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We examine the momentum dependence of p̄p and n̄p annihilation cross sections by considering
the transmission through a nuclear potential and the p̄p Coulomb interaction. Compared to the n̄p

annihilation cross section, the p̄p annihilation cross section is significantly enhanced by the Coulomb
interaction for projectile momenta below plab < 500 MeV/c, and the two annihilation cross sections
approach the Pomeranchuk’s equality limit [JETP 30, 423 (1956)] at plab ∼ 500 MeV/c. Using
these elementary cross sections as the basic input data, the extended Glauber model is employed to
evaluate the annihilation cross sections for n̄ and p̄ interaction with nuclei and the results compare
well with experimental data.
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I. INTRODUCTION

In support of experiments of the FAIR (Facility for the
Research with Antiprotons and Ions) at Darmstadt[1, 2]
and the AD (Antiproton Decelerator) at CERN [3] for
antimatter investigations, it is of interest to continue our
investigation on the annihilation between an antinucleon
with a nucleons or a nucleus that represent an impor-
tant aspect of the interaction between antimatter and
matter. A recent suggestion of using n̄A annihilation to
study the n-n̄ oscillations [4] provides an additional im-
petus to examine the annihilation between an n̄ and a
nucleus. In a recent work [5], we extended the Glauber
model for nucleus-nucleus collisions [6–9] to study the
antiproton-nucleus annihilation process. The extended
Glauber model for the calculation of the p̄A annihilation
cross section [5] consists of treating the nucleon-nucleus
collision as a collection of binary collisions, with appro-
priate shadowing and the inclusion of initial-state and
in-medium interactions. The basic ingredients are the
elementary p̄p and p̄n annihilation cross sections, σp̄p

ann

and σp̄n
ann, together with initial-state Coulomb interac-

tions and the change of the momentum of the antinucleon
inside the nuclear medium. The model provides an ana-
lytical and yet intuitive way to analyze p̄-nucleus annihi-
lation processes. Qualitative features were reproduced to
give a general map of the annihilation cross sections as a
function of nuclear mass numbers and collision energies.

We would like to improve upon these earlier results on
several important aspects. In our previous work, the ba-
sic p̄p annihilation cross section, σp̄p

ann, was parameterized
semi-empirically as 1/v, the inverse of the relative veloc-
ity v, and ultilized in our investigation of the stability and
the properties of matter-antimatter molecules [11, 12].
Such a simple dependence arises from the nuclear inter-
action between p and p̄ in the s-state and gives the main
feature of the important momentum dependence of the
annihilation cross section. Higher partial waves are also
present and it is necessary to includes them properly. In
addition to the nuclear interaction, p and p̄ also interacts
through the attractive Coulomb interaction and σp̄p

ann is

expected to behave as 1/v2 in the lowest energy region
[13, 14]. It is of interest to examine the combined effects
of the nuclear and Coulomb interactions to see how the
1/v behavior of the p̄p annihilation cross section is mod-
ified in the lowest energy region. A proper treatment of
the Coulomb and nuclear interactions for σp̄p

ann will also
lead to a better determination of σn̄p

ann, which is expected
to vary as 1/v at the lowest energies. Furthermore, in our
earlier work in [5], σp̄n

ann/σ
p̄p
ann was taken to be 4/5, based

on the experimental ratio (σp̄n
ann)D/(σp̄p

ann)D=0.749±0.018
for p̄ at rest and 0.863 ± 0.018 for p̄ in flight [15], and
a model of nucleon-antinucleon annihilation by the an-
nihilation of quark and antiquarks of the same flavor
[5]. Because of the attractive Coulomb interaction is
present in pp̄ annihilation but absent in p̄n annihilation,
σp̄p
ann should be greater than σp̄n

ann and the ratio σp̄n
ann/σ

p̄p
ann

should be energy dependent. Quark and antiquark can
form a string and subsequently fragments, independent
of the flavor contents of the quark and the antiquark.
Thus, the approximate fixed ratio of σp̄n

ann/σ
p̄p
ann of Ref.

[5] should be amended and its energy dependencies must
be properly taken into account.

