in Fig. 2 are found to vanish in both approaches, here and in Refs. [18, 33]. The
contributions of diagrams cl and c2 are the same as those for A©®(a + b) in Eq. (93) of
Ref. [18]. The contributions of diagrams c5 and c6 are different from those for A (c + d)
reported in Eq. (94) of Ref. [18] because of the different treatment of reducible topologies
for these types of terms. Indeed, if only the (irreducible) cross-box topologies are retained
for diagrams c¢b and c6, as illustrated in Fig. 14, then the resulting operator is the same as
in Eq. (94). The OPE axial charge operator in Eqs. (74) and (90) of Ref. [18] reads in our
notation

1 k2 (170% + 4 2 2
pgaPE(Park et al.) = if_A (11 X T2), 009 kQE [ = ( Jax” + C§> Mx ga

2 217 2\ 14n? 12722
2 3
ga S2 52+k2 2 9 1 So 82+k2 9
_JA %) 5k2+8 22 -8 . (7.29
T 96 n2 12k “<52—k2)( 2+ 8m) 4 G L@ n(sz—k‘z ma) |- (129)
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Provided we define

~ =~ 5+ 13 g*
T+ d - d; - PRI iz gy ) -
the expression above is in agreement with our Eq. (6.75) in the limit q = 0 (or k; = —ky)

which is assumed in Refs. [18, 33], except for the term proportional to m?2 in the first line.
Lastly, the term proportional to the LEC c¢3 in Ref. [18] (in the HB formulation) is given
by
. C3 —= o
ZFNU (D, [D., Ds]| N,

which can be re-expressed as

. C3 ——
22—;’2N[D’8,F0”LB}N—I—...,

and matches the term proportional to dg in the HB limit of E;?}i, [27]—in the relation above
v® is the velocity, v* = (1,0).

Moving on to the loop corrections to the axial current, the sum of the contributions
due to diagram m1l of Fig. 11 and diagram el5 of Fig. 4 gives the same expression as in
Eq. (A7) of Ref. [33], provided the parameter « in the 37 A vertex of diagram el5 is set
to 1/6—the authors of Refs. [18, 33] use the exponential parametrization for the pion field.
The irreducible contributions of diagrams el and e4 in Fig. 4 are the same as reported
for, respectively, A{,(2m:b) and Af,(2m:a) of Eq. (A13) of Ref. [33], while the contributions
associated with the cross-box topologies of diagram e8 in Fig. 4 and illustrated in panel n3 of
Fig. 14, lead to the expression for A{,(27:c) in Eq. (A13). Non-vanishing pion-pole diagrams
e2, eb, €9, el0, el6, and el7 as well as diagrams e20-e21 (€22 and €23 vanish) in Fig. 4 have
not been considered in Refs. [18, 33]. In particular, because of this incomplete treatment,
loop corrections to the axial current are a-dependent in Refs. [18, 33]. Furthermore, the
current is not conserved in the chiral limit.

Finally, the OPE axial current at tree-level listed in the recent Ref. [41] (and including
pion-pole contributions) is different from that obtained in the present work in Eqs. (5.5)—
(5.6). Moreover, it is not conserved in the chiral limit.

VIII. CONCLUSIONS

In the present work we have carried out an analysis of the weak axial charge and current
operators in a two-nucleon system up to one loop (i.e., including corrections up to order @
in the power counting) in yEFT. The formalism used in the derivation is based on standard
TOPT, but accounts for cancellations between the contributions of irreducible diagrams
and the contributions due to non-static corrections from energy denominators of reducible
diagrams. A detailed comparison between the results of this work and those of the early
studies of Park et al. [18, 33] in the HB formulation of yEFT indicates that there are
differences in some of the loop corrections and in the renormalization of the OPE axial
charge, the former due to a different prescription adopted by the authors of those papers,
one in which only a subset of the irreducible contributions are retained in the perturbative
expansion—for example, in the case of box diagrams, only cross-box ones are considered.
Furthermore, while the contribution illustrated by panel el5 in Fig. 4 is accounted for in
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Refs. [18, 33|, additional ones involving three- and four-pion vertices, such as those in panels
eb, el6, and el7, have been ignored. As a consequence, the one-loop axial current derived
there depends on the parametrization of the pion field—it is a-dependent—and, furthermore,
is not conserved in the chiral limit.

