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The level density and γ-ray strength function (γSF) of 243Pu have been measured in the quasi-continuum

using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d, p) reaction. The level density

closely follows the constant-temperature level density formula for excitation energies above the pairing gap.

The γSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide

isotopes. The structure is interpreted as the scissors resonance and has a centroid of ωSR = 2.42(5) MeV and a

total strength of BSR = 10.1(15) µ2
N , which is in excellent agreement with sum-rule estimates. The measured

level density and γSF were used to calculate the 242Pu(n,γ) cross section in a neutron energy range for which

there were previously no measured data.

PACS numbers: 23.20.-g,24.30.Gd,27.90.+b

I. INTRODUCTION

Neutron capture cross sections are required for the accu-

rate modeling of advanced nuclear energy systems and nucle-

osynthesis in neutron-rich astrophysical environments. Un-

fortunately, it is often difficult to accurately measure (n,γ)

cross sections for short-lived “minor” actinides over the en-

ergy range of greatest relevance to nuclear energy and astro-

physical applications. In these cases an alternative approach is

to measure the properties of excited nuclear states, including

the nuclear level density and γ-ray strength function (γSF),

and use these as inputs for calculations of neutron capture re-

action rates using statistical model codes. In this paper we

are concentrating on the properties of the n+242Pu compound

system.

With a half life of 0.37 million years, 242Pu is the second

longest-lived isotope of Pu after 244Pu. Though its radioactiv-

ity is not one of the largest contributors to nuclear waste decay

heat, 242Pu is fissionable by fast neutrons and can be recycled

in fast reactors. With the increase of the fuel cycle length and

the development of fast reactors aimed at reducing radioac-

tive waste comes the need for reliable cross sections for a fast

neutron spectrum [1, 2]. It is extremely important to be able

to accurately predict cross sections where measured data are

insufficient or nonexistent.

Furthermore, improvements in the modeled reaction rates

could also improve predictions of actinide abundances on

Earth [3]. Actinides are synthesized in extreme stellar envi-

ronments uniquely by the rapid neutron capture process [3].

For accurate predictions, reactions rates for actinides with
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high neutron excess are the most crucial. However, such ac-

tinide isotopes with extreme neutron-to-proton ratios are out

of reach experimentally, and will remain so for many years to

come. Thus, it is imperative to obtain a better understanding

of the fundamental nuclear properties in this mass region, to

provide stringent test on nuclear models invoked to calculate

these reaction rates [3].

Measurements of the statistical properties of the nucleus are

important for nuclear cross section calculations in the frame-

work of the statistical model. The nuclear level density and

γSF can be extracted using the Oslo method [4, 5]. This

method has been successfully applied recently in the actinide

region to the 231−233Th, 232,233Pa, 237−239U and 238Np iso-

topes [6–9]. Thus far, the level densities of all measured ac-

tinides follow closely the constant-temperature level density

formula. These heavy and well deformed systems also show

a low energy orbital M1 scissors resonance (SR). The main

purpose of the present work is to extract the level density

and γSF in 243Pu. Comparing the measured to an estimated

γSF, the SR is extracted and interpreted as an enhancement

of the γSF. Hauser-Feshbach calculations of the neutron cap-

ture cross section using the measured level density and γSF as

inputs are compared with evaluated nuclear databases.

In Sec. II the experimental procedure is described. Sec. III

discusses the extraction and normalization of the level density

and γSF. In Sec. IV, the experimental SR is presented and the-

oretical sum rules are briefly introduced. Extracted resonance

parameters are compared to previous results and sum-rules es-

timates. In Sec. V, the measured level density and γSF are

used as inputs to Hauser-Feshbach calculations in order to es-

timate the 242Pu(n,γ) cross sections. Conclusions are drawn

in Sec. VI.
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FIG. 1. (Color online) Initial excitation energy Ex versus γ-ray energy Eγ from particle-γ coincidences recorded from the 242Pu(d, pγ)243Pu

reaction. The raw γ-ray spectra (a) are first unfolded (b) by the NaI response function. The primary or first-generation γ-ray spectra (c) are

extracted as function of excitation energy Ex.

II. EXPERIMENTAL METHODS

The experiment was conducted using the MC-35 Scan-

ditronix cyclotron at the Oslo Cyclotron Laboratory (OCL).