On the theoretical side, there is the pioneering predic-
tion of Pomeranchuk [16] on the equality of the annihi-
lation cross section for p̄p and p̄n at high energies. One
can envisage a q-q̄ pairing model of nucleon-antinucleon
annihilation in which the annihilation between a nucleon
and an antinucleon takes place by pairing the valence
quark of any flavor from the nucleon with any valence
antiquark of any flavor from the antinucleon, with each
q-q̄ pair forming a string that subsequently fragments to
many q̄q pairs (mesons), as in the string fragmentation
in pp collisions [9, 10]. At high energies when the long
range Coulomb effects become unimportant, such a q-q̄
pairing model will predict the equality of σp̄n

ann=σp̄p
ann be-

cause there are the same numbers of 9 ways to combine
the q and q̄ pairs to form strings in p̄n and p̄p annihi-
lations. An equality of σp̄n

ann=σp̄p
ann at high energies will

favor the q-q̄ pairing model and is consistent with the
Pomeranchuk’s prediction. It will exclude another anni-
hilation model, as for example, the annihilation only by
quarks of the same flavor [5].
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To test Pomeranchuk’s prediction and the annihilation
models, we re-examine the basic cross sections of σp̄n

ann

and σp̄p
ann to understand their similarities as well as their

different energy dependencies. There are no experimental
data of σp̄n

ann for the collision of a p̄ projectile with an
isolated neutron target in free space. There are however
experimental σn̄p

ann annihilation cross section data using a
n̄ beam source (from the p̄p → n̄n reaction) colliding on
a liquid hydrogen target [17, 18], which are better suited
for nucleon-antinucleon annihilation studies than those
of [15] using the p̄-(2H) annihilations. As σn̄p

ann=σp̄n
ann, we

shall therefore treat them equivalently and consider the
problem of the annihilation of p̄ on n to be equivalent to
the problem of n̄ on the target proton p.

To study the Coulomb and nuclear interactions of an
antinucleon on the proton target, we shall assume for
simplicity a square well potential of a fixed depth for
which analytical results can be readily obtained [19]. The
theoretical results and the comparison with experimen-
tal data allows one to draw a conclusion on the Pomer-
anchuk’s prediction and the annihilation models. Upon
the determination of the improved basic σp̄p

ann and σn̄p
ann

annihilation cross sections, they can then be used as the
building blocks to evaluate the annihilation cross sections
for antinucleons on a nucleus.

It is worth pointing out that over the years, a large
set of experimental data in the annihilation of nucleons
and nuclei by p̄ and n̄ had been accumulated [17, 18, 20–
36] and analyzed theoretically [5, 36–53]. Klempt, Batty,
and Richard reviewed various phenomenological analyses
of microscopic quark dynamics and symmetry consider-
ations in nucleon-antinucleon annihilations. The roles
of initial- and final-state interaction are also examined
[36]. A theoretical optical potential based on the Glauber
model [6, 7] has been developed by Kuzichev, Lepikhin
and Smirnitsky to investigate the antiproton annihilation
cross sections of various nuclei at the momentum range
of 0.70-2.50 GeV/c [38]. In this range of relatively high
antiproton momenta, the Glauber model gives a good
agreement with the experimental data, with the excep-
tion of the deviations at the momentum of 0.7 GeV/c
for heavy nuclei. Batty, Friedman and Gal have devel-
oped a unified optical potential approach for low-energy
p̄ interactions with proton and with various nuclei using a
density-folded optical potential [42, 43]. They found that
even though the density-folding potential reproduces sat-
isfactorily the p̄ atomic level shifts and widths across the
periodic table for A>10 and the few annihilation cross
sections measured on Ne, it does not work well for He and
Li. Galoyan, Uzshinsky, and collaborators have previ-
ously investigated cross sections of various processes in p̄p
collisions in many different mechanisms. They have used
different parameterizations of the basic total and elastic
p̄p cross sections in the Glauber model and have suc-
cessfully implemented these calculations in the Geant4
program for the simulation of the passage of particles
through matter in high-energy nuclear detector studies
[45–53]. In the low-momentum regime (plab < 1 GeV/c),

