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When the quark-gluon plasma emerges in the wake of a heavy-ion collision, magnetic field created
by the valence charges has already permeated the entire interaction region. Evolution of this “initial”
field in plasma is governed by the Maxwell equations in electrically conducting medium. As the
plasma expands external valence charges induce magnetic field that also contributes to the total
magnetic field in plasma. I solve the initial value problem describing these processes and argue that
the initial magnetic field often dominates over the one induced by the valence charges. In particular,
it grows approximately proportional to the collision energy, unlike the induced component, which
is energy-independent. As a result, magnetic field has a significant phenomenological influence on
quark-gluon plasma at the LHC energies over its entire lifetime.

I. INTRODUCTION

In this paper I reexamine the problem of magnetic field created by electrical currents of colliding relativistic heavy
ions [1–8]. Since these currents experience very little deflection in the course of collision [9, 10] (and thus have large
absolute values of rapidity), the corresponding magnetic field depends on energy and geometry of the collision, and
implicitly on the strong interaction dynamics through the electrical conductivity of the quark-gluon plasma (QGP)
[2, 6]. Another important aspect, which is the main focus of this study, is the transition dynamics from magnetic
field in vacuum to the one in medium. To begin with, assume that QGP forms instantly at time t = t0, where t is
counted from the collision time in the laboratory frame. This time emerges in phenomenological models of QGP that
favor rather small values as compared to the perturbation theory expectations, see e.g. [11]. The earliest possible
value of t0 is determined by the saturation momentum Qs as 1/Qs and represents the time it takes to release most
particles from the ion’s wave functions. At RHIC 1/Qs ∼ 0.2 fm. At t < t0 we are dealing with electromagnetic
field created by the valence charges in vacuum. Its magnetic component is given by the well-known formula (7). At
time t = t0, when the QGP emerges, magnetic field permits the entire plasma. Starting at t = t0 and on behavior
of magnetic field is governed by the Maxwell equations in plasma. These equations describe evolution of magnetic
field in electrically conducting QGP starting from its initial value at t = t0. This component of the total magnetic
field is referred to below as the “initial” magnetic field Binit. Another contribution to magnetic field is induced by
valence charges moving outside of QGP and is referred to below as the “valence” contribution Bval.

∗ In the previous
publications the role of the initial field has not been properly recognized. In this paper I fill this void and moreover,
argue that in most cases the main contribution stems from the initial field.

The paper is organized as follows. In Sec. II–Sec. IV I deal with magnetic field produced by a single point charge. In
Sec. II I consider magnetic field in vacuum, while in later sections – in electrically conducting QGP. The main result
is given by equations (34), (35) which represent contributions of valence charges and the initial field respectively. A
more realistic geometry is considered in Sec. V where I discuss the case of two electric charges colliding at a given
impact parameter b. I also discuss there the effect of time dependent electrical conductivity on the magnetic field
evolution. I discuss the results and summarize in Sec. VI.

II. MAGNETIC FIELD IN VACUUM

In a relativistic heavy-ion collision, electromagnetic field is created by Z electric charges of one ion and Z electric
charges of another ion moving in the opposite directions along, say, z axis such that ion centers are at a distance b
away. Due to the superposition principle, the total classical field is a sum of fields of all charges. Thus, in order to
find the total field it is sufficient to solve for a single electric charge e. In this section I briefly review a textbook case
of electromagnetic field created in vacuum by a uniformly moving point charge e. Our intent here is to introduce
notations, definitions etc.

∗ To avoid confusion I emphasize that both components are ultimately related to electrical charges of heavy-ions. The distinction only
concerns our treatment of magnetic field at t > t0 as will be explained in detail in the forthcoming sections.
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Before the QGP formation, viz. at t ≤ t0, the vector potential A1(r, t) of a point charge e moving along the
trajectory z = vt satisfies the following equation

∇2A1(r, t) = ∂2tA1(r, t)− j(r, t) , (1)

where the electromagnetic current density due to a valence charge e is

j = evẑδ(z − vt)δ(b) . (2)

The momentum space representation is defined as follows

j(r, t) =

∫
d3k

(2π)3
eik·rjkω =

∫
d2k⊥dkz

(2π)3
eik⊥·b+ikzzjkω . (3)

With this normalization the Fourier component of the current reads

jk = evẑe−ikzvt . (4)

It follows from (1) that the vector potential generated by the current (4) is

A1k =
2πevẑ

k2 − k2zv2
=

2πevẑ

k2z/γ
2 + k2⊥

. (5)

In the configuration space I obtain

A1(r, t) =
γevẑ

4π

1√
b2 + γ2(vt− z)2

, (6)

where γ = (1− v2)−1/2. The corresponding magnetic field

B1 = −∂bA1φ̂ =
γevφ̂

4π

b

(b2 + γ2(vt− z)2)3/2
. (7)

This solution is valid until t = t0 at which time existence of electrically conducting medium must be taken into
account.

