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We use the finite amplitude method for computing charge-changing Skyrme-QRPA transition
strengths in axially-deformed nuclei together with a modern Skyrme energy-density functional to fit
several previously unconstrained parameters in the charge-changing time-odd part of the functional.
With the modified functional we then calculate rates of beta-minus decay for all medium-mass and
heavy even-even nuclei between the valley of stability and the neutron drip line. We fit the Skyrme
parameters to a limited set of beta-decay rates, a set of Gamow-Teller resonance energies, and a set
of spin-dipole resonance energies, in both spherical and deformed nuclei. Comparison to available
experimental beta-decay rates shows agreement at roughly the same level as in other global QRPA
calculations. We estimate the uncertainty in our rates all the way to the neutron drip line through a
construction that extrapolates the errors of known beta-decay rates in nuclei with intermediate Q
values to less stable isotopes with higher Q values.
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I. INTRODUCTION

Beta-decay rates are an important ingredient in simula-
tions of the astrophysical r-process. Because parts of the
r-process path are still not accessible to experiment, it is
up to theoretical models to produce approximate rates for
many relevant neutron-rich isotopes. Models could also
help resolve the issues raised by Ref. [1], which argued
that the flux of antineutrinos from nuclear reactors does
not agree with the standard model. Ref. [2] pointed out
that the discrepancy could be due to an overly simple
treatment of first-forbidden beta decay in fission products.

Several schemes/methods for calculating beta-decay
rates across almost the entire nuclear chart have been
devised. Besides the phenomenological semi-gross theory
[3], they include the microscopic proton-neutron quasi-
particle random-phase approximation (pnQRPA) with
separable Gamow-Teller (GT) interaction [4], analogous
scheme with no dynamic T = 0 pairing interaction [5] and
its extension for the first-forbidden (FF) transitions added
using the gross theory [6]. The self-consistent pnQRPA
models were developed based on the extended Thomas-
Fermi plus Strutinsky integral (ETFSI) method [7], on
the Fayans density functional [8], and, very recently, on
the spherical pnQRPA [9]. For the interacting shell-model
calculations see [10] (in [8–10] both the GT and FF tran-
sitions were consistently included). An artificial neural
network analysis can be found in [11]. Full beta-decay
tables for neutron-rich isotopes have been only published
by Möller et al [4, 5] and Marketin et al [9].
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Many other authors have applied more sophisticated
and/or computationally intensive methods to smaller sets
of nuclei, focusing on some of those important for the r
process. Recent examples of such work include a deformed
pnQRPA computation with the Bonn-CD interaction of
the decay of neutron-rich isotopes with Z = 36 − 43
[12], of isotopes of Zr and Mo [13], and of isotopes of Kr
and Sr [14]; similar calculations with Gogny interaction
in the N = 82, 126, 184 isotonic chains [15]; relativistic
pnQRPA [16] for 20 ≤ Z ≤ 50; and relativistic pnQRPA
for N ≈ 50, 82 [17].

Computational barriers have thus far prevented the
production of a beta-decay table for the entire nuclear
chart in a fully self-consistent Skyrme mean-field approach
that allows deformation. Recently, however, we reported
[18] an implementation of the charge-changing finite am-
plitude method, which sidesteps the QRPA eigenvalue
problem. We obtain beta-decay rates by directly com-
puting the required sums and integrals over allowed final
states of the response to charge-changing perturbations.
We will soon make available a code called pnfam that
implements the method.

We could proceed by choosing an existing density func-
tional, interpreting it as a density-dependent effective
interaction, and calculating beta-decay rates. If we were
interested in, e.g., the effects of tensor terms discussed
in Refs. [19] and [20], we could take them from already-
parametrized functionals. Such a procedure would require
some parameter fitting because pairing interactions and
strengths, especially those associated with isoscalar pair-
ing, are not usually specified alongside Skyrme particle-
hole effective interactions. But that approach is still too
limiting because not all Skyrme functionals can be consis-
tently represented as effective interactions. In particular,
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the time-even and time-odd parts of the functional, which
are related if the functional is the mean-field expecta-
tion value of a Hamiltonian, need not be related in more
general constructions.

Our main goal here is to assess the ability of the Skyrme
QRPA with deformation to predict β− decay, and to use
existing data (decay rates and resonance energies) to
constrain the isoscalar-pairing strength and the other
time-odd coupling constants, which in the general energy-
density functional (EDF) picture, are not fixed by fits
to masses, precisely because they are independent of the
time-even functional. In much of what follows, therefore,
we will not assume that the functional results from mean-
field theory with an interaction and so will have to fit a
significant number of parameters. After presenting our
methods and assessment, we display the (summarized)
results of a a full table of beta-minus rates, computed with
the pnFAM, for even-even nuclei in all medium-mass and
heavy isotopic chains. We use a simple but apparently
accurate model to quantify and extrapolate theoretical
uncertainty.