The order @) loop corrections in the axial current are finite, consistently with the fact
that there are no contact terms at this order. There is a single LEC (denoted as z here
and as dr in Ref. [33]) which enters at lower order Q°. On the other hand, four independent
LECs (denoted as z;, with ¢ = 1,...,4) multiply contact terms in the axial charge at order
@, two of which are needed to reabsorb the divergencies from loop corrections in the TPE
axial charge. The loop corrections to the OPE axial charge instead lead to renormalization
of d1 which is expressed as linear combinations of the LECs d; in the £ ]2, Lagrangian—some
of these d; having been determined in fits to 7N scattering data [42]. The LEC 2, has been
recently fixed by reproducing the empirical value of the Gamow-Teller matrix element in *H
p-decay [36]. However, that calculation ignored MPE loop corrections in js,, and therefore a
refitting of zy will be necessary. Most calculations of nuclear axial current matrix elements,
such as those reported in Refs. [33, 43] for the pp and p3He weak fusions and in Ref. [36]
for muon capture on ?H and *He, have used axial current operators up to order Q° (one
exception is Ref. [44], which included effective one-body reductions, for use in a shell-model
study, of the TPE corrections to the axial current derived in Ref. [33]). Lastly, there remains
the problem of determining the z;’s in the contact axial charge. It should be possible to fix at
least some of these LECs by studying muon capture in the few-nucleon systems, for example,
by reproducing data on angular correlation parameters for the process *He(u™,v,)*H [45],
or cross sections for transitions from the bound state to breakup channels, such as the ?H-n
two-body breakup, for which data are available [46].

On a longer time scale, it should be possible to use the weak axial operators constructed
here in quantum Monte Carlo (QMC) [47] calculations of 8-decays and electron- and muon-
captures in heavier nuclei with mass number A > 4 (see Ref. [48] for an earlier study
of these processes in ®He and "Be in the conventional meson-exchange framework) and of
neutrino inclusive cross sections off light nuclei at low energy and momentum transfers [49].
As a matter of fact, the very recent development of “realistic” and mildly non-local chiral
potentials in configuration space [50], in which QMC methods are presently formulated,
makes it possible to carry out these calculations in a consistent YEFT framework (i.e.,
chiral potentials and currents), and hence offers the opportunity to provide first-principles
(and numerically exact) predictions, rooted in QCD, for the rates and cross sections of these
weak processes.
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Appendix A: Chiral Lagrangians

We adopt the notation and conventions of Ref. [27] for the various fields and covariant
derivatives, which we summarize below:

I 5, ta gaa—1
U—1+ET 7T—2f7%77—f—7§77 T -7+ 3 /2 T+, (A1)
’ 1 i(8a—1) (32— 5)

p— _1 . 2_— 2 . - ... 4 A2
u=\U +2f7r 8f,%7r 63 T+ 128 /3 0y ., (A2)
u, =1 [uT(a“ —ir,)u—u(d,—il,) uw , (A3)

D,U=0,U—ir,U+iUl,, (A4)
1

DN = (3“+I‘“)N:3uN+§ [uT(aﬂ—iru)u—i—u(ﬁﬂ—il#)uq N, (A5)

Fr=uFlutuF,u (A6)

= Oury — Oyry — [Tuaru}v Ty = Vp+ Qy (A7)

Fro=0u, — 0l —i[l,, L], L, =v,—a,, (A8)

Xi:uTxuj:uxTu:mi(UTj:U) . (A9)

The parameter « is arbitrary because of the freedom in the choice of pion field—the only
constraint is that U be unitary with detU = 1. Common choices are & = 0 and o = 1/6
corresponding, respectively, to the non-linear sigma model U = (o + i1 - m)/f, with o =
/2 — 72 and to the exponential parametrization U = exp(i T - 7/ f;). In the following
we consider only the coupling to the axial-vector field; further, we ignore isospin-symmetry-
breaking effects as well as the coupling to the isoscalar component of the axial-vector field,
and hence
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Inserting the expansions for U and u and keeping terms linear in the axial-vector field, we
find:
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where F,, = 0,A, — 0,A, and the ... denote higher powers of the pion field than shown.

1. =N sector

The 7N Lagrangians up to order Q® read:
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with the operators Ol@) and 01(3) defined as in Ref. [27]. Here g4 is the nucleon axial
coupling constant, and the ¢; and d; are LECs. Below, the v*, 75, and ¢* are v matrices
and combinations of v matrices in standard notation [51], and €**?? is the Levi-Civita tensor
with €123 = +1.