however, many questions remain open to provide addi-
tional motivation for the present study. For example,
how does the electrostatic Coulomb interaction between
the collision pair affects the annihilation cross section as
function of target mass A and charge numbers Z, and the
projectile momentum in the laboratory frame plab? And
at approximately what momentum the contributions of
the Coulomb interaction begins to be less effective? This
study attempts to address these questions.
The paper is organized as follows. In Section II, we

study the basic p̄p and p̄n annihilation cross sections by
considering the effects of particles transmission through
a nuclear potential barrier, initial-state Coulomb interac-
tion between the collision pair and relativistic two-body
kinematics. As the results for the present survey will not
be sensitive to the fine structure of the potential well, we
shall assume a square well potential for which analytical
results for the transmission coefficients are well known.
The experimental p̄p and n̄p annihilation cross sections
can be successfully described in terms of transmission co-
efficients of various partial waves and Coulomb Gamow
factors. In Section III, the basic p̄p and n̄p cross sections
obtained in the theoretical analysis is then included in
the extended Glauber model to calculate p̄-nucleus col-
lisions. The expressions are given for the p̄-nucleus an-
nihilation cross sections in terms of basic p̄-nucleon an-
nihilation cross section, σp̄−nucleon

ann . In Section IV, we
assess the theory by comparing its numerical results to
experimental data at both high and low energies, Finally,
we conclude the present study with some discussions in
Section V.

II. THEORY OF p̄p AND n̄p ANNIHILATION

CROSS SECTIONS

To analyze the p̄p and n̄p annihilation cross section at
a center-of-mass energy ECM, we follow Blatt and Weis-
skopf [19] to decompose the incoming plane waves into
partial waves and we use the ingoing-wave strong ab-
sorption model to assume that a partial wave transmit-
ted passing through the nucleon surface R will lead to
a reaction, which in our case is an annihilation. In the
case of p̄p annihilation, there is in addition the initial-
state Coulomb interactions which can be taken into ac-
count through the Coulomb Gamow factor GL(k) [54]
(or the K-factor K(η) in [55, 56]). The p̄p and p̄n anni-
hilation cross sections for a collision with a wave num-
ber k=

√
2µECM and a reduced mass µ are then given in

terms of the transmission coefficients TL and the Gamow
factor GL by

σann(k) =
π

k2

Lmax
∑

L=0

(2L+ 1)TL(k)GL(k), (1)

where GL(k) is 1 for p̄n annihilation.
To calculate the transmission coefficients, we consider

the nucleon and the antinucleon to interact through a
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nuclear interaction, which for simplicity can be taken to
be a square well V (r) = −V0Θ(R− r). The transmission
coefficient is then given by Eq. (5.5) on page 360 of [19]
as

TL =
4sLKR

∆2
L + (sL +KR)2

, (2)

where K =
√

k2 + 2µV0,

sL = R

[

gL(dfL/dr)− fL(dgL/dr)

g2L + f2
L

]

r=R

, (3)

∆L = R

[

gL(dfL/dr) + FL(dgL/dr)

g2L + f2
L

]

r=R

, (4)

fL(r) =

(

πkr

2

)1/2

Jl+1/2(kr), (5)

gL(r) = −
(

πkr

2

)1/2

Nl+1/2(kr), (6)

where Jl+1/2(kr) and Nl+1/2(kr) are Bessel and Neu-
mann functions, respectively. The Gamow factor for p̄p
annihilation under the Coulomb interaction Vc(r) = α/r
is [56]

GL(k) =
(L2 + ξ2)[(L− 1)2 + ξ2]...(1 + ξ2)

[L!]2

×
(

2πξ

exp{2πξ} − 1

)

(7)

where ξ = α/v and α is the fine structure constant. Fol-
lowing Todorov [57] and Eqs. (21.13a)-(21.13c) of Crater
et al. [58], in the center of mass coordinate system, it
is shown that the relative velocity v for two equal-mass
particles with rest mass m is related to their center of
mass

√
s and can be expressed as [55]

v =
(s2 − 4sm2)1/2

s− 2m2
, (8)

and

s = (a+ b)2 = (a0 + b0)
2 − (a+ b)2, (9)

where a = (a0,a) and b = (b0, b) are the 4-momentum
vectors of the two colliding particles with a and b repre-
sent the target and projectile, respectively.