This article is organized as follows: Section II is a brief
overview of the theoretical background, and Section III
details our computational approach and parameter-fitting
procedures. In Section IV, we assess the quality of our re-
sults, comparing them to earlier work and to experimental
data where available. Section V contains conclusions.

II. THEORETICAL BACKGROUND

A. Finite amplitude method

The finite amplitude method (FAM), a formulation of
the random-phase approximation that speeds the compu-
tation of nuclear response functions, was introduced in
nuclear physics in Ref. [21]. It was later generalized to
the quasiparticle random phase approximation (QRPA)
in Ref. [22] and to the relativistic QRPA in Ref. [23].
In Ref. [18] we applied the method to charge-exchange
transitions, in particular allowed and first-forbidden beta
decay.

The FAM solves equations for the amplitude of the
linear response to a small but finite perturbation. As a
result, the method does not directly yield the poles and
residues of the response, which are the central objects in
the matrix version of the QRPA. But if the goal of the
computation is to get transition strength functions in a
large model space the FAM can yield results in orders of
magnitude less CPU time than matrix QRPA.

The FAM offers another advantage for beta decay: the
weighted sums or integrals of transition strength can be ex-
pressed as contour integrals. This fact was first exploited
by Hinohara et al. [24], who evaluated the response at a
relatively small number of complex frequencies to com-
pute sum rules. In Ref. [18] we used the idea to evaluate
the more complicated beta-decay phase-space-weighted
integrals, which are not analytic and contain interference

terms between first-forbidden operators. With the FAM
we can thus use typical supercomputer resources to calcu-
late many observables in a large number of nuclei. We are
able to extend systematic Skyrme parameter fitting from
mean-field calculations to deformed QRPA calculations,
at least in a preliminary way.

B. Model parameters and fitting targets

Our starting point in the particle-hole channel is a
generic Skyrme EDF:

E =
∑
t=0,1

+t∑
t3=−t

∫
dr
(
Heven

tt3 (r) +Hodd
tt3 (r)

)
. (1)

Here Heven
tt3 contains products of time-even local densi-

ties only, with coefficients fixed by fitting to masses and
perhaps a few other quantities, and Hodd

tt3 is given by

Hodd
tt3 (r) ≡ Cs

t [ρ00]s2
tt3 + C∆s

t stt3 ·∇2stt3 + Cj
t j

2
tt3

+ CT
t stt3 ·Ttt3 + Cs∇j

t stt3 ·∇× jtt3

+ CF
t stt3 · Ftt3 + C∇s

t (∇ · stt3)
2
,

(2)

with the spin density stt3 , the current density jtt3 , the spin-
kinetic density Ttt3 , and the tensor-kinetic density Ftt3

defined e.g. in Ref. [25]. If one requires the functional to be
the mean-field expectation value of a Skyrme interaction,
EDF coupling constants are completely determined by
the (fewer) parameters that specify the interaction, as
discussed in Refs. [25, 26] and mentioned above. In this
work, we adopt the view that the effective “interaction”
comes from the energy-density functional rather than the
other way around. Consequently we are free to fit all the
time-odd coupling constants without spoiling the mass fits
generated the time-even couplings. We do, however, adopt
the values obtained from the Skyrme parametrization as
our starting point for the fits, unless we note otherwise.

The subset {Cs
1 , C

T
1 , C

F
1 } of time-odd coupling con-

stants maps directly to the parameters of Landau-Migdal
interaction for infinite homogeneous nuclear matter with
tensor terms [27]. In that sense, these couplings are in-
timately related to the bulk properties of the nuclear
matter. The constant CF

1 is purely tensor in character,
and it determines the tensor term in the Landau-Migdal in-
teraction. The spin-density coupling constant Cs

1 strongly
affects the Gamow-Teller strength distribution and can be
fit to the locations of Gamow-Teller resonances [26]. The
last term CT

1 maps to a linear combination of the Lan-
dau parameters of both the tensor term and a term that
depends on the scattering angle of the Laundau-Migdal
quasiparticles.

Two other parameters have a large effect in the QRPA:
the strengths of the residual particle-particle (or pairing)
interaction between protons and neutrons,

Vpp =
(
V0Π̂T=0 + V1Π̂T=1

)(
1− αρ00(r)

ρc

)
δ(r), (3)
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where ρc = 0.16 fm−3 is the saturation density of nu-
clear matter and α ∈ [0, 1] controls the pairing density-
dependence (throughout this work we use mixed pairing,
i.e. α = 0.5). The isovector (T = 1) proton-neutron pair-
ing mainly affects Fermi beta decay, which plays almost
no role in heavy nuclei; we simply set its strength V1 to
be the average of the neutron-neutron and proton-proton
pairing strengths (both fixed in the HFB part of the calcu-
lation). The isoscalar (T = 0) pairing is a different story;
it has a strong effect on Gamow-Teller decay, and deter-
mining a reasonable value for its strength is a common
issue in single and double beta decay computations. The
HFB mean field is independent of the T = 0 pairing term
as long as explicit proton-neutron mixing is neglected.
We are thus free to fit V0 in the QRPA.