III. EXACT SOLUTION FOR CONSTANT ELECTRICAL CONDUCTIVITY

Maxwell equations can be solved exactly for t ≥ t0 in the case of constant electrical conductivity σ. The vector
potential A2 satisfies the following equation

∇2A2(r, t) = ∂2tA2(r, t) + σ∂tA2(r, t)− j(r, t) (8)

with the initial conditions

A2(r, t0) = A1(r, t0) ≡ ẑΦ(r, t0) , (9)

∂tA2(r, t0) = ∂tA1(r, t0) ≡ ẑΨ(r, t0) . (10)

I stress that the current density j is due to electric charges outside the plasma. I assumed that permittivity and
permeability of QGP is trivial. One can take a more accurate account of medium properties, which would yield more
elaborate initial conditions. However, they are not expected to significantly change the final result.

In momentum space Eq. (8) and the corresponding initial conditions (9),(10) read

−k2A2k(t) = ∂2tA2k(t) + σ∂tA2k(t)− evẑe−ikzvt , (11)

A2k(t0) = ẑΦk(t0) =
evẑ

k2z/γ
2 + k2⊥

e−ikzvt0 , (12)

∂tA2k(t0) = ẑΨk(t0) = −ikzv
evẑ

k2z/γ
2 + k2⊥

e−ikzvt0 . (13)
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To solve (11), I first consider the corresponding homogeneous equation

− k2ak(t) = ∂2t ak(t) + σ∂tak(t) , (14)

Seeking its solution in the form ak ∝ e−iωt I find, upon substitution into (14), that ω must obey one the following
dispersion relations

ω = ω± = − iσ
2
±
√
k2 − σ2

4
. (15)

Thus, the general solution of the homogeneous equation (14), which describes propagation of the initial conditions,
reads

ak(t) = αe−iω+(t−t0) + βe−iω−(t−t0) , (16)

where α and β are constants to be determined from the initial conditions (12) and (13). The particular solution due
to the external current density is of the form A2k ∝ δe−ikzvt, where δ is found upon substitution into (11):

δ =
ev

k2 − k2zv2 − ikzvσ
. (17)

Thus, the general solution to (11) is

A2k = ẑ

{
αe−iω+(t−t0) + βe−iω−(t−t0) +

ev

k2 − k2zv2 − ikzvσ
e−ikzvt

}
. (18)

Applying the initial conditions (12) and (13) I can fix α and β. The final result is

A2k =ẑ

{
δ

[(
ω− − kzv
ω+ − ω−

e−iω+(t−t0) − ω+ − kzv
ω+ − ω−

e−iω−(t−t0)
)
e−ikzvt0 + e−ikzvt

]
+

1

i(ω+ − ω−)
Φk

[
−iω−e−iω+(t−t0) + iω+e

−iω−(t−t0)
]

+
1

i(ω+ − ω−)
Ψk

[
−e−iω+(t−t0) + e−iω−(t−t0)

]}
. (19)

Fourier transformation to the configuration space yields exact analytical solution to the initial value problem (8)–(10).
Analytical and numerical evaluations of the integral over k are challenging. Fortunately, in the ultra-relativistic limit
γ � 1, which is relevant for the relativistic heavy-ion collisions, expression for the vector potential (19) significantly
simplifies [6]. This is the subject of the next section.

IV. DIFFUSION APPROXIMATION

For an ultra-relativistic charge moving along the trajectory z = vt, ∂2t − ∂2z ∼ k2z/γ
2 � k2⊥, σkz, which implies

σγ � k⊥ [6]. In this case (8) can be approximated by

∇2
⊥A2(r, t) = σ∂tA2(r, t)− j(r, t) . (20)

This approximation holds even in the case of time-dependent conductivity, provided that such dependence is adiabatic,
which is a reasonable approximation for the realistic plasma. Since (20) is of the first order in the time derivative, it
requires only one initial condition

A2(r, t0) = A1(r, t0) = ẑΦ(r, t0) . (21)

I can solve the initial value problem (20)-(21) for an arbitrary time-dependence of the conductivity σ(t). Introducing
a new “time”-variable λ according to

λ(t) =

∫ t

t0

dt′

σ(t′)
(22)
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and transferring (20) to the momentum space I obtain

−k2⊥A2k = ∂λA2k − jk . (23)