In terms of the expansions above, .Cff}v is given by
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where § = 9, and A = 7*A,,. The operators OZ( in the E & Lagrangian are expressed as
(below the notation Y1 = x4 — (x+)/2 is used, where (...) 1mphes a trace in isospin space)
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Several comments are now in order. First, the expressions above for ES&, Esz,, and Eff]z,
retain all terms relevant in the present study. Typically, these include at most three pion,
two pion, and one pion fields for n = 1,2,3 in EE:JL\),, respectively. In some instances, for
example in Of’), terms with two pion fields are also considered for reasons having to do with
the treatment of tadpole-type contributions (see below). The Lagrangian ) ESZ\), can now
conveniently be expressed as given in Eq. (2.4) with the quantities I')(n), A’ (n), and A(n),
defined in Eqs. (2.5)—(2.6), given at leading order by
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and at next-to-next-to-leading order by
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Second, the various derivatives act only on the field to their immediate right, for example

Oom - Ap means (0y7) - Ag. However, the symbols ?Z = 5: — %z and ?z = 5)1 + %z in
Eqgs. (A25) and (A60)—(A61) denote derivatives acting only on the right and left nucleon
fields, respectively.

Third, the power counting Q™ of £ ~x counts powers of derivatives of the pion field (or of
pion mass factors) and factors of A% and its derivatives (note that A# is counted as being of
order @)). However, the Lorentz structure of the terms may lead to additional suppression.
For example, in ESK, a term like
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is of order @), but a term like

_ g4 <1 — %772) T - Oy yOvs |

which is nominally of order @, is in fact of order Q2, since N4°vs N couples the lower to the
upper components of the spinors, and therefore involves the three-momenta of the initial
and final nucleons (of order )). We have taken advantage of this suppression in some of
the terms 01(3) in Ef}z, by retaining only the diagonal piece in their Lorentz structure, for
example in term Oﬁ’).

Fourth, time derivatives of the nucleon fields in Efﬁ, and Eg, are removed by making

use of the equation of motion (to order Q)
QN = —im~°N + [=7"40; + i7" T2(0) oma + 1 7°AL(0) Oy + i7" A(L)] N, (A63)

implying that
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where in the second line we have ignored non-linear terms in the pion field, since they do
not contribute to the order of interest here.

Fifth, double time derivatives of the pion fields in Esz, are removed by making use of
the equation of motion, see Eq. (A72) below. Terms containing both one time derivative
and one space derivative of the pion fields have been rewritten by integrating by parts. For
example, in [,;3]3, a term like

dl;@ N (1 x 80'm) - N |

can be re-expressed, modulo a total divergence, as
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2. @ Sector

The 7 Lagrangians up to order Q* read [28]:
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where in the absence of isospin symmetry breaking (which is assumed throughout the present
work) y is proportional to the identity matrix, namely x = m?2, and (x_) vanishes. Further-
more, the terms proportional to the LE]CS ly, ls, 5, lg, and h; do not contribute to the order
of interest. The symmetric matrices Gap, Gap, Hap, and Fy, in the Lagrangian of Eq. (2.4)
are obtained as
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By retaining only terms linear in the pion field and external axial field, the equation of
motion implied by £ s

Ogm =— (00 + m2) w + [r00A° + [rO;A". (A72)

Appendix B: Interaction vertices

In this appendix we report expressions for the vertices corresponding to the interaction
terms in the Hamiltonian of Eq. (2.11), which we write as

3
Hy = 30 [ (#25hw + Higsow + Hif o+ ) o (Hiea o HiSea + HiZa+--) |

n=1

2
e [(HE B )+ (B ) ) ] (B1)

m=1

where the superscript n denotes the power counting Q™ and the subscript specifies the num-
ber of pion, nucleon, and axial fields entering a given interaction term. We use the following
notation: A = por (N = p’o’7’) are the momentum and spin and isospin projections of
the initial (final) nucleon; ki, ko, ... and ay,as,... are the momenta and isospin projec-
tions of pions 1,2,... with energies wy,wo, ..., where w; = \/k? + m2; q and a denote the
momentum and isospin projection of the external axial field with energy w, and its spatial
and time derivatives expressed as VAY — iq A" and 0yAY — —iw, A%. We also define
P = (p’ + p)/2 and the (infinite) constants

dl e
oo = / G (B2)
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1. 7NN vertices

The interaction terms read

HE\)ZN_ f /dXNT Ty N | (B3)
a2 = ; f / dx N7 - TI%°N | (B4)
H = 7 (2 di6 —d18)/dXNT-aiﬂ'7iv5N, (B5)

from which the following vertices for pion absorption are obtained
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where on the r.h.s. of the above equations the 1/ V2w normalization factor from the pion
field expansion in normal modes, the initial and final spin-isospin states of the nucleons,
and the three-momentum conserving d-function (27)36(p’ — p — k) have been dropped for
simplicity. We will continue to do so in the equations to follow. Vertices in which the
pion is in the final state (pion emission) are obtained from those above by the replacements
w,k — —w, —k. Lastly, only the leading order is retained in the non-relativistic expansion
of the Lorentz structures associated with the various interaction terms (here and to follow)
unless otherwise noted.