We include three types of observables in our fitting
procedure: Gamow-Teller resonance energies, spin-dipole
resonance energies, and total beta decay rates, all in both
spherical and deformed isotopes. Although we pick several
sets of target nuclei for fitting the decay half-lives, each
set includes a large range of mass values so that our fits
can be global. To assess the success of the fits and to
compare them to earlier work in very different models, we
also compute the following metrics for beta-decay tables,
as laid out e.g. in [4, 5]: the residual of each computed
lg t value (where t is the half-life and the logarithm is
10-based),

r = lg

(
tth.

texp.

)
, (4)

the average of the residuals,

Mr =
1

n

n∑
i=1

ri, (5)

(where we’ve used an index i to indicate that there is an
r for every nucleus) and the standard deviation of the
residuals around the average,

σr =

√√√√ 1

n

n∑
i=1

[
(ri −Mr

]2
. (6)

Ref. [11] contains an excellent compilation of these quan-
tities.

C. Uncertainty analysis

As theoretical approaches grow more sophisticated, the
analysis of theoretical uncertainty is growing in impor-
tance. Here we attempt to provide reasonable estimates
for the uncertainty in our predicted half-lives, particularly
in isotopes that are too short-lived to allow measurement.

The standard prescription for assigning a theoretical
(statistical) uncertainty ∆O to a computed observable O
is [28]

∆O =

√∑
ab

∂O
∂xa

∣∣∣∣
x=x0

Cab
∂O
∂xb

∣∣∣∣
x=x0

, (7)

where C is the covariance matrix

C = (JTJ)−1 (8)

and x = (x1, . . . , xNx) are the Nx parameters of the model.
The partial derivatives of all the observables {Oa} with
respect to all the parameters evaluated at the result of
the fit x0 form the Jacobian J :

Jab =
∂Oa

∂xb

∣∣∣∣
x=x0

. (9)

When not analytically accessible, the needed partial
derivatives can be estimated through finite central dif-
ferences. (In general, the theoretical uncertainty related
to the Jacobian must be supplemented by numerical and
experimental uncertainties. We have assumed that the
theoretical uncertainty is much larger than the other two,
which we therefore neglect.)

To use Eq. (7) to assign an uncertainty to every beta-
decay rate in our table, we would need to evaluate the
Jacobian in Eq. (9) for (the logarithms of) all the half-lives
t in our table. Unfortunately, the required 2Nx full decay-
table computations are still not possible in a reasonable
amount of computer time, even with the efficiency of the
FAM. We therefore attempt to gauge the uncertainties and
their Q dependence in a more näıve way. We construct
a simple few-parameter model for the uncertainties that
we can then fit to the observed differences between our
numerical results and known experimental values. The
resulting approach is agnostic about how the decay is
actually calculated; it treats the nuclear model as a black
box that produces predictions for Q values and beta-
decay rates. It does, however, make several assumptions
about both the calculated and experimental strength
distributions that are only approximately correct.

The first assumption is that the final states that con-
tribute significantly to a decay rate lie not too far from
the ground state in a relatively small window of excita-
tion energy, so that we can reasonably approximate them,
again either in our calculation or in the real world, by
one effective state with an effective Q value qeff (that is
not too different from the ground-state Q value):

qeff =

∑
k Ckfk(qk + 1, Zf ) qk∑
k Ckfk(qk + 1, Zf )

. (10)

Here Ck is the standard integrated shape function for
the transition to the final state k — for an allowed state
decay this is simply the transition strength, and for a
non-unique forbidden decay it encapsulates several terms

— and fk is the usual allowed phase-space integral. The
quantity qk is the Q value of the decay to the state k
divided by mec

2, and Zf is the charge of the daughter
nucleus.

With these definitions, we can proceed to define an
effective shape factor Ceff as

t =
κ∑

k Ckf(qk + 1, Zf )
=

κ

Cefff(qeff + 1, Zf )
. (11)
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The Ck depend on the qk for forbidden transitions, but the
dependence is weak compared to that of the corresponding
phase-space integral, and so we neglect it in our effective
shape factor.