III. THE p̄p AND n̄p ANNIHILATION CROSS

SECTIONS

Expression (1) shows that for the antinucleon-nucleon
annihilation cross section all necessary information is
contained in the magnitudes TL(k) and GL(k); they de-
fine the cross section completely. To determine TL(k)
and hence the cross section, we assume the the nuclear
contact radius R = 0.97 fm and the strong interaction
potential V0 = 85 MeV. Figure 1 displays the σann

p̄p cross
section result obtained with Eq. (1) as a function of p̄
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FIG. 1. (Color online) (a) Antiproton-proton annihilation
cross sections as a function of the antiproton momentum in
the laboratory frame. The solid curve represents the p̄p anni-
hilation cross section of Eq.(1). The experimental data points
are from the compilation of [25], where the individual experi-
mental sources can be found. (b) Contributions from different
partial waves to the total annihilation cross sections.

incident momenta. Clearly shown in Fig. 1(a) is the theo-
retical result fits the experimental data impressively well
over a broad energy range. The different contributions to
the cross section from L = 0− 3 partial waves as a func-
tion of energy is demonstrated in Fig. 1(b). Strong mo-
mentum dependence is observed for all the partial waves.
The S-wave is obviously dominated at momentum below
240 MeV/c. As pp̄lab increases from 240 to 750 MeV/c,
the contribution from P-wave becomes important. As the
incident energy increases further, i.e., above 750 MeV/c,
the D-wave begins to dominate, and so forth.
At this point, we are interested not only in the mag-

nitude of the cross section given in Eq. (1), but also in
its behavior for smaller values of pp̄lab. To examine the
cross section behavior at low-energy limit, we restrict
ourselves to the case where the entrance channel wave
number k << K and the S-wave is dominant. This sim-
plifies the analysis and helps to elucidate the essential
points. According to Eq. (1), the annihilation cross sec-
tion is reduced to

σann
p̄p =

π

k2
T0(k)G0(k)

= π

(

4K

k(K + k)2

)(

2πξ

exp{2πξ} − 1

)

. (10)

The first factor in the formula clearly displays the 1/v
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behavior for k << K while the parameter ξ → ∞ gives

2πξ

exp{2πξ} − 1
→ 2πα

v
. (11)

In that event, the product of the two factors leads to
σann
p̄p ∝ 1/v2 behavior at low-energy limit. This 1/v2 law

was first pointed out by Wigner [13] and now its dis-
cussions can be found in quantum mechanics textbooks
[14, 59].
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FIG. 2. (Color online)(a) Antineutron-protron annihilation
cross sections as a function of the antineutron momentum in
the laboratory frame. Solid curve: n̄p annihilation cross sec-
tion using Eq.(1) without the Gamow factor=1. Solid trian-
gle: experimental data from the OBELIX Collaboration [17]
and open circle denotes experimental data from BNL [18]. (b)
Contributions from different partial waves to the total anni-
hilation cross sections.

Having demonstrated that Eq. (1) is capable of rea-
sonably describing the experimental p̄p annihilation cross
section for a wide momentum range, we next examine the
n̄p annihilation cross section as a function of the antineu-
tron momentum for which GL(k) = 1. Fig. 2(a) shows a
comparison between the theoretical and two sets of ex-
perimental data from Brookhaven National Laboratory
[18] and from the OBELIX Collaboration [17]. Relative
to the p̄p measurements, the annihilation cross section
data for n̄p still remains relatively sparse to date and
contain significant degrees of uncertainties. The two sets
of data fall within the error bars of each other. The
OBELIX data at around plab ∼ 200-300 MeV/c appears
to show an enhancement whereas the BNL data show
greater fluctuation and appear to be qualitatively con-
sistent with the theoretical predictions. Ultimately, we

concur with Friedman’s opinion [44] that the broad en-
hancement in the experimental finding for n̄p annihila-
tion cross sections around 200-300 MeV/c [17] remains
an open question.
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FIG. 3. (Color online) Comparison of p̄p and n̄p annihilation
cross sections as a function of the antiproton momentum in
the laboratory frame.