2. 2wNN vertices

The interaction term reads
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from which the vertex follows as
')
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+2 1;[2 2K, - kz) + 15f—214(k1 X Ky) 0 04,.4,| (Bl14)

and vertices in which either or both pions are in the final state are obtained from the equation
above by replacing k;, w; — —k;, —w;.

3. 37NN vertices
The interaction terms read
1 .
H?Sr)NN 2f3/de[oz7r T 87r+2(40z—1)7'~7r7r~8i7r} YN | (B15)

which leads to the following interaction vertex

i
N HD - Ik, a1 ko, az; ks, as) = —QLﬁa T Oy [(200 — 1/2) (ko + ks5) + 2 aky]
+Tag0ay a5 (200 — 1/2) (kg + k3) + 2 aky]
HFTanOaras (200 — 1/2) (ki + ko) + 20ks] | . (B16)

The corresponding tadpole contribution is

N HY Ak, a) = —zg—fg (100 —1) Jy7a0o -k, (B17)

where Jy; has been defined in Eq. (B2).

4. 47NN vertices

The interaction term reads

1 _
HS:)NN =391 7 /dXN (I, 7° + w*IL,) (T x w), 7" N (B18)
and the tadpole contribution follows as
0] BV v [k, a1k Ly B19
(O Hy/nn ki, a15ks, a2) = 39 f4 01 €ayage Te(W1 — wa) ( )
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5. ANN vertices

The interaction terms read
H oy = —%A dx N 7, A, 7i7°N (B20)
Hﬂw = — /de(Z midig T - Ayy'ys + %T . (9jF,;jfyify5> N, (B21)

from which the vertices follow as

ga
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2

where in Eq. (B22) terms of order @* have been retained in the expansion of the bilinear
N~~sN, since they have been shown to generate significant corrections to the single-nucleon
axial current [33].

6. wNNA vertices

The interaction terms read

HY = —ﬁ/dxﬁAo (T x ™) AN (B24)
HS\),NA = /dxﬁ[ — i(r x ) Ay — 4726f7r(7 x ) A o + %Ai O
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Lot ]"f 2 (T x Ag) - (0'0; + 8’%%070 + %aﬂr : Aoaij?j + .. ] N,

(B26)

where the dots indicate terms which do not contribute in tree-level diagrams of order @), for
example

/dxw[— Q%GOijk%fﬂ-@jAk _QWT' (@Ai X H) VO}N ;
o dy +dy + d
2%/dxm.<aﬁoxmm,
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and JyAy — —iw,Ay is of order @3, since in our counting the energy of the external field is
of order Q*. The interactions in Eqs. (B24)-(B26) lead to the following vertices

1
(N] Hg\)fNA Ak, a) = —F €abe Ap Te (B27)
N HZ s I Nk ) =~ cpen Ac- [P+ Lo x (b — D)
TNNA T 2m [ 2
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d
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7. 2mNNA vertices
The interaction term reads
H2(71r)NNA 4f2 /dXNA (T x ) x w]7y"9°N , (B30)

which leads to the following vertex and tadpole contributions

</\,| H27rNNA |)‘ k17 ai; k27 CL2> ( a,a1 Taz + 5a,a2 Tay — 2 (5111,&2 Ta) Aa "o, (B31)

4f2
(N| Hiwa |A) = —4—]@ Joi T Ay -0 . (B32)
8. 3mNNA vertices
The interaction term reads
4o — 1 _
Hvna = f‘6—fs / dxNw? A% (1 x ) 7°N |, (B33)

from which the tadpole contribution is obtained as

5(4a—1)

1
(N] ngﬂ)NNA | Ak, a) = —32—]? Jor (T % Ao)a : (B34)
9. 27 vertices
The interaction terms read
2 4
4 me l4 i m. (lg + l4)
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from which the vertex is obtained as