All these definitions can be made independently for the
experimental strength distribution and the theoretical
one. The quantity we wish to understand is the ratio r
of the theoretical and experimental lifetimes:

r = lg
tth
texp

= lg
Cexp

eff

Cth
eff

+ lg f(qexp
eff + 1, Zf )− lg f(qth

eff + 1, Zf ) ,

(12)

where the meanings of qexp
eff and qth

eff and the corresponding

quantities Cexp
eff and Cth

eff should be clear. We omit the
nucleus index i in them for brevity. Because the phase
space grows quickly with decay energy, the effective Q
values will usually be close to ground-state-to-ground-
state Q value. We therefore expand both logarithms in
Eq. (12) of the phase-space factors about the theoretical
ground-state-to-ground-state Q value qth

g.s. to first order
in q:

lg f(q + 1, Zf ) ≈ lg f(qth
g.s. + 1, Zf )

+
d lg f(q + 1, Zf )

dq

∣∣∣∣
q=qthg.s.

· (q − qth
g.s.)

= lg f(qth
g.s. + 1, Zf )

+
f ′(qth

g.s. + 1, Zf )

f(qth
g.s. + 1, Zf )

·
q − qth

g.s.

ln 10
.

(13)

This approximation is best when the Q value is high,
because the curvature of lg f(q+ 1, Zf ) is small at high q.
For Q values lower than about 2–3 MeV the first-order
approximation is poor, so we exclude such data points
from our analysis.

Replacing the two logarithms in Eq. (12) by the first-
order expressions, we find that several terms cancel in the
difference, so that

r ≈ lg
Cexp

eff

Cth
eff

+
f ′(qth

g.s. + 1, Zf )

f(qth
g.s. + 1, Zf )

·
qexp
eff − qth

eff

ln 10
.

(14)

We now make another set of assumptions, this time
about the distribution of the errors in the theoretical
values: First, we assume that the relative error in the
effective shape factor is normally distributed with a slight
systematic component. That is, we assume that for each
nucleus, we have

lg
Cexp

eff

Cth
eff

= c+ δc, (15)

where c is a constant, independent of the nucleus in
which the decay occurs, that captures the systematic
error and the set of all nucleus-dependent δc’s is normally
distributed with standard deviation ∆c, which is a mea-
sure of statistical error that is independent of decay energy.
Similarly, we assume that the errors in the theoretical
effective Q value follow a normal distribution, so that

qexp
eff − qth

eff

ln 10
= q + δq, (16)

where q is now a nucleus-independent systematic error in
the effective Q value and the set of δq’s (again, one for
each nucleus) is normally distributed around zero with the
standard deviation ∆q that represents statistical error,
again independent of Q. (Both q and δq are expressed
in units of mec

2, and the factor 1/ ln 10 is absorbed into
q and δq for convenience.) Finally, we assume that the
errors δq and δc are independent.

With these assumptions, we then have

r = c+
f ′(qth

g.s. + 1, Zf )

f(qth
g.s. + 1, Zf )

· q + δr, (17)

where δr is a random error, the set of which must be
normally distributed at each qg.s.

th with width

∆r(qth
g.s.)

2 = ∆c2 +

(
f ′(qth

g.s. + 1, Zf )

f(qth
g.s. + 1, Zf )

)2

∆q2. (18)

We can now use Eqs. (17) and (18) to determine the values
of c, q, ∆c, and ∆q. We obtain the first two through a
fit to Eq. (17), which expresses ri as a function of f ′/f
(and thus of qth

g.s.), with the set of ratios ri given by our
calculations (and experiment) and δri set to zero. Finally,
we insert the fit values of c and q into the square of Eq.
(17), which then expresses δr2

i as a function of (f ′/f)2,
and determine the values of ∆c and ∆q by requiring
that the line for ∆r(qth

g.s.)
2 as a function of (f ′/f)2 that

expresses Eq. (18) goes through the middle of the data,
with as many points below ∆r2 as above it. A second
least squares fit of ∆c and ∆q in the right hand side of
Eq. (18) to the set of δr2

i ’s accomplishes the task nicely.
The explicitly Q-dependent ∆r can then be extrapolated
to large Q values where there are no data.

For both fits, in practice, we only include data points
with Q ≥ 3 MeV and exclude any data points with |ri| > 4
as obvious outliers. We also adopt the Primakoff-Rosen
approximation [29] for the phase-space integral in the
uncertainty model, making the expression f ′/f a simple
ratio of two polynomials, independent of Zf :

f ′(x, Zf )

f(x, Zf )
≈ 5x4 − 20x+ 15

x5 − 10x2 + 15x− 6
. (19)

Once the four parameters of the uncertainty model have
been determined, the uncertainties of the theoretical pre-
dictions are obtained the inverse relation of (4)

texp = tth · 10r (20)
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Figure 1. The differences between computed and experimental
Q values, with SkO’ (top) and with SV-min (bottom). The
insets show the distribution of differences. The errors in
our computed Q values follow a normal distribution with an
average of 0.154 MeV and a standard deviation of 0.576 MeV,
with no noticeable bias when moving to higher Q values.

with

r = r(qth
g.s.)±∆r(qth

g.s.). (21)

III. SKYRME FUNCTIONAL AND
COMPUTATIONAL METHOD

The first step in our computational procedure is the
construction of ground states in the doubly-even mother
nucleus with hfbtho, a well-established HFB solver work-
ing in a (transformed) harmonic-oscillator basis [38]. We
cut off the single-particle space at 60 MeV to avoid diver-

gences from our zero-range pairing. For each nucleus, we
search for a prolate, an oblate, and a spherical solution,
and take the most bound of these to be the ground state.