Fig. 3 indicates the importance of the Coulomb effect
by comparing the n̄ and p̄ on proton annihilation as a
function energy. The theoretical data are also plotted
against the available experimental data. At high energy
limit plab >500 MeV/c, both the n̄p and p̄p curves co-
incide. As σp̄n

ann=σn̄p
ann, the result in Fig. 3 validates the

Pomeranchuk prediction [16] of σp̄p
ann=σp̄n

ann for plab > 500
MeV/c.

At the low-energy limit, it immediately becomes obvi-
ous that the slope for the p̄p interaction is much steeper
compared to the n̄p one . Parametrizing the theo-
retical annihilation cross section in a power law form
σann ∝ pxp̄lab, the exponential value x can be simply ob-

tained via x = ∂ln(σann)/∂ln(pp̄lab). For the case of p̄p,
it is found that x=−1.544 in the momentum range be-
tween 30 and 50 MeV/c. Although it is not quite equal to
x=−2.0 as expected to be at the low-energy limit [13, 14],
the behavior of the cross section is rightly approaching
this limit as the projectile momentum further decreases.
For the case of n̄p, it is found that x=−1.080 in the mo-
mentum range between 30 and 95 MeV/c. Indeed, this
exponential value is very close to the expected x=−1.0
value, a clear indication of the 1/v behavior. The cross
sections of these two cases have distinct power indices at
low energies, depending on the charged or neutral char-
acter of the interaction pair.
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IV. THE EXTENDED GLAUBER MODEL AND

COMPARISON WITH EXPERIMENTAL σN̄A
ann

FOR A > 1 NUCLEI

The results in the last section pertain to the annihila-
tion with A = 1 nucleus. To consider p̄ or n̄ annihilation
with heavier A > 1 targets, we shall make use of our
previously developed extended Glauber model. Because
the derivations of the extended Glauber model are given
in [5], here we review and emphasize only the essential
formulas for describing p̄ the experimental p̄-nucleus an-
nihilation cross sections for all energies and mass num-
bers. In the extended Glauber model, we first consider
the incoming p̄ travels along a linear trajectories as p̄ ap-
proaches the nucleus and makes multiple collisions with
the target nucleons along its way. The target and the
projectile are represented by a density distribution func-
tion. For the target nucleus with small mass numbers
A < 40, Gaussian density distribution function is con-
sidered. On the other hand, for the target nucleus with
larger mass numbers, i.e., A > 40, uniform density dis-
tribution function with sharp-cut off is considered. The
integral of the density distribution along the p̄ trajecto-
ries gives the thickness functions which, in conjunction
with the basic σp̄p

ann and σp̄n
ann annihilation cross sections,

determines the probability for an p̄-nucleon annihilation
and consequently the high-energy p̄-nucleus annihilation
cross section

σp̄A
ann(σ

p̄−nucleon
ann ) =

∫

db

{

1− [1− Tp̄p(b)σ
p̄p
ann]

Z

×[1− Tp̄n(b)σ
p̄n
ann]

N

}

=

Z
∑

i=0

N
∑′

j=0

(

(−1)1+i+jZ!N !

(Z − i)!(N − j)!i!j!

)

×(σp̄p
ann)

i(σp̄n
ann)

j

∫

db[Tp̄p(b)]
i[Tp̄n(b)]

j , (12)

where Tp̄p and Tp̄n denote the thickness functions for pro-
tons and neutrons, respectively. The argument σp̄−nucleon

ann

on the left-hand side stands for σp̄p
ann and σp̄n

ann, and the
summation

∑

′

j allows for all cases except when i = j = 0.
The Z and N represent the number of protons and neu-
trons, respectively, in the nucleus.