2m72T l4

2 mfr <l3 + l4>
T _mTr2

<0| HQ(:lr) ‘klval;k%a&) = 6a1,a2 f2 ,

(w1w2 — k1 : k2) + (B36)

where, as noted earlier, the momentum-conserving §-function (27)36(k; + ks) and the pion
field normalization factor 1/1/4wjwy are understood. Vertices in which one or both pions
are in the final state follow by replacing w;, k; — —w;, —k;. Enforcing the 6 function
requirement k; = —ky = k and w; = wy = w, the vertex in Eq. (B36) reduces to

4m72rl4 2 2mil3

(0] HyY |k, 03—k, a) = ot (B37)
Similarly, we find
2mil
<k,a|H§i>\k,a>=—”;;3, (B38)

according to the prescription given above. Apart from the factor 1/(2w), which is not

included in the equations above, these vertices are the same as given in Appendix F of
Ref. [17].

10. 47 vertices

The interaction terms read

4o —1 ,
Hg):/dx{ a2f2 (- O 7w+ 0m-m O'm-m)
T (7o IL-TI +7728-7r~8i7r)—8a_1m27r4 (B39)

g2 (et Hmer s

which leads to the following vertex
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+5a1,a36a2,a4 [_205((,01 + W2 + w3 + (U4)2 + m?r + (kl + k3)2 + (Cdl + w3)(w2 + W4)}

+5a1,a45a2,a3 [—20((&)1 + %) + W3 + (,d4)2 + mfr + (k1 + k4)2 + (w1 + W4)(CU2 + (JJg)} :| s (B40>

and the corresponding tadpole contribution is

1-10« 2000 — 3
Tapp Gamhke) e

and the constant Jy; has been defined in Eq. (B2).

(0] Hﬁ) k1, a1 ke, a2) = oy 0, Jo1 mi} , (B41)
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11. wA vertices

The interaction terms read

H) = f, / dx (A" 9w + A° - I0) (B42)
HY) = 27;—3”4 / dx A’ Oy (B43)
from which the vertices are obtained as
O] HY |k,a) =i fr (k- Ay —w A9) | (B44)
O HY |k, a) = 21 ;ﬂl4k~Aa. (B45)
12. 37A vertices
The interaction terms read
H:,Ei)A 5 /dx[2(1 —20)A" - O — a+ DA 9w
+2 (a —1/2) A T, 7, + 2 v A2 (7ra7'r-H+H-7r7ra)] : (B46)

which lead to the following vertices

<0’ H3 A |k17a1;k27a27k37a3> [ a2,a3 Aa1 [(20{ ) - 2k1]

00 0s Ay (20— 1) q — 2k
00,0y Ay [(20 — 1) q — 2k
A
A

I

5(12 [2 (e (wl + wo + CU3) - wl]
—Oay,a3 Agy [2 0 (W1 + wa + ws) — Wy
—

ai, azA [2 «o (wl + wo + W3) - W3] :| ’ (B47)

as

where in the first three lines use has been made of the d-function (2m)36(k; + ko + ks + q).
The tadpole contribution is found to be

0] H?, |k, a) = —Fn](n (5a+1/2)Aa~k+(5a—3/2)A2w]. (B48)

Appendix C: Contact terms at order @)

The weak-interaction potential vs = AY ps , — A, - j5.4 is parity (P) and time-reversal (7))
invariant, which implies that ps, 7, —ps.q and js . . J5.0, and ps U (—)**! ps, and

Js.a 7, (—)*js.a- At order Q° there is no momentum dependence, and consequently there
are no contact terms which can be constructed for ps ,, while two such terms occur for js ,, of
which only one is independent (Fierz identities, see below) and is given in Eq. (5.4). At order
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@ the contact terms in ps , and js , must be linear in either k; = p, —p; or K; = (p} + p;) /2
with ¢ = 1 and 2. None can be constructed for j;,. A complete, but non minimal, set of
hermitian operators for the axial charge ps, is the following:

51 = (T1a+ T24) (01 +02) - (K; + Ky) ,

52:(71,a+7'2,a) (o1 —02)- (K1 — Ky),

O3 =i (T1,0 + Toa) (01 X 03) - ( - ko),

64 = (T1a — T2a) (01 —02) - (K1 + Kby) ,

65:(71,a—7'2,a) (o1 +02)  (Ki —K3),

O =i (T10 — Toa) (01 X 02) - (ky + ko)

O; =i (11 X 1), (01 —02) - (ki +ka) ,

Os =i (11 X 1), (01 4+ 02) - (ki — ko) ,

Og = (11 X T3, (01 X 73) - (K1 + K») .
The antisymmetry of initial and final two-nucleon states requires