Because the beta-decay rates are very sensitive to the
Q value of the decay, we look for a modern Skyrme func-
tional that reproduces Q values well. Because we don’t
explicitly treat odd nuclei, we use the prescription of Ref.
[39] to approximate the Q value; we have checked the
prescription against odd-A calculations in the equal filling
approximation, and the two procedures generally agree
to within about 0.5 MeV. Of the several functionals we
examine, SkO’ [40] (with the strengths of proton-proton
and neutron-neutron pairing fit to the experimental pair-
ing gaps of ten isotopes picked in a wide mass range
50 ≤ A ≤ 230) does the best job with Q values, produc-
ing errors for ground-state-to-ground-state Q values that
are normally distributed, with an average systematic error
of 0.154 MeV and statistical error of 0.576 MeV. Figure 1
compares the Q values produced by SkO’ with those of
the next best functional, SV-min.

To compute beta-decay rates and resonance energies
we use the code pnfam, an implementation of the charge-
changing finite amplitude method presented in [18]. Built
to work together with hfbtho, pnfam allows us to com-
pute properties of axial deformed nuclei, including both
allowed and first-forbidden beta decay.

We obtain our most robust fits by fixing all but two
of the time-odd coupling constants of the functional at
values implied by its interpretation as an interaction.
(The mapping of the Skyrme coupling constants to the
energy-density functional coupling constants is explicitly
discussed in Refs. [25, 26].) The exceptions are Cs

1 and
C∆s

1 . We set the latter to zero to avoid known finite-
size instabilities [41] which, in the case of hfbtho and
pnfam, manifest themselves as divergences in the iter-
ative solution. That leaves Cs

1 , which, along with the
isoscalar pairing strength V0, we fit to a set of Gamow-
Teller resonance energies, spin-dipole resonance energies,
and beta-decay rates selected from a wide mass range with
no particular region favored. We use the code pounders,
based on a derivative-free algorithm [42] designed for op-
timizing computer-time-consuming penalty functions, to
efficiently minimize the weighted the sum of the least
squares, simultaneously fitting both parameters. We take
Cs

1 to be independent of the density and V0 to have the
same density dependence as the proton and neutron pair-
ing. The axial-vector coupling constant gA is known to be
quenched in nuclei, but the source and magnitude of the
quenching is an open problem; a variety of very different
values for an effective gA have been used. For lack of a bet-
ter prescription, we use the commonly adopted quenched
value gA = 1.0 in the Gamow-Teller channel, while apply-
ing no quenching in in the first-forbidden channels (We
also might have tried similarly quenched value for the
first-forbidden channels). We weight the three types of
observables — two kinds of energies and a rate — in the
least-squares fit so as to approximately normalize the total
penalty function χ2 to the number of degrees of freedom,
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set GT resonances SD resonances beta-decay half-lives

A 208Pb, 112Sn, 76Ge, 130Te, 90Zr, 48Ca none 48Ar, 60Cr, 72Ni, 82Zn, 92Kr, 102Sr, 114Ru, 126Cd, 134Sn, 148Ba

B same as A none 52Ti, 74Zn, 92Sr, 114Pd, 134Te, 156Sm, 180Yb, 200Pt, 226Rn, 242U

C same as A none 52Ti, 72Ni, 92Sr, 114Ru, 134Te,156Nd, 180Yb, 204Pt, 226Rn, 242U

D those of A and 150Nd none 58Ti, 78Zn, 98Kr, 126Cd, 152Ce,166Gd, 204Pt

E same as D 90Zr, 208Pb 58Ti, 78Zn, 98Kr, 126Cd, 152Ce, 166Gd, 226Rn

Table I. The sets of fitting targets used in this work. The beta-decay half-lives in set A range from 0.069 s (102Sr) to 1.84 s
(92Kr), in set B from 95.6 s (74Zn) to 45360 s (200Pt), in set C from 0.54 s (114Ru) to 9399.6 s (92Sr), and in set E from 0.046 s
(98Kr) to 444 s (226Rn). The nuclei selected for fitting the beta-decay half-lives in sets D and E all exhibit an excitation spectrum
clearly associated with either a spherical or a well-deformed shape; set E only consists of open-shell nuclei. The experimental
Gamow-Teller resonance energies are from Refs. [30–34], the spin-dipole resonance energies from Refs. [35, 36], and the half-lifes
from Ref. [37].

following the recommendation in Ref. [28]. We assume
that the theoretical error dominates the experimental
error, and thus assign equal weight to observable of the
same type. We select these weights based on how well the
different observables are reproduced in an initial test fit,
so that each type of observable is approximately equally
weighted in the actual fit. Typical fits then take 10—20
thousand CPU hours, and we use XSEDE supercomputers
[43] to carry them out.