The 0.4 mg/cm2 242Pu on a Be-backing target was bombarded

with a 12 MeV deuteron beam with a beam current of ≈ 1 nA.

Prior to electrodeposition, the Pu material was cleaned from

decay products and other impurities using an anion-exchange

resin column procedure [10]. The purified product was elec-

troplated onto a thin Be foil (1.9 mg/cm2 thickness) from a

small aliquot of dilute nitric acid placed into a large volume

of isopropanol. The resulting target was dried, baked at 500◦C
in a muffle furnace, then glued to the target frame.

Particle-γ coincidences were measured using the SiRi par-

ticle telescope and the CACTUS γ-detector system [11, 12].

The SiRi particle telescope is composed of eight segmented

Si particle telescopes, which in this experiment were placed at

backward angles of θ = 126◦ to 140◦ relative to the beam axis,

drastically reducing the contribution from elastically scattered

deuterons. The resulting spin distribution of the nucleus is

more representative of the compound nuclei formed in higher-

energy (e.g., non-thermal) (n,x) reactions. Each telescope

is comprised of a ∆E and E Si detector with thicknesses of

130 µm and 1550 µm, respectively. The CACTUS array con-

sists of 26 collimated 5′′× 5′′ NaI(Tl) detectors surrounding

the target and particle telescopes, and with a total efficiency

of 14.1(2)% at Eγ = 1.33 MeV.

The particle telescopes were used to generate the mas-

ter gate signal and the start signal for the Time-to-Digital-

Converters (TDC). The NaI detectors were used as individual

TDC stops. Thus prompt particle-γ coincidences with back-

ground subtraction were sorted event by event. The proton

events were extracted by setting proper two-dimensional gates

on the ∆E-E matrices. Using the measured proton energies de-

posited in the telescopes and the reaction Q value, the initial

excitation energy Ex in the residual 243Pu nucleus was calcu-

lated. To avoid contamination from γ-rays emitted by other

reaction channels, only excitation energies below the fission

barrier (B f ≈ 6 MeV [13]) and the neutron separation energy

(Sn = 5.034 MeV [14]) were considered.

The recorded particle-γ coincident events were sorted into

a two-dimensional matrix as shown in Fig. 1 (a). Using the

known response function of the CACTUS array, the raw data

were unfolded to correct for the NaI response functions and

efficiency, and regain the full-energy peaks for each 40 keV

excitation energy bin [15]. The unfolded matrix is shown in

Fig. 1 (b). A peak at Eγ=870 keV from O contamination was

subtracted from the matrix.

The Oslo method was used to extract the first generation

(primary) γ-rays from the total γ-ray cascade [16]. The main

assumption in the technique is that γ decay from a given

excitation energy is independent on how the nucleus was

excited (e.g., directly via (d, p) reactions or from γ decay

from a higher-lying level). The first-generation γ-ray matrix

P(Ex,Eγ ) is shown in Fig. 1 (c).

Figure 2 shows the average γ-ray multiplicity 〈Mγ (Ex)〉 for

Eγ > 0.4 MeV as function of initial excitation energy Ex given

by:

〈Mγ (Ex)〉=
Ex

〈Eγ (Ex)〉
, (1)

where the average γ-ray energy 〈Eγ(Ex)〉 is calculated from

the unfolded γ matrix at a fixed excitation energy Ex.

Below Ex = 2 MeV, the multiplicity fluctuates indicating a

non-statistical behavior of the decay process while approach-

ing the ground state. Above Ex = 4.5− 5 MeV, the multi-

plicity fluctuates due to the opening of the fission and neu-

tron emission channels. To apply the Oslo method, only the

Ex = 2.6− 4.3 MeV region of the first generation matrix of

Fig. 1 (c) is used.
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FIG. 2. Gamma-ray multiplicity as function of excitation energy Ex

in 243Pu. Only γ-rays with Eγ > 0.4 MeV are taken into account.

Fermi’s golden rule [17] states that the decay probability

can be factorized into a transition matrix element between the

initial and final state and the density of final states. Accord-

ing to Brink’s hypothesis [18], the transmission coefficient

T , which plays the role of the transition matrix element in

Fermi’s Golden rule, is independent of the excitation energy.