O; = —P7P? p»(), , (C1)

where P*P2¢ is the space exchange operator, and P? and P™ are the spin and isospin exchange

operators with P7 = (1 + o - 02) /2 and similarly for P7. Exchange of the final momenta
of the two nucleons p} = p}, leads to

Pspace<k1 —|— k2) — k1 —|— k2 y PSpaCE(kl - kz) — 2 <K2 - Kl) 5 <C2)

preeKy +Ky) =Ky + Ky PP*(Ky — Ks) = (ko — ky) /2, (C3)

while spin exchange implies

P’ (o1+o03)=01+0y, P°(01—03) =i(o1 X03) , P’ (01 X03) =—i(01—03) ,
(C4)
and similar relations follow under isospin exchange. The following (Fierz) identities are
obtained from Eq. (C1):

62:63/2, 64:69, 55:68/27 56:_677 <C5)

while 51 is required to vanish. Hence only 4 of the above 9 operators are independent, and
a convenient set is

01=(67—58)/2, 02=<67+68)/2, 03=(56—53)/2, Or=0,.  (C6)

We note that O; and O3 have the same operator structures associated with the divergent
parts of the loop diagrams.

Appendix D: Regularized loop contributions to JMPE

The regularized contributions of diagrams in Fig. 4 read:
zZ

3 1
1 g
Jéi( 1):64—7?707‘372”/0 dz |:0'1M(k27z)+k20'1 - ko
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(1) gi ! / k%ZZ k
.]5’(1(6 ) 6471'7‘7% 2a 2/0 Z{M(kl,z) 3 ( 1’2)} ’ ( )

3 1 2 =
+(1) 9a q ki 2z
D) = d 002 (k1 — ko) | —— + 3 M(ky,

— (11 X 1), (01 X 02) - ki M(ky, 2) | , (D3)

5 1 2 ()2 -
.(1) ___9a Y ky K ks (2%) 1— 722
k3 102z -1  12z(1—82%)
> " 2Tiq k k
i Ul{M(kg,z) L M) || T 2T (o2 x k) X

1 1 k% (22 — 1)2
XLLM(/{?Q,Z) +£ M (ks 2)? :|] ’ (D4)

j(l)(elo) = 9,321 q /1 i (2 — a) k—g + 3M(k2 z) o1k
b 187 fi g +m2 Jy o =) | Mk, 2) |
+(7'1 XTQ)GMU{JQ,Z) (0’1 ><0-2>'k2:| , <D5)

3 1 2 =

.(1) g ki zz
15) = d ol ——— M (kq, ks — 3k
Js.a(eld) /0 Z[TZ, [M(kl,z) + 3 M (K, Z)}( 2 — 3ky)

0'2'k2

2 )
o)

+4 (11 X 1), (01 x ki) M (k1, z)] (D6)

3 1
.(1) ga q
16) = d
J5,a<e ) 12871']07% q2 + ,,7172r /0 o

T2.a [ — 10 M (k1, 2)* + M (k1,2)(15m2 + 11 k3

+3k3 +3q¢* —20k32Z) + %(5%{ + k3 +q° + 3k — 2k32%)

—2(11 x 1), (01 x k) - (ko +q) M(ky, 2) O-Z%kQ : (D7)
.(1) 9,331 m?r q oy - ko
J5.a(el7) = 327 f1 2oy mZ o? (D8)
8 (e20) = — g%r ”Jf; Cr a0, (DY)

where M (k, z) and Z have been defined in Egs. (5.32) and (5.33). The contributions corre-
sponding to diagrams e2, €9, and e21 easily follow from those for el, e8, and e20.
The loop functions W; and Z; introduced in Egs. (7.4) and (7.5) are defined as

Wl(k:):/oldz {(1—5g?4) M(;g,z>_gik2 {1](\);(?—2)1 ng\z(—kif)” . (D10)

2
1 2 12 = (7 2 2
B CgazZK  2Z(Tg3+2) - g4
WQ(k)_/O dz{ M2~ 2M(k,2) ! (D11)

20



1Y (R (z—2)? 1
Walk) = 5/0 dz {12 M2+ M(k,z)} ’ (D12)

Zl(k):/oldz L\;(Ekki) +3M(k:,z)} , (D13)

1
Zy(k) = / dz {4m;°; —10M(k,2)> + M(k,2z) (15m2 + 14k* —6q-k + 6 ¢
0

2z k?
M(k, z)