The corresponding homogeneous equation (i.e. (23) with jk = 0) is solved by

ak(λ) = ẑCe−k
2
⊥λ , (24)

where C is a constant. To derive a particular solution, I treat C as a function of λ and plug into (23). I get

C = ev

∫ λ

0

dλ′ek
2
⊥λ
′−ikzvt(λ′) +D . (25)

Substituting into (24) I find the general solution to (23)

A2k(t) = ẑ

{
eve−k

2
⊥λ

∫ λ

0

dλ′ek
2
⊥λ
′−ikzvt(λ′) +De−k

2
⊥λ

}
. (26)

Since λ(t0) = 0, the initial condition (21) implies that D = Φk(r, t0). So finally,

A2k(t) = ẑ

{
eve−k

2
⊥λ(t)

∫ t

t0

dt′

σ(t′)
ek

2
⊥λ(t

′)−ikzvt′ + Φke
−k2⊥λ(t

′)

}
. (27)

In a particular case of constant electrical conductivity (27) simplifies to

A2k(t) = ẑ

{
ev

σ

1
k2⊥
σ − ikzv

(
e−ikzvt − e−

k2⊥
σ (t−t0)e−ikzvt0

)
+ Φke

− k
2
⊥
σ (t−t0)

}
. (28)

This expression can be derived directly from (19), but the approach described in this section is more straightforward.
Fourier transformation to the configuration space

A2(r, t) =

∫
d2k⊥
(2π)2

∫ +∞

−∞

dkz
2π

eik⊥·b+ikzzA2k(t) (29)

can be done using the following integrals

∫
d2k⊥
(2π)2

∫ +∞

−∞

dkz
2π

eik⊥·b+ikzze−k
2
⊥[λ(t)−λ(t

′)] =
exp

{
− b2

4[λ(t)−λ(t′)]

}
4[λ(t)− λ(t′)]

δ(z − vt′) , (30)∫
d2k⊥
(2π)2

∫ +∞

−∞

dkz
2π

eik⊥·b+ikzze−k
2
⊥λ(t)

ev

k2z/γ
2 + k2⊥

e−ikzvt0

=
γev

4π

∫ ∞
0

dk⊥J0(k⊥b)e
−k2⊥λ(t)−k⊥γ|z−vt0| . (31)

Substituting (27) into (29), doing integrals (30),(31) and then integrating over t′ yields

A2(r, t) =
ẑe

4σ(z/v)

exp
{
− b2

4[λ(t)−λ(z/v)]

}
4[λ(t)− λ(z/v)]

θ(tv − z)θ(z − vt0)

+
γevẑ

4π

∫ ∞
0

dk⊥J0(k⊥b)e
−k2⊥λ(t)−k⊥γ|z−vt0| . (32)

Magnetic field can be calculated as in (7) with the following result

B2 = Bval +Binit , (33)

where the “valence” Bval and “initial” Binit components are given by

eBval(r, t) =φ̂
απb

2σ(z/v)[λ(t)− λ(z/v)]2
exp

{
− b2

4[λ(t)− λ(z/v)]

}
θ(tv − z)θ(z − vt0) , (34)

eBinit(r, t) =φ̂γαv

∫ ∞
0

dk⊥k⊥J1(k⊥b) exp
{
−k2⊥λ(t)− k⊥γ|z − vt0|

}
. (35)
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The fine structure constant α = e2/(4π). Note that at t = t0, Bval vanishes whereas Binit yields the initial condition
(7). Binit is the field that permits the plasma as it emerges at t = t0 (at which time it coincides with B1) and spreads
in it according to (35). Unlike Bval, it strongly dependences on the collision energy 2γ (in units of proton mass).
Bval describes induced electromagnetic field generated as a response of QGP to electromagnetic field of the valence

charge and builds up starting from t = t0. Because of the two step-functions in (34) that reflect causality, Bval is
finite only in the interval vt0 ≤ z ≤ vt. In particular, it vanishes in the midrapidity z = 0. At fixed z satisfying
z ≥ vt0, Bval emerges when t = z/v. An important property of Bval is that its magnitude is independent of energy
(since v ≈ 1).