The first generation matrix P(Ex,Eγ ) can be factorized as fol-

lows:

P(Ex,Eγ) ∝ T (Eγ )ρ(Ex −Eγ), (2)

where ρ(Ex −Eγ) is the level density at the excitation energy

after the primary γ-ray has been emitted in the cascades. Si-

multaneous extraction of the level density and the γ-ray trans-

mission coefficient is achieved using an iterative procedure to

the first generation matrix P(Ex,Eγ ) [4]. It has been shown [4]

that if one solution for the multiplicative functions ρ and T

is known, one may construct an infinite number of transfor-

mations ρ̃ and T̃ , which give identical fits to the P(Ex,Eγ)
matrix by:

ρ̃(Ex −Eγ) = Aexp[α(Ex −Eγ)]ρ(Ex −Eγ), (3)

T̃ (Eγ) = Bexp(αEγ )T (Eγ ), (4)

where the parameters A, α and B cannot be determined by the

fitting procedure. Their determination is discussed in the next

section.

III. NORMALIZATION OF THE LEVEL DENSITY AND

γSF

The parameters A and α of Eq. (3) are needed to obtain a

normalized level density. They can be determined by match-
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FIG. 3. (Color online) Level density for 243Pu. At low excitation

energy Ex, the experimental data are normalized to the level density

of known discrete levels (red solid line). At the neutron separation

energy Sn = 5.038 MeV, the normalization is done using the level

density extracted from known neutron resonance spacings D0. The

connection between ρ(Sn) (the upper right data point) and the ex-

perimental data is made with a constant-temperature formula with

TCT = 0.40(1) MeV.

ing the data points at low energy to known discrete levels [19]

and estimating the level density at the neutron separation en-

ergy Sn from neutron-resonance spacing data using the for-

mula [4]:

ρ(Sn)=
2σ2

D0

· 1

(It + 1)exp[−(It + 1)2/2σ2]+ It exp
[

−I2
t /2σ2

]

(5)

where It is the spin of the target nucleus, D0 the neutron res-

onance spacing, and σ the spin-cutoff parameter. The follow-

ing spin distribution is assumed [20] in the produced nucleus:

g(Ex = Sn, I)≃
2I+ 1

2σ2
exp

[

−(I+ 1/2)2/2σ2
]

, (6)

where I is the spin in the resulting nucleus. The spin-cutoff

parameter σ was determined from the global systematic study

of level-density parameters by von Egidy and Bucurescu, us-

ing a rigid-body moment of inertia approach [21]:

σ2 = 0.0146A5/3 1+
√

1+ 4aU

2a
, (7)

where A is the mass number, a is the level density parame-

ter, U = Ex −E1 is the intrinsic excitation energy, and E1 is

the back-shift parameter. The a and E1 parameters are ob-

tained from global systematics. Table I lists the parameters

used to estimate σ . From the deduced σ value and D0 at Sn
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TABLE I. Parameters used to extract level density and γSF (see text).

Sn a E1 σ(Sn) D0 ρ(Sn) ρ(Sn)red 〈Γγ(Sn)〉
(MeV) (MeV−1) (MeV) (eV) (106MeV−1) (106MeV−1) (meV)

5.034 25.82a -0.45a 8.15a 17(1)b 7.87(163) 3.94 22(1)b

a Estimated from systematics [21].
b Ref. [22].

the level density ρ is determined. Several values for D0 were

reported in the literature: RIPL-3 (D0 = 13.5(15) eV) [13],

Mughabghab (D0 = 17(1) eV) [22], Young and Reeder (D0 =
16.5 eV) [23], and Rich, et al., using the ESTIMA code

(D0 = 16.8(5) eV) [24]. The RIPL-3 [13] value is incon-

sistent with other works. Normalization of the level density

and the γSF was performed using the different values and us-

ing D0 = 17(1) eV provided a more consistent result with a

measurement on a 240Pu target made at the same facility [25].

Thus, to obtain the level density at Sn given in Table I, the

D0 parameter is taken from Ref. [22]. In order to perform the

normalization at Sn, the constant-temperature formula [26] is

used for the interpolation of our experimental data points and

the level density at Sn:

ρCT(Ex) =
1

TCT

exp
Ex −E0

TCT

. (8)

The slope of the level density is given by TCT = 0.40 (1) MeV

and the shift in excitation energy by E0 = −0.95 (16) MeV.