Zs3(k) = /01 dz M(k,z) . (D15)

—2027 k%) +

(5m2+4k>+2¢*—2q-k—2k27) |, (D14)

Appendix E: Counter-terms to order Q3

Having made the replacements in Eqgs. (6.1)—(6.5), the bare Lagrangian £ can be rewritten
in terms of the renormalized fields and physical masses as

L=L"+6C", (E1)

where £ is the same as in Eq. (2.4) but now in terms of renormalized fields and masses,
and 0L includes the set of counter-terms

0L =0m N N"+6ZyN" (i4"0, —m") N" + 6ZyN" [T27(0)0prL + AL"(0)0;m, + A(1)] N

+0Z.N' { [T97(0) + 6T07(0)] Doy, + [AL7(0)/2 + SAL"(0)] Oyl + 5N(1)] N7

5m72r r_r 5Zﬂ' r [ ~r T T r [ ~r T i, T
+ I+ = {&ﬂra (G + 6Ciz, ) 0 + Oy (G + 6Giy ) ')
—my? g, (Hy, + 0Hy,) WZ] — 02 [x AL (Fop/2 4 0F3,)0umy (E2)

where T'%7(0), A%"(0) and A"(1) are the field combinations defined in Eqs. (A54), (A55)
and (Ab6) expressed in terms of renormalized fields and physical masses. The remaining
quantities are given by

—1
ST (0) = e (), (E3)
AL (0) = f—Jj‘S 2an” w7+ (da— 1)1 w'70] Y (E4)
1 3
OA"(1) = A (1 - —?ﬂ'r : 71”) (T x7w") - Ay’
ga r r )
+4_f2[(7'><7")><77]'Az‘775, (E5)
~ 2 1—-4
G, = ——ZYTI'T 7 Oy + —2a7r27rg , (E6)
1-38
5H252T2a7"r'7‘”5ab, (E7)



2a0+1 1-2«

OF, = — 3 T Oy + T T - (E8)
It is convenient to define
oy = Gy + 62 (Gl + 6Gy) (E9)
=Gy +2 02;_263 N N6 , (E10)
a/b = ;b+5Zﬂ (ng/2+5F;b) ’ (Ell)
o = Hoy + 02, (Hy, + 0Hy,) (E12)
LY =Ty +6ZyTo"(0) + 62, [T07(0) + 6T07(0)] (E13)
A =N+ 0Zy NS (0) + 6 Z: [AL7(0) /2 + AL (0)] (E14)
A=A +06ZxyAT(1)+ 62, 0A7(1) , (E15)

which then leads to the Lagrangian as given in Eq. (6.6).

[1] C. Ordonez, L. Ray, and U. van Kolck, Phys. Rev. C 53, 2086 (1996).
[2] E. Epelbaum, W. Gloeckle, and U.-G. Meissner, Nucl. Phys. A 637, 107 (1998).
3] D.R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
[4] R. Machleidt and D.R. Entem, Phys. Rep. 503, 1 (2011).
[5] P. Navratil, Few-Body Syst. 41, 117 (2007).
[6] E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002).
[7] U. van Kolck, Phys. Rev. C 49, 2932 (1994).
[8] V. Bernard, E. Epelbaum, H. Krebs, and Ulf-G. Meissner, Phys. Rev. C 84, 054001 (2011).
[9] L. Girlanda, A. Kievsky, and M. Viviani, Phys. Rev. C 84, 014001 (2011).
[10] J. L. Friar and U. van Kolck, Phys. Rev. C 60, 034006 (1999).
[11] E. Epelbaum and U.-G. Meissner, Phys. Lett. B 461, 287 (1999).
]

044001 (2004).

[13] J.L. Friar, G.L. Payne, and U. van Kolck, Phys. Rev. C 71, 024003 (2005).

[14] W.C. Haxton and B.R. Holstein, Prog. Part. Nucl. Phys. 71, 185 (2013).

[15] S.L. Zhu, C.M. Maekawa, B.R. Holstein, M.J. Ramsey-Musolf, and U. van Kolck, Nucl. Phys.
A 748, 435 (2005).

[16] L. Girlanda, Phys. Rev. C 77, 067001 (2008).

[17] M. Viviani, A. Baroni, L. Girlanda, A. Kievsky, L.E. Marcucci, and R. Schiavilla, Phys. Rev.
C 89, 064004 (2014).