At early times since the QGP creation viz. t & t0, expression in the exponent of (35) is such that k2⊥λ� k⊥γ|z−vt0|
implying that Binit ≈ B1. However, at later times when k2⊥λ� k⊥γ|z − vt0|, I get

eBinit = φ̂
γαvb

√
π

8λ3/2
e−

b2

8λ

[
I0

(
b2

8λ

)
− I1

(
b2

8λ

)]
. (36)

Since k⊥b ∼
√

8 (which can be seen from J1 series expansion) and λ ∼ (t− t0)/σ I estimate that (36) is valid at times
t satisfying

t− t0
|z − vt0|

� 1√
8
γσb . (37)

At z = 0, b = 7 fm and t0 = 0.2 fm this implies t � 1 fm, where I used σ = 5.8 MeV known from the lattice
calculations [13], see also [14–16]. Furthermore, since b2/8λ� 1 I expand (36) to obtain the late-time behavior of the
initial magnetic field

eBinit ≈
γαv
√
πb

8λ3/2
φ̂ . (38)

For constant σ the late-time dependence (viz. t � t0) is Binit ∼ 1/t3/2. Notice that at late times the “valence”
contribution decays as Bval ∼ 1/t2. It therefore emerges that the initial magnetic field dominates at early and late
times.

V. MAGNETIC FIELD OF TWO COUNTER-PROPAGATING CHARGES

To calculate magnetic field in a heavy-ion collision one considers two sets of Z counter-propagating electric charges
distributed according to one of the known nuclear density parameterizations, see e.g. [3]. However, to study the time
evolution of magnetic field it suffices to consider just two counter-propagating charges. The geometric symmetry of
this configuration is similar to that of the event-average over many heavy-ion collisions at impact parameter b, but
drastically reduces the computational time. The configuration that I consider is depicted in Fig. 1.

b1 b2

R

φ1
φ2

x

y

φ

−b/2 b/2

FIG. 1: Two counter-propagating charges e. One charges moves along the positive z-axis at z = vt, x = −b/2, y = 0 while
another one moves in the opposite direction at z = −vt, x = b/2, y = 0.

Let B(1)(r1, t) and B(2)(r2, t) be magnitudes of the fields of the two charges, each given by (33)–(35). I can express
coordinates of the observation point relative to each charge r1 = b1 + ẑz1 and r2 = b2 + ẑz2 in terms of their
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center-of-mass in cylindrical coordinates R, z, φ as follows, see Fig. 1

ba =
√
b2/4 +R2 + (−1)a bR cosφ , tanφa =

R sinφ

R cosφ− (−1)a b/2
, za = vt+ (−1)a z . (39)

where a = 1, 2 labels the charges. Noting that B(a) ∝ φ̂a and expressing φ̂a in terms of b̂ and φ̂ I obtain magnetic
field in terms of the center-of-mass frame coordinates

B =b̂[B(1)(r1, t) sin(φ− φ1) +B(2)(r2, t) sin(φ− φ2)]

+φ̂[B(1)(r1, t) cos(φ− φ1) +B(2)(r2, t) cos(φ− φ2)] , (40)

where ra and φa are replaced as indicated in (39). The result is shown in Fig. 2–Fig. 5 in terms of a dimensionless
and unit-independent quantity eB/m2

π. In all figures impact parameter is b = 1 fm, observation point is at φ = π/2,
R = 7 fm (i.e. x = 0 and y = 7 fm), and γ = 100 (except Fig. 4). Also indicated is the pseudorapidity η =

− ln[−(z/R) +
√

(z/R)2 + 1]. Solid lines indicate the total magnetic field B, dashed lines represent the contribution
of the initial condition Binit and dotted lines stand for the contribution of the valence charges Bval. As discussed at the
end of the previous section valence charge contribution decreases with time faster than that of the initial condition.

0 1 2 3 4 5 6
t(fm)

10-4

0.001

0.010

0.100

eB/mπ
2

0 1 2 3 4 5 6
t(fm)

10-4

0.001

0.010

0.100

eB/mπ
2

FIG. 2: Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0 fm (η = 0). Left panel: t0 = 0.2 fm, right panel: t0 = 0.5 fm.

Valence current does not contribute at all (Bval = 0).

0 1 2 3 4 5 6
t(fm)

10-4

0.001

0.010

0.100

eB/mπ
2

0 1 2 3 4 5 6
t(fm)

10-4

0.001

0.010

0.100

eB/mπ
2

FIG. 3: Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.6 fm (η = 0.086). Left panel: t0 = 0.2 fm, right panel: t0 = 0.5 fm.

Solid, dashed and dotted lines stand for B, Binit and Bval.

Fig. 2–Fig. 4 depict magnetic field at constant electrical conductivity σ = 5.8 MeV [13]. In Fig. 2 I compare
magnetic field that is generated when QGP emerges at t0 = 0.2 fm and at t0 = 0.5 fm. Since magnetic field in vacuum
decreases as 1/t3, see (7), the late emergence of conducting medium means that the magnitude of the field in the
former case is about 15 times larger than in the later. In both cases time-dependence of magnetic field in plasma is
mild. Because of the step functions in (34) magnetic field at midrapidity z = 0 is entirely due to the initial field Binit.