To ensure Eq.(12) is also applicable for low-energy an-
nihilation process, we extended the high-energy Glauber
model by considering the Coulomb and nuclear interac-
tions that are additional to those between the incom-
ing antiproton and an annihilated target nucleon. The
initial-state Coulomb correction resulted the modifica-
tion of the projectile trajectory from linear to curved.
The strong nuclear force, on the other hand, gives rise
to the change of the antiproton momentum in the nu-
cleus interior. The development of the extended Glauber
model therefore resulted a compact p̄-nucleus annihila-
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FIG. 4. (Color online) p̄A annihilation cross sections as a
function of the antiproton momentum in the laboratory frame.
The experimental data are from Ref. [25]. The basic p̄p curve
is calculated from Eq. (1) and the rest are from the extended
Glauber model.

tion cross section

Σp̄A
ann(pp̄lab) =

{

1− Vc(Rc)

E

}

σp̄A
ann(σ

pp̄
ann(p

′′

p̄lab)), (13)

where

p′′p̄lab = pp̄lab

√

1− 〈Vc(r)〉 + 〈Vn(r)〉
E

, (14)

represents the change of the p̄ momentum inside the nu-
cleus due the average interior Coulomb 〈Vc(r)〉 and nu-
clear 〈Vn(r)〉 interactions. The {1 − Vc(Rc)/E} factor
on the other hand takes into account of the initial-state
Coulomb effect that creates the path-deviation between
the interaction pair from a straight-line trajectory with
Vc(Rc) is the Coulomb potential energy for p̄ to be at the
nuclear contact radius Rc and E is the center of mass ki-
netic energy of p̄-nucleus collisions. This analytical for-
mula is simple. Ultimately, to evaluate the p̄A or n̄A
annihilation cross sections, one only needs to know the
fundamental p̄p and n̄p annihilation cross sections.
We consider first the p̄A annihilation cross sections. In

Fig. 4, the black solid curve represents the σp̄p
ann we dis-

cussed earlier. The rest of the curves are results obtained
from the extended Glauber model with the basic σp̄p

ann and
σp̄n
ann obtained in the last section as input. Because σp̄p

ann

and σp̄n
ann are slightly different from those we reported ear-

lier [5], we find it necessary to re-adjust slightly some of
the fitting parameters in the extended Glauber model in
order to reproduce the experimental results. We use the
same functional forms and notations of the geometrical
parameters as in [5]. For a light nucleus with A < 40, we
consider a Gaussian thickness function with the geomet-
rical parameter β2 = β2

A+β2
B +β2

p̄p, where βA = r′0A
1/3,

βB = 0.68 fm, and βp̄p = σp̄p
ann/2π. For a heavy nucleus
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TABLE I. Fitting parameters

Nuclei Gaussian Uniform 〈Vn〉(MeV)
r′0(fm) r0(fm)

2H 1.20 -1.0
4He 1.20 -4.0
Be 1.00 -20.0
C 1.00 -20.0
Ne 1.00 -35.0
Al 1.00 -35.0
Ni 1.00 -35.0
Cu 1.00 -35.0
Cd 1.00 -35.0
Sn 1.00 -35.0
Pt 1.00 -35.0
Pb 1.00 -35.0

with A > 40, we consider a uniform density distribution
with the sharp cut-off thickness function and the geo-

metrical parameters Rc = RA +RB +
√

σp̄p
ann/2π, where

RA = r0A
1/3, and RB = 0.95 fm. The new parameters

r0, r′0, and nuclear potential depth 〈Vn〉 are tabulated
in Table 1. Here, we also find a slightly smaller radius
parameter r0 = 1.00 fm that gives a better description
of the experimental data. It is worth while to note that
in the present work all the parameter values r0 and r′0
remain close to those used in [5].
The fits to the p̄A annihilation cross sections in the

present manuscript in Fig. 4 are almost identical to our
previous results in Fig. 1 of Ref. [5]. This indicates that
the gross features of the p̄A annihilation cross sections is
insensitive to the basic p̄p and p̄n cross sections, when
the annihilation process is properly described. There is
however only the minor difference that with p̄p and p̄n
annihilation cross sections approaching each other at high
energies, the new results describe better the p̄(2H) an-
nihilation cross section at around plab=400-600 MeV/c.
The discrepancies of the p̄(2H) annihilation cross section
at around plab=270 MeV/c remains an unresolved theo-
retical and perhaps experimental problem that needs to
be rechecked.
It is illuminating to clarify why the p̄Pt annihilation

cross section at plab=100 MeV/c is as large as 9000
mb, corresponding to a black disk of annihilation with
a maximum impact parameter radius, bmax, of about 17
fm, when the geometrical touching radius, RPt + Rp̄, is
only about 8 fm. It should be pointed out that with-
out the Coulomb initial-state interaction for p̄Pt anni-
hilation, the extended Glauber model [the second factor
σp̄A
ann in Eq. (13)] leads to a black-nucleus result for heavy

nuclei, as the p̄ particle makes multiple collisions and
has many chances of annihilation with nucleons along its
path in the nucleus. The black-nucleus cross section ob-
tained in the extended Glauber model is approximately
π(b′max)