Following the fit, we proceed to compute the beta-decay
rates of all even-even neutron-rich nuclei with 28 ≤ Z ≤
110, A ≥ 50, all the way to the neutron drip line, omitting
just a few very stable isotopes for which the Q value is
negative in our HFB calculations.

IV. RESULTS AND DISCUSSION

A. Fit results

To assess how sensitive our fit is to the set of target
beta-decay rates and resonance energies, we repeat the
process with four sets of rates, summarized in Table I.
Each of these sets spans a large range of masses. Set A
contains beta-decay isotopes with relatively short half-
lives only, set B relatively long half-lives only, and set C
a wide range of half-lives. (Short half-lives should be less
sensitive to details in nuclear structure, whereas long half-
lives, despite being less reasonable, allow us to see how
sensitive our fits are to the selection of fitting targets). Set
D contains only nuclei that are known to be rather rigid,
with an excitation spectrum characteristic of a spherical
or a well-deformed nucleus. (The QRPA, which is based
on a single mean field, should work best in rigid nuclei).
In set E, we include only open-shell rigid nuclei (for which
isoscalar pairing should be most effective), swapping out
204Pt for 226Rn, and including two spin-dipole resonances.
Figure 2 shows the quality of the fits for set E both with
computed (1D) and experimental (1E) Q values (see Table
III for definitions of the number-letter combinations). The
two procedures yield very similar results. The comparison
in Fig. 3, which shows the results of the two-parameter

fits (along with those of more-parameter fits discussed
shortly) when the resulting functionals are applied to the
set of all measured even-even β−-decay half-lives, shows
that all these two-parameter fits (1A through 1E) yield
the same level of predictive accuracy.

Can we do better by including some of the other time-
odd coupling constants in our fit? To find out, we refit the
four-parameter set {V0, C

s
1 , C

T
1 , C

F
1 }, which determines

the Landau parameters {g′0, g′1, h′0} and thus allows us
to incorporate infinite-nuclear-matter stability conditions
[27] as constraints. The parameter CF

1 introduces a time-
odd tensor term that is not present in the two-parameter
fits. The result, however, improves the description of
the fitting targets only marginally, as the points labeled
3A and 3B in Fig. 2 show, and actually worsens the
agreement with half-life measurements overall (as Fig. 3
shows). The situation gets even worse when we use the
results of this fit as a starting point to fit three more time-
odd coupling constants, {Cj

1 , C
∇j , C∇s} (fit 4). Then the

beta-decay rates to which we fit are reproduced better,
but the agreement with all measured rates deteriorates.

Improvement in the fitting targets accompanying a de-
terioration in overall agreement with data is a symptom
of overfitting. To better understand why this happens,
we evaluate the Jacobian matrix (9) at the parameter
values produced by the two-parameter fit 1E. The Jaco-
bian appears in Table II, with the values of the coupling
constants in natural units following the prescription of
Ref. [44] and the natural scale of isoscalar pairing taken
to be the strength of isovector pairing. A clear column
structure appears in both the resonance energies and the
half-lives, signaling that the members of each individual
set move largely in unison when the parameters are varied.
Thus there are essentially just two meaningful degrees of
freedom that we can expect to fix with this experimental
data: V0 and Cs

1 .

To see this in more detail, we carry out a singular value
decomposition of the Jacobian. The largest singular value,
122.53, corresponds to a vector pointing nearly in the di-
rection of Cs

1 in parameter space, and the second largest,
10.85, to a vector pointing nearly in the direction of V0.
The third largest value, 1.648, is almost two orders of mag-
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Figure 2. Reproduction of target data in those of our fits that use the target set E. The four-parameter fits 3A and 3B yield
almost the same results as the two-parameter fits 1D and 1E, with only a small decrease in the penalty function.

nitude smaller than the largest, and corresponds mostly
to CT

1 , with many other directions mixed in. The charge-
changing data we have available — Gamow-Teller and
spin-dipole resonances, and half-lives — are not enough
to reasonably constrain more than the parameters V0 and
Cs

1 in our initial fit.

Figure 3, besides containing the results of our fits,
contains results from other work: Refs. [3, 6, 11] and [9].
Of all the these computations, the one by Homma et al.
[3] seems to best reproduce the known β− half-lives, even
though it neglects non-unique first-forbidden decay and
uses simple separable interactions. As Figure 4 shows,
in our computation the non-unique 1− contribution is
quite important (even dominant) in many experimentally
inaccessible nuclei, so it is far from clear how the various
calculations will fare with data in the future. In any
event, the most striking fact is that all the computations
manage to existing data at roughly the same level of
precision. It may not be possible to do much better
without moving beyond Skyrme QRPA, at least while
using a global parameter set as we have done here.