Fig. 3 is similar to Fig. 2 except that z = 0.6 fm unlocking the “valence” contribution. Being independent of the
initial value of magnetic field at t0 the “valence” contribution rapidly increases to its maximal value, that can be
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determined from (34) [12]. It then decreases at larger t and becomes smaller than Binit. Sharp lines seen in Fig. 3
indicate that the transition dynamics near t = t0 is not fully captured by the diffusion approximation.

Energy dependence of magnetic field between the RHIC and LHC energies can be seen in Fig. 4. Binit grows
approximately proportional to the collision energy γ, whereas Bval is energy independent. Thus, at the LHC magnetic
field induced by valence charges is negligible.

0 2 4 6 8 10
t(fm)

10-4

0.001

0.010

0.100

eB/mπ
2

0 2 4 6 8 10
t(fm)

10-4

0.001

0.010

0.100

1

eB/mπ
2

FIG. 4: Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.2 fm t0 = 0.2 fm. Solid, dashed and dotted lines stand for B,

Binit and Bval. Left panel: γ = 100 (RHIC), right panel: γ = 2000 (LHC).

So far I considered only the case of constant electrical conductivity. In practice, however electrical conductivity
is time-dependent. To see the impact of σ time-dependence on the time evolution of magnetic field I consider two
models. In model A I assume that QGP emerges instantly at t = t0 with σ = 5.8 MeV and then cools down as it
expands according to the Bjorken scenario [17]. Namely, expansion is supposed to be isentropic nV = const, where n
is the particle number density and V is plasma volume. Since n ∼ T 3 and at early times expansion is one-dimensional
V ∼ t it follows that T ∝ t−1/3. Since σ(t) ∝ T I conclude that σ(t) ∼ t−1/3. Thus a reasonable model for time
dependence of electrical conductivity is

σ(t) =
σ

2−1/3(1 + t/t0)1/3
, Model A. (41)

Another possibility is that the QGP does not appear as a thermal medium right away at t = t0, rather it takes time
τ until the conductivity reaches its equilibrium value σ. This can be described as

σ(t) = σ
(

1− e−t/τ
)
, Model B. (42)

I set conservatively τ = 1 fm. Note that I cannot let σ(t) vanish at t = t0 because that would violate the diffusion
approximation that lead to (20). However, (42) insures that σ(t0)� σ.

In Fig. 5 I contrast the two models. Similar calculation at constant conductivity is shown in the left panel of Fig. 4.
I observe that time-dependence (41) (model A) significantly reduces magnetic field at later times. As far as model
B is concerned, time dependence (42) affects mostly Bval because it directly depends on σ(t), whereas Binit depends
only on λ(t), see (34),(35). Model B has minor effect on the total magnetic field, although one can certainly find
regions in space-time where its effect is more pronounced. What actually matters is the initial time t0 at which one
can treat the produced particle system as a medium. As long as conductivity is large enough at later times, magnetic
field is fairly insensitive to the precise QGP dynamics.

VI. SUMMARY

Just before the QGP emerges, the interaction region is permitted by the primordial electromagnetic field created by
valence charges of two heavy-ions. At the initial time t0 this magnetic field smoothly connects to the magnetic field
in plasma and evolves according to the Maxwell equations in the electrically conducting medium. In addition to this
“initial” magnetic field, there is another “valence” contribution that arises from the external valence electric charges
inducing currents in the QGP. It has been tacitly assumed that the former contribution is not important [6]. In this
paper I argued to the contrary, that the initial magnetic field dominates at very early and later times and increases
much faster with the collision energy than the “valence” contribution.
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0 2 4 6 8 10
t(fm)

10-4

0.001

0.010
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FIG. 5: Magnetic field in units of m2
π/e. z = 0.2 fm t0 = 0.2 fm. Left panel: model A. Right panel: model B. Solid, dashed

and dotted lines stand for B, Binit and Bval.

I also studied the effect of time dependence of electrical conductivity and concluded that at early times it has a
rather minor effect on the field strength, as long as the produced particle system can be treated as a medium at early
enough time. However, towards the later times of plasma evolution, time-dependence of electrical conductivity plays
an important role. In the Bjorken scenario it leads to much weaker fields as compared to the constant conductivity
case.

I considered the case of two counter-propagating charges that gives an accurate picture for the time dependence of
the event-averaged fields in heavy-ion collisions. Scaling the result with Z I can obtain an estimate of the magnetic
field strength in heavy-ion collisions. Calculating the spatial distribution requires an accurate account of the exact
nuclear geometry, which is not difficult using the results reported in this paper.
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