Figure 3 shows the level density normalized at low and high

excitation energies. The level density follows closely the

constant-temperature formula with lnρ ∝ Ex/TCT between

Ex ≈ 2 MeV and Ex ≈ 3 MeV as observed for other actinide

nuclei [7, 9]. The Fermi-gas model does not describe properly

the data as described in Ref. [27].

The standard procedure to normalize the level density and

γSF is problematic when a (d, p) entrance channel is em-

ployed in actinides to form the compound nucleus. The spin

distribution in the compound nucleus populated using the

(d, p) is not as broad as for other reactions such as (3He,α)

which can bring in more angular momentum. As the slope, α ,

of the transmission coefficient is the same for the level density

in Eqs. (3) and (4), a reduced level density ρred corresponding

to the level density for the spins populated in the (d, p) reac-

tion was used to obtain the correct slope of T . The reduced

level density thus is extracted by assuming a lower value of ρ
at Sn. This effect has been demonstrated in simulated data us-

ing DICEBOX on the case of 163Dy [5], where a restriction on

the spin of the initial levels was made (1/2 ≤ Iinitial ≤ 13/2).

To obtain a correct slope of the transmission coefficient, and

thus the γSF extracted from the simulated data (see Figs.19-

21 in Ref. [5]), the level density had to be normalized not to

the full level density, but to the reduced level density for spins

within the range 1/2≤ Ifinal ≤ 15/2 (one primary transition of

dipole type accounts for Ifinal = 15/2).
Cumulating large uncertainties in the total ρ(Sn) and the

unknown actual spin distribution brought into the nuclear sys-

tem by the specific (d, p) reaction, the extracted slope of T

becomes rather uncertain. Those complications encountered

using the (d, p) reaction on actinides make the standard nor-

malization procedure of the Oslo method [4, 28] to determine

the α parameter for the transmission coefficient in Eq. (4)

quite uncertain.

The determination of the parameter B of Eq. (4) gives the

absolute normalization of T . The average total radiative

width 〈Γγ 〉 at Sn, assuming that the γ-decay in the continuum

is dominated by dipole transitions, is used here for normaliza-

tion. The width is related to the transmission coefficient T

by [29]:

〈Γγ 〉=
1

2πρ(Sn, I,π)
∑
I f

∫ Sn

0
dEγBT (Eγ)

×ρ(Sn −Eγ , I f ), (9)

where I and π are the initial spin and parity at Sn respec-

tively. The summation and integration is performed over all

final levels with spin I f that are accessible by E1 or M1 tran-

sitions with energy Eγ . The determination of B using Eq. (9) is

influenced by systematic errors because the integral depends

on both the level density ρ(Ex) and the spin-cutoff parameter

σ(Ex); the latter quantity is not well constrained experimen-

tally for all excitation energies. Given these complications, we

have compared the γSF with the extrapolation of known pho-

tonuclear reaction ata, in addition to determining the B param-

eter using Eq. (9) to reproduce the experimentally-determined

γ-width 〈Γγ 〉 [22] listed in Table I. Hence, by making use

of an independent experimental constraint, we reduce the sys-

tematic uncertainties in the absolute normalization of the γSF.

Given these complications, a different procedure is used,

comparing the γSF with the extrapolation of known photonu-

clear reaction data. The strength function is related to the

transmission coefficient T (Eγ ) by [13]:

f (Eγ )≈
1

2π

T (Eγ)

E3
γ

. (10)

These data are compared with the strength function derived

from the cross section σ of photo-nuclear reactions by [13]:

f (Eγ ) =
1

3π2h̄2c2

σ(Eγ)

Eγ
, (11)

where the factor 1/3π2h̄2c2 = 8.6737× 10−8 mb−1MeV−2.

In Fig. 4 the γSF derived from 239Pu(γ , x) cross sections by

Berman et al. [30], Gurevitch et al. [31] and Moraes et al. [32]

are shown. There are no measured γSF data for other Pu iso-

topes. It is assumed that the E1 strength does not vary much

from 239Pu to 243Pu, as seen for similar mass U isotopes [8],
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TABLE II. Resonance parameters used for the γSF extrapolation.