B. Extrapolation to neutron-rich isotopes

Figure 4 displays the relative contribution to the decay
rate from each multipole. Except in the immediate vicinity
of the valley of stability, the changes appear quite gradual
as a function of Z and N . In nuclei with large Q values,
the details of single-particle structure are less important
than in isotopes for which transitions to only a few low-
energy states are possible.

Fig. 4 also demonstrates the importance of going be-

yond the allowed approximation. In many heavy nuclei,
the computed rates are dominated by the first-forbidden
channel. Towards the drip line, both allowed and forbid-
den channels are important for all masses. The figure also
shows that the non-unique 1− channel is usually the most
important of the forbidden multipoles. Thus any quench-
ing of the (unique) 2− channel and anti-quenching of the
(non-unique) 0− channel from meson-exchange currents
[45] would not have a significant impact on our overall
results. In the 1− channel the contributions of several
different operators makes the effects of quenching hard
to estimate.

In Figure 5 we compare our half-lives to those of Möller
et al. [5] in all medium and heavy even-even isotopes. Our
half-lives tend to be longer then those of Ref. [5] close to
the valley of stability in light nuclei and somewhat shorter
in heavy nuclei (with significant forbidden contributions).
Approaching the neutron drip line, the two computations
yield similar results up to a constant offset in those of
Ref. [5] in even-even nuclei. All models can expect to do
better near the drip line, where a significant fraction of
the total β-decay strength can be below threshold.

Because our näıve model for uncertainties is based on
several assumptions that are only approximately correct
or cannot easily be verified, we check its predictions where
there are enough data to do so. Figure 6 shows the ratios
of our half-lives to those of experiment together with
the uncertainty model’s mean value and one- and two-
standard-deviation bands, all as a function of ground-state
Q value. We can discount the model at very low Q but
it appears to work well above Q ≈ 4 MeV. Out of the
72 nuclei, 48 (66.7%) fall within one standard deviation
of the mean and 71 (98.6%) within two. These numbers
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O dO/dCs
1 dO/dV0 dO/dCF

1 dO/dCT
1 dO/dC∇s

1 dO/dC∆s
1 dO/dCj

1 dO/dC∇j
1

208Pb EGTR 57.261 -0.000 2.434 5.869 0.429 -1.002 0.000 0.143
112Sn EGTR 29.498 -1.032 1.432 2.863 0.286 -0.573 0.000 0.000
76Ge EGTR 45.115 -7.225 2.004 4.295 0.429 -1.145 0.000 0.000
130Te EGTR 53.790 -3.096 2.434 5.297 0.429 -1.002 0.143 0.000
90Zr EGTR 29.498 -1.032 1.288 2.720 0.429 -1.002 -0.143 0.143
48Ca EGTR 32.968 -0.000 1.432 3.149 0.573 -1.288 0.000 0.000
208Pb ESDR 52.055 -0.000 2.291 4.008 0.286 -1.575 -0.143 -0.143
90Zr ESDR 29.498 -0.000 1.575 2.004 0.286 -1.432 -0.286 -0.143
58Ti lg t 4.749 -4.318 0.203 0.445 0.045 -0.109 -0.011 -0.002
78Zn lg t 6.889 -2.922 0.256 0.589 0.164 -0.382 0.253 -0.025
98Kr lg t 5.410 -3.252 0.265 0.559 0.050 -0.116 -0.012 -0.003
126Cd lg t 5.583 -4.641 0.252 0.496 0.017 -0.050 0.001 0.007
152Ce lg t 5.409 -2.474 0.293 0.540 0.051 -0.120 0.003 -0.009
166Gd lg t 5.081 -2.924 0.250 0.497 0.035 -0.132 -0.007 -0.010
204Pt lg t 3.755 -3.340 -0.015 0.160 -0.018 -0.316 -0.076 0.026

Table II. The Jacobian matrix, evaluated at the result of the two-parameter fit 1E. All parameters except for the strength of
isoscalar pairing are expressed in natural units. The strength of isoscalar pairing has been scaled by the strength of isovector
pairing. The derivatives of the lg t values are hence dimensionless and those of the resonance energies are in the units of MeV.