[18] T.-S. Park, D.-P. Min, and M. Rho, Phys. Rep. 233, 341 (1993).

[19] T.-S. Park, D.-P. Min, and M. Rho, Nucl. Phys. A 596, 515 (1996).

[20] S. Pastore, R. Schiavilla, and J.L. Goity, Phys. Rev. C 78, 064002 (2008).

[21] S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, and R.B. Wiringa, Phys. Rev. C 80, 034004
(2009).

[22] S. Kélling, E. Epelbaum, H. Krebs, and U.-G. Meissner, Phys. Rev. C 80, 045502 (2009).

[23] S. Pastore, L. Girlanda, R. Schiavilla, and M. Viviani, Phys. Rev. C 84, 024001 (2011).

[24] S. Kolling, E. Epelbaum, H. Krebs, and U.-G. Meissner, Phys. Rev. C 84, 054008 (2011).

52



[25]

[2
[2
[28]

6

i A2}

W w
3

W
O 0 3

W

TN
=2

[51]

M. Piarulli, L. Girlanda, L.E. Marcucci, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev.
C 87, 014006 (2013).

N. Severijns, M. Beck, and O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006).

N. Fettes, U.-G. Meissner, M. Mojzis, and S. Steininger, Ann. Phys. (N.Y.) 283, 273 (2000).
S. Scherer and M.R. Schindler, A Primer for Chiral Perturbation Theory, (Springer-Verlag,
Heidelberg, 2012).

S. Weinberg, Phys. Lett. B 251, 288 (1990); Nucl. Phys. B 363, 3 (1991); Phys. Lett. B 295,
114 (1992).

J.L. Friar, Ann. Phys. (N.Y.) 104, 380 (1977).

E. Epelbaum, W. Glockle, and U.-G. Meissner, Nucl. Phys. A 671, 295 (2000); Nucl. Phys.
A 714,535 (2003); Nucl. Phys. A 747, 362 (2005).

S. Okubo, Prog. Theor. Phys. 12, 603 (1954).

T.-S. Park, L.E. Marcucci, R. Schiavilla, M. Viviani, A. Kievsky, S. Rosati, K. Kubodera,
D.-P. Min, and M. Rho, Phys. Rev. C 67, 055206 (2003).

A. Gardestig and D.R. Phillips, Phys. Rev. Lett. 96, 232301 (2006).

D. Gazit, S. Quaglioni, and P. Navratil, Phys. Rev. Lett. 103, 102502 (2009).

L.E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, and M. Viviani, Phys. Rev. Lett. 108,
052502 (2012).

J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

M.R. Schindler, T. Fuchs, J. Gegelia, and S. Scherer, Phys. Rev. C 75, 025202 (2007).

J. Gasser, M.A. Ivanov, E. Lipartia, M. Mojzis, and A. Rusetsky, Eur. Phys. J. C 26,13
(2002).

L.S. Gerstein, R. Jackiw, B.W. Lee, and S. Weinberg, Phys. Rev. D 3, 2486 (1971).

M. Hoferichter, P. Klos, and A. Schwenk, Phys. Lett. B 746, 410 (2015).

N. Fettes, U.-G. Meissner, and S. Steininger, Nucl. Phys. A 640, 199 (1998); N. Fettes and
U.-G. Meissner, Nucl. Phys. A 693, 693 (2001); H. Krebs, A. Gasparyan, and E. Epelbaum,
Phys. Rev. C 85, 054006 (2012); J.M. Alarcon, J.M. Camalich, and J.A. Oller, Ann. Phys.
(N.Y.) 336, 413 (2013).

L. E. Marcucci, R. Schiavilla, and M. Viviani Phys. Rev. Lett. 110, 192503 (2013).

P. Klos, J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev. D 88, 083516 (2013).

P. A. Souder et al., Nucl. Instrum. Methods Phys. Res. A 402, 311 (1998).

S.E. Kuhn et al., Phys. Rev. C 50, 1771 (1994).

J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, and R.B.
Wiringa, Rev. Mod. Phys. 87, 1067 (2015).

R. Schiavilla and R.B. Wiringa, Phys. Rev. C 65, 054302 (2002).

A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, and R. Schiavilla, Phys. Rev. C 91, 062501(R)
(2015).

M. Piarulli, L. Girlanda, R. Schiavilla, R.N. Perez, J.E. Amaro, and E.R. Arriola, Phys. Rev.
C 91, 024003 (2015).

F. Gross, Relativistic Quantum Mechanics and Field Theory (Wiley, New York, 1993).

23