ωE1,1 σE1,1 ΓE1,1 ωE1,2 σE1,2 ΓE1,2 Tf ωpyg1 σpyg1 Γpyg1 ωpyg2 σpyg2 Γpyg2

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

11.1 290 3.2 14.2 340 5.5 0.40(1) 4.4(1) 9(3) 1.0(2) 7.4(3) 20(6) 1.3(3)
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FIG. 4. (Color online) Experimental γSF from the present

(d, pγ)243Pu experiment (black filled squares) and (γ , x) data (black

filled triangles, empty triangles and green dots) taken respectively

from Berman et al. [30], Gurevitch et al. [31] and Moraes et al. [32].

The red curve represents the estimated underlying E1 part of the γSF.

The structure in the present work at Eγ = 1−3.5 MeV is interpreted

as the Scissors Resonance.

and supported by the classical Thomas-Reiche-Kuhn sum rule

for E1 strength [33–35].

The data from the present work cover γ energies up to

4.3 MeV while for the (γ , x) data, the lowest energy point

is 6.7 MeV. Some interpolation is needed to link the differ-

ent data sets. The GEDR displays a double-humped fea-

ture common to all well-deformed nuclei that is fitted with

two enhanced generalized Lorentzians (EGLO) as defined

in RIPL [13], but with a constant-temperature parameter of

the final states Tf , in accordance with the Brink hypothe-

sis. To take into account the steep rise of our γSF data from

Eγ = 3−4 MeV, a resonance is postulated at around 4.4 MeV

(labeled pygmy1 in Fig. 4). Due to the absence of data be-

tween 4.3 MeV and 6.7 MeV, the parameters of the resonance

are highly uncertain. In addition, the (γ , x) data [32] reveal a

knee at around 7.5 MeV indicating an additional resonance-

like structure (labeled pygmy2 in Fig. 4). The two pygmy

resonances are described by standard Lorentzians:

fpyg =
1

3π2h̄2c2

σpygΓ2
pygEγ

(E2
γ −ω2

pyg)
2 +Γ2

pygE2
γ

, (12)

where σpyg, Γpyg, ωpyg are the strength, width, and energy

centroid of the pygmy resonance, respectively.

The red curve in Fig. 4 is the sum of the GEDR and the two
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FIG. 5. (Color online) The extracted γSF for the scissors resonance

in the quasi-continuum of 243Pu.

pygmy resonances. It serves as a “base line” of the γSF with

no additional strength from other resonances. The parameters

for the GEDR and the two pygmy resonances are given in

Table II. The measured γSF is normalized to this underlying

E1 strength. To match the slope of the observed γSF with

the GEDR low-energy tail, the level density at Sn was reduced

from 7.87 to 3.94 million levels per MeV thereby varying the

α parameter from Eq. (3). Calculations of the spin population

using the Empire code [36] suggest a reduced level density

ρred = 0.34(4)×ρ for 243Pu, 233Th and 238Np. which were

all produced using a 12 MeV deuteron beam. Because the

experimental level densities of 232Th, and 237Np were reduced

by a factor of≈ 1/2 [8, 9], the same reduction factor was used.

IV. THE SCISSORS RESONANCE AND SUM RULES

Figure 5 shows a γSF measured above the expected γSF

base line (red curve in Fig. 4). The extra strength between

Eγ = 1 and 3.5 MeV is interpreted as the “scissors” reso-

nance (SR). A similar structure has been previously observed

in the 231−233Th, 232,233Pa, 237−239U and 238Np isotopes [6–

9]. Even though the parameters of the resonance postulated

at 4.5 MeV are rather uncertain, the SR is extracted by sub-

tracting a smoothly varying background under the γSF which

is mainly composed of the temperature-dependent low energy

tail of the GEDR, as described in the previous section. The

SR has been fitted with two Lorentzians. The resonance cen-

troid ωi, cross section σi, and width Γi for the lower (i = 1)

and upper (i = 2) resonances are listed in Table III, as well as

the total strength and average energy centroid.
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The separation between the two components, ∆ωSR =
0.81(6) MeV, is similar to what has been observed for Th, Pa

and U [8] (∆ωSR = 0.89(15) MeV) and higher than the 238Np

observation, ∆ωSR = 0.53(6) MeV [9].