2 = π(RPt + Rp̄)
2 ∼ π(8 fm)2, which is about

2000 mb. In the presence of the Coulomb initial-state
interaction, the trajectory of a p̄ at an impact parame-
ter bmax=17 fm will be pulled down to collide with the

Pt nucleus at an impact parameter of b′max = 8 fm, and
the p̄ is annihilated. The Coulomb enhancement factor
(1 − Vc(Rc)/E) in Eq. (13) corresponds to the ratio of
b2max/b

′2
max and is about 4-5, which enhances the annihi-

lation cross section from about 2000 mb to about 9000
mb, as indicated in Fig. 4.
We consider next the n̄A annihilation cross sections.

Unfortunately, comparing to the p̄A annihilation, exper-
iments with antineutrons are to date scarce, in particular
regarding their interaction with heavier nuclei. Nonethe-
less, there are a few have been reported in literature.
Fig. 5. shows the comparison of the result of extended
Glauber model with the experimental cross section for
n̄Fe annihilation. The data indicates a strong depen-
dence on the incoming n̄ momentum, similar to that of
the n̄p annihilation cross section discussed earlier. The
theoretical results also appear to fit the experimental
data reasonably well, suggesting the long-range Coulomb
interaction is negligible despite the A value is large.
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FIG. 5. (Color online) n̄Fe annihilation cross section as
a function of the antineutron momentum in the laboratory
frame.. Comparing result from Eq.(1) with several sets of
experimental data.

To better understand how well the present theory in
describing the n̄A annihilation, it is necessary for us to
examine the annihilation cross sections of n̄ with other
nuclei, namely C, Al, Cu, Ag, Sn and Pb. Fig. 6 shows
the quality of agreement between the calculations and
experimental data for projectile momentum pn̄ < 400
MeV/c.
In Fig. 6, we observe, for case of C and Al targets,

the agreement between theoretical calculations and ex-
periment data becomes poorer as one goes down in mo-
mentum. Contrasting this with the rest of the targets,
the trend seems to go the opposite way. All said, even
though the level of the overall agreement between the
theoretical and experimental data is within 20 percents
is not that desirable, it is somewhat encouraging and not
to mention the extended Glauber model has reasonably
captured the main features of the annihilation cross sec-
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FIG. 6. (Color online) n̄A annihilation cross section as a func-
tion of the antineutron momentum in the laboratory frame.
Comparing result from Eq.(1) with experimental data from
[24].

tions for the energy range and mass numbers concerned.
Unfortunately, at this point we cannot offer any reason-
able explanation for the origin of the discrepancy between
the theory and experiment. But we think that both the-
oretical and experimental investigations will be needed
to clarify the situation.

V. DISCUSSION AND CONCLUSIONS

By considering the transmission through a nuclear po-
tential and the p̄p Coulomb interaction, the nuclear an-
nihilation cross sections can be properly evaluated in a
simple analytical form. The present formulation is rigor-
ous enough and therefore amends our earlier simple ap-
proach in which a semi-empirical 1/v function has been
employed in order to determine the basic σp̄p

ann and σp̄n
ann

cross sections. The strong absorption model formulated
here decomposes the incoming plane waves into a sum
of partial waves of given orbital angular momentum L
and assumes these partial waves transmit to the nucleon
surface R leads to annihilation reaction. It is shown the
cross sections for nuclear annihilation by p̄ and n̄ are sim-
ple functions of the momentum of the incident particles.
Across the momenta range considered here, contrasting
it to the σn̄p

ann annihilation cross section, the σp̄p
ann an-

nihilation cross section is significantly enhanced by the
Coulomb interaction for the plab momenta of the inci-
dent particle below 500 MeV/c. As the plab increases,
the two annihilation cross sections become almost iden-
tical, approaching the Pomeranchuk’s equality limit at
plab ∼ 500 MeV/c. In addition, the theoretical annihila-
tion cross sections agree well with the experimental data.
Concerning the broad enhancement in the experimental
n̄p annihilation cross sections around 200-300MeV/c, it’s
still a puzzle.