fit starting point target set Q values fitted parameters

1A SkO’ A comp. V0 = −173.176, Cs
1 = 128.279

1B SkO’ B comp. V0 = −176.614, Cs
1 = 133.038

1C SkO’ C comp. V0 = −176.097, Cs
1 = 126.966

1D SkO’ E comp. V0 = −209.384, Cs
1 = 129.297

1E SkO’ E exp. V0 = −159.397, Cs
1 = 99.8479

2 SV-min D comp. V0 = −165.567, Cs
1 = 132.271

3A SkO’ E comp. V0 = −195.174, Cs
1 = 144.833, CT

1 = −20.1618, CF
1 = −10.3125

3B SkO’ E exp. V0 = −165.158, Cs
1 = 120.27, CT

1 = −17.7435, CF
1 = −17.9902

4 fit 3A E comp. Cj
1 = 54.5, C∇j

1 = −78.7965, C∇s
1 = −87.5

5 SkO’ E comp. V0 = −191.875, Cs
1 = 146.182, Cj

1 = −86.4276

Table III. Summary of the various fits in this work. The functional listed for each fit dictates the values of the coupling constants
that are not fit, except for that of C∆s

1 , which is set to zero everywhere to avoid finite-size instabilities. The units of V0 and Cs
1

are MeV fm3, and the units of the other coupling constants are MeV fm5.

are consistent with what one would expect from a normal
distribution. The model quantifies our statement above
that calculations are more accurate close to the drip line,
where Q is generally large.

A recent RIBF measurement [46] of 110 neutron-rich
isotopes, 40 of them previously unknown, allows us to
test the reliability of our predictions and especially our
model for theoretical uncertainties. Because the data
are so recent, we did not include them in any of our
fits, and hence we are effectively using older data to
predict the results of these new measurements. We have
28 even-even nuclei with which to compare rates; for
half of these there are earlier data in the ENSDF set
(Figure 7). Our predictions agree with experiment to
within our theoretical uncertainty (though our error bars

may be a bit too large here). Our uncertainty model thus
appears to be reasonable.

V. CONCLUSIONS

We have explored the ability of the axially-deformed
Skyrme QRPA to provide a global description of beta-
decay rates in even-even neutron-rich nuclei. With exper-
imental rates and charge-exchange resonance energies as
fitting targets we have found that among time-odd cou-
plings, only those multiplying the isoscalar-pairing and the
spin-density parts of the functional are well constrained;
attempts to fit more than these two constants lead to over-
fitting. The tensor contributions to the energy-density
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Figure 3. Comparison of the mean and standard deviation of
the lg t values in our fits with those of previous work. The la-
bels for our fits correspond to those of Table I. The results from
prior work are contained in [5] (Mö), [3] (Ho), [6] (Na), [11]
(Co), and [9] (Ma). Only even-even isotopes are considered. Figure 4. The contributions of different allowed and first-

forbidden multipoles to the total computed beta-decay rates.
Only even-even nuclei are considered.
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.

functional are, in particular, not well constrained by this
data. To get more accurate Skyrme-QRPA predictions,
one can resort to local fits, i.e. A-dependent couplings.
The recent work of Ref. [9], for example, attaches a sensi-
ble A dependence to the strength of isoscalar pairing. In
addition, including neutron separation energies as addi-
tional fitting targets could help constrain the couplings
somewhat better. Furthermore, including quenching of
the FF operators might make a difference for heavier
nuclei.

The level of agreement between our calculations and
data throughout the isotopic chart is similar to that pro-
duced by other recent computations, in spite of our con-
sistent inclusion of deformation, tensor terms in the func-
tional, etc. It could be difficult to do much better without
an account of multiphonon effects, which have been found
to noticeably affect the GT strength distribution (e.g.
in Ref. [47]) and consequently the beta-decay rates in
Ref. [48].
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Figure 7. Our predictions for the 14 half-lives of neutron-rich
even-even nuclei measured only recently [46] and not included
in the ENSDF data set. All the measured half-lives fall within
our one-sigma error bars, suggesting that our uncertainty
estimates are too pessimistic in this particular region.

The most glaring shortcoming of our work here is the re-
striction to even-even nuclei. An extension of the FAM to
odd-mass nuclei will be the subject of a future publication
[49]. For the moment, we make our results for the 1387
even-even neutron-rich nuclei, with crudely estimated the-
oretical uncertainties, available as supplementary material
to this article.
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[5] P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67,
055802 (2003).

[6] H. Nakata, T. Tachibana, and M. Yamada, Nucl. Phys.
A 625, 521 (1997).

[7] I. N. Borzov and S. Goriely, Phys. Rev. C 62, 035501
(2000).

[8] I. N. Borzov, Phys. Rev. C 67, 025802 (2003).
[9] T. Marketin, L. Huther, and G. Mart́ınez-Pinedo, (2015),

arXiv:1507.07442.
[10] Q. Zhi, E. Caurier, J. J. Cuenca-Garćıa, K. Langanke,
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Phys. Rev. C 88, 044327 (2013).
[24] N. Hinohara, M. Kortelainen, W. Nazarewicz, and

E. Olsen, Phys. Rev. C 91, 044323 (2015).
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