Recent microscopic calculations revealed that the SR con-

tains two modes [37], which could explain the splitting seen

experimentally in the actinides. The traditional mode consists

of protons oscillating against neutrons and a new “nuclear spin

scissors mode” consisting of oscillations of nucleons with the

spin projection “up” against nucleons with the spin projection

“down”. The latest calculations include spin degrees of free-

dom and pairing, and show good agreement with experimental

data for rare earth nuclei.

Calculations using the sum-rule approach [38], were made

to predict both the centroid ωSR and strength BSR of the scis-

sors mode. The description of Enders et al. [39] was fol-

lowed. The ground-state moment of inertia was replaced by

the rigid-body moment of inertia. The sum rule for the quasi-

continuum was recently presented [8], and a detailed descrip-

tion of the formulae and parameters used for 238Np is given

in Ref. [9]. The same approach has been applied here. The

inversely and linearly energy-weighted sum rules are given

by [8]:

S+1 =
3

2π
Θrigidδ 2ω2

D

(

Z

A

)2

ξ
[

µ2
NMeV

]

, (13)

S−1 =
3

16π
Θrigid

(

2Z

A

)2
[

µ2
NMeV−1

]

, (14)

where Θrigid is the rigid moment of inertia, ξ the reduction

factor, and ωD the iso-vector giant dipole resonance IVGDR

frequency. The nuclear quadrupole deformation δ = 0.27

is obtained using the ground state deformation parameter

β2. To lowest order the two quantities are proportional:

δ ≈ β2

√

45/(16π). The ground state deformation taken is

the average of the RIPL tabulated value [13] for 242Pu and
244Pu (β2 = 0.29) and from a microscopic calculation [40]

(β2 = 0.28). The two sum rules can now be utilized to ex-

tract the SR centroid ωSR and strength BSR:

ωSR =
√

S+1/S−1

BSR =
√

S+1S−1. (15)

The two last columns of Table III show the predicted ωSR

and BSR from the sum-rule estimates. Both values are in very

good agreement with our measurements.

V. HAUSER FESHBACH CALCULATIONS OF THE
242PU(n,γ) CROSS SECTION WITH TALYS

The γSF is important for the description of the γ emission

channel in nuclear reactions and is one of the main inputs for

cross section calculations using a statistical framework. Cal-

culations made with the TALYS code [41, 42] for 238Np have
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FIG. 6. (Color online) Measured level density (black filled squares)

compared to the level density used in ENDF/B-VII.1 [43] and

JENDL-4.0 [44] (red continuous curve), and TENDL2014 [45] (blue

dotted-dashed curve) calculations. The measured level density was

normalized to the level density of known levels (black line) and to

the level density extracted from known neutron resonance spacings

D0 [22] (empty square).

shown excellent agreement with measured data and that the

SR can have an impact on the cross section (maximum of

≈ 25% for a 1 MeV incident neutron [9]).

Unfortunately, there are no measured data for the
242Pu(n,γ) reaction for neutron energies above 100 keV. A

comparison of the 242Pu(n,γ) cross section with the ENDF/B-

VII.1 [43], JENDL-4.0 [44] and TENDL2014 [45] was done.

ENDF/B-VII.1, and JENDL-4.0 are using the same models

and input parameters to calculate the level density and the

γSF. Figure 6 shows the level densities used by ENDF/B-

VII.1, JENDL-4.0, and TENDL2014 to calculate cross sec-

tions, as well as the level density measured in the present

work. TENDL2014, ENDF/B-VII.1, and JENDL-4.0 are

within a factor of 2 from the measured level density in the

present work.

Figure 7 shows the γSF used in ENDF/B-VII.1, JENDL-

4.0 and TENDL2014 to calculate cross sections, as well as

the one measured in the present work. ENDF/B-VII.1 and

JENDL-4.0 reproduce correctly the measured (γ , x) data [30–

32]. The low energy region does not correspond well to the

data measured in the present work. TENDL2014 does not

reproduce published (γ , x) data.