The equality of σp̄n
ann and σp̄p

ann at the limit of high en-
ergies predicted by Pomeranchuk can be perceived as a
q-q̄ pairing model in which the annihilation between a
nucleon and an antinucleon takes place by pairing the
valence quark of any flavor from the nucleon to any va-
lence antiquark of any flavor from the antinucleon, with
each q-q̄ pair creating a string that subsequently frag-
ments to many meson pairs [9, 10]. Such model will ex-
plain the equality of σp̄n

ann and σp̄p
ann when the Coulomb

effects become negligible at high energies. It overturns
our naive quark model for annihilation - with annihila-
tion takes place by pairing only the quark and antiquark
of the same flavor.

Subsequently, with the help of these elementary cross
sections, the extended Glauber model is used to evalu-
ate the annihilation cross sections for p̄ and n̄ interaction
with other nuclear elements. For the case of p̄A interac-
tions, we reproduced our previous results [5] and again
these annihilation cross sections are found to be in good
agreement with the measurements. For the case of n̄A
interactions, predictions of the annihilation cross section
are found to be in good agreement for Fe nuclei. How-
ever, for elements, C, Al, Cu, Ag, Sn and Pb, agreement
between the theory and experiments is found to be rea-
sonable.

As it is now formulated, the behavior of p̄A annihila-
tion cross section at low energies varies as 1/E arising
from the Coulomb enhancement factor, in addition to
the energy dependencies of the basic p̄p and p̄n annihi-
lation cross sections as described in Section III. Because
these basic p̄p and p̄n annihilation cross sections increase
substantially as the collision energy decreases, the gran-
ularity nature of the individual p̄p and p̄n collisions may
not play a significant role in low-energy annihilations. A
macroscopic description of the nucleus as a single poten-
tial without a granular structure may alternatively be
a reasonable formulation. It will be of interest to re-
examine the antinucleon-nucleus cross section cross sec-
tion at very low energies in a new light, by extending the
potential approach as formulated in Section III for p̄p
and n̄p annihilations to p̄A and n̄A annihilations in low-
energy collisions. Future analysis along such lines will be
of great interest.
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Appendix A: Appendix

Following [19], the expressions for the transmission co-
efficient TL(k) for L = 1, 2 and 3 partial waves

TL(k) =
4xXvL

X2 + (2xX + x2v′L)vL
(A1)

can be evaluated exactly with the functions vL and v′L
given by

v1 =
x2

1 + x2
,

v′1 =
1

x2
+

(

1− 1

x2

)2

, (A2)

v2 =
x4

9 + 3x2 + x4
,

v′2 =

(

1− 6

x2

)2

+

(

6

x3
− 3

x2

)2

, (A3)

v3 =
x6

225 + 45x2 + 6x4 + x6
,

v′3 =

(

1− 21

x2
+

45

x4

)

+

(

45

x3
− 6

x

)2

. (A4)

Similarly, following [56] with Eq. (76), the expressions
for the Gamow factor

GL(ξ) =
(L2 + ξ2)[(L− 1)2 + ξ2]...(1 + ξ2)

[L!]2

×
(

2πξ

exp{2πξ} − 1

)

(A5)

for L = 1, 2 and 3 partial waves can be evaluated using

G0(ξ)=
2πξ

exp{2πξ} − 1
, (A6)

G1(ξ)=
1 + α2

v2

12
G0(ξ), (A7)

G2(ξ)=
[22 + α2

v2 ][1 +
α2

v2 ]

(2!)2
G0(ξ), (A8)

G3(ξ)=
[32 + α2

v2 ][2
2 + α2

v2 ][1 +
α2

v2 ]

(3!)2
G0(ξ). (A9)
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