To calculate the 242Pu(n,γ) cross section, the observed level

density and γSF (data from Figs. 3 and 4, respectively) have

been used as input parameters in TALYS. The average reso-

nance spacing D0 and the average radiative width 〈Γγ 〉, from

Ref. [22], are reproduced by the TALYS calculation. The neu-
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TABLE III. Scissors resonance parameters for 243Pu and sum-rule estimates.

Deformation Lower resonance Upper resonance Total Sum rule

δ ωSR,1 σSR,1 ΓSR,1 BSR,1 ωSR,2 σSR,2 ΓSR,2 BSR,2 ωSR BSR ωSR BSR

(MeV) (mb) (MeV) (µ2
N) (MeV) (mb) (MeV) (µ2

N) (MeV) (µ2
N) (MeV) (µ2

N )

0.27a 1.99(4) 0.45(6) 0.60(8) 4.8(9) 2.81(5) 0.51(8) 0.83(14) 5.3(12) 2.42(5) 10.1(15) 2.3 10.6

a Average of calculations using the ground state deformation parameter β2 from Refs. [13, 40].
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FIG. 7. (Color online) Comparison between the γSF extracted in the

present work (red curve) from measured data (black filled squares)

and the one used in ENDF/B-VII.1 and JENDL-4.0 (dashed black

curve), TENDL2014 (blue dashed-dotted curve). The (γ , x) data

(black filled triangles, empty triangles and green dots) are taken re-

spectively from Berman et al. [30], Gurevitch et al. [31] and Moraes

et al. [32].

tron optical potential is taken from Ref. [46].

Figure 8 shows the results of the cross-section calculations

using the TALYS code with the SR (continuous red curve

with blue error-band) and without (dashed red curve with red

dots error-band), the ENDF/B-VII.1 (black curve), JENDL-

4.0 (brown curve) and TENDL2014 (blue curve) evaluations.

The error band is generated by taking into account the un-

certainty in the two pygmy resonances labeled pygmy1 and

pygmy2 in Fig. 4 and the average radiative width 〈Γγ〉. In-

cluding the SR in the calculation leads to some variations in

the cross section (up to ≈10% at 1.7 MeV). This is smaller

in comparison to the recent measurement on 238Np [9] with a

comparable SR strength.

Below 200 keV, the data libraries and our calculations agree

with the direct measurement from Hockenbury et al. [47]

(black triangles) and the cross section data from Wisshak et

al. [48], obtained as a ratio to the 197Au(n,γ) cross section.

The open squares are extracted using the 197Au(n,γ) cross

section from the IRDFF-1.05 database [49]. At higher ener-

gies, large discrepancies are observed between the different

libraries and our calculation as can be expected due to the

discrepancies in the level densities and γSF and the lack of

directly measured experimental data at higher neutron ener-

gies. Surprisingly the ENDF/B-VII.1 and JENDL-4.0 cross

sections do not match despite using the same level density and

γSF. The ENDF/B-VII.1 cross section was re-normalized to

an integral measurement over a broad fast spectrum [50]. Di-

rect measurements of the 242Pu(n,γ) cross section are planned

at the n TOF facility at CERN and should help solve the dis-

crepancy.

VI. CONCLUSIONS AND FUTURE WORK

The level density and γSF of 243Pu have been measured in

the quasi-continuum using the Oslo method. The level den-

sity follows closely a constant-temperature level density for-

mula as seen in recent investigations of other actinides using

the same method [7–9]. The γSF displays a double-humped

resonance in the Eγ = 1− 3.5 MeV region, interpreted as the

scissors resonance. Its energy centroid and total strength are

very well described by the sum-rule estimate assuming a rigid-

body moment of inertia.

The observed level density and γSF have been used as

inputs in Hauser-Feshbach calculations implemented in the

TALYS code. Large discrepancies with the ENDF, JENDL

and TENDL databases raise the need for a direct measurement

of the 242Pu(n,γ) cross section.

A 244Pu target has recently been made at Lawrence Liver-

more National Laboratory. Experiments at the Oslo Cyclotron

Laboratory using the (3He,α) and/or (p,d) entrance channels

are of interest to compare with the results presented here and

study the effect of spin population of the compound nucleus

on the extracted statistical properties of the nucleus.
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