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By analyzing preliminary experimental measurements of charge-balance functions from the STAR
Collaboration at the Relativistic-Heavy-Ion Collider (RHIC), it is found that pictures where bal-
ancing charges are produced in a single surge, and therefore separated by a single length scale, are
inconsistent with data. In contrast, a model that assumes two surges, one associated with the for-
mation of a thermalized quark-gluon plasma and a second associated with hadronization, provides
a far superior reproduction of the data. A statistical analysis of the model comparison finds that
the two-surge model best reproduces the data if the charge production from the first surge is similar
to expectations for equilibrated matter taken from lattice gauge theory. The charges created in the
first surge appear to separate by approximately one unit of spatial rapidity before emission, while
charges from the second wave appear to have separated by approximately a half unit or less.
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I. INTRODUCTION AND THEORY

A principal goal of colliding heavy-ions at high energy is to verify whether one can create small drops of equilibrated
quark gluon plasma in the laboratory. Kinetic equilibration is not surprising given the high collision rates and
is validated by thermal features of the data, especially observables related to collective flow [1] and jet quenching
[2]. Chemical equilibrium is more difficult to justify. The final-state abundance of hadrons suggests that chemical
equilibrium was lost just after hadronization when the temperature was near 165 MeV [3]. In contrast, there is scant
experimental evidence that chemical equilibrium was maintained during the period when T > 200 MeV when the
matter is expected to be in a phase of strongly interacting quark gluon plasma (QGP). That chemistry is remarkable.
Counting spins, colors and flavors, there are 36 light degrees of freedom from the up, down and strange quarks, and
an additional 16 from gluons. Thus, approximately 52 strongly interacting particles should inhabit a volume on the
order of one thermal wavelength cubed, ∼ (h̄c/T )3.

At high temperature and zero baryon density, the chemical make-up of the QGP cannot be quantified by counting
quarks or gluons because they tend to be off-shell or virtual, so their number is not a well-defined observable. However,
even though the average charge within a volume V is zero, the fluctuations of the charge characterize the degrees of
freedom. If one considers the three-by-three fluctuation tensor,

χab =
QaQb
V

, (1)

with a and b referring to the up, down and strange charge, one can gain insight into the chemistry. If up, down and
strange quarks are good quasi-particles with no inter-quark correlations (a gaseous state),

χ
(QGP)
ab = (na + nā)δab, (2)

where na is the density of quarks of the given flavor, up, down or strange. Correlations between quarks, such as the
two being in the same hadron, alter the expression. For a hadron gas the correlations are

χ
(had)
ab =

∑
α

nαqαaqαb, (3)

where nα is the density of hadron species α which has a charge qαa. As an example, protons contribute a factor of four
times their density to χuu because the “up” charge of a proton is two. Even for strongly interacting and correlated
systems χab is a well-defined observable, because charge is conserved by the strong interaction. From equation 3 one
can see that hadronic resonances induce off-diagonal elements to χab [4]. For example, the K+ contributes negatively
to χus and a Λ hyperon gives a positive contribution to χus.

For a massless gas of quarks and gluons, the number of quarks within a fluid element of fixed entropy stays constant
during an isentropic expansion because both the number densities and the entropy density scale as T 3. Therefore,
in an isentropic expansion of a massless parton gas the number of quarks within the fluid element stays relatively
constant. Lattice calculations show that this property remains reasonably preserved even for a strongly interacting
system. The ratio χab/s is illustrated in Fig. 1 where it changes only at the 10% level once T > 225 MeV. Below
that temperature, the system is hadronizing and χ is strongly temperature dependent. Due to entropy conservation,
the number of hadrons just below Tc is marginally lower than the number of quarks above Tc, so given that each
hadron has two or three quarks, copious quark production, through string breaking or resonance decays, accompanies
hadronization. As shown in Fig. 1, some of the elements of the fluctuation tensor change significantly, especially
χuu/s ≈ χdd/s which nearly doubles.

Unfortunately, charge fluctuations, χab(T ), are not directly accessible from experiment. If one could measure the
charge fluctuation within a small volume, a few fm3, one would expect the fluctuation to approximate that of an
equilibrated system as long as the equilibrated system does not have correlations beyond that scale. However, if one
considers the net charge in the entire system, it does not fluctuate due to the fact that, unlike the assumptions for a
grand canonical ensemble, the net charge is fixed and χ→ 0. In contrast, the charge correlation

gab(∆η) ≡ 〈ρa(0)ρb(∆η)〉 , (4)

is sensitive to both the equilibrated charge fluctuation and accounts for the conservation of net charge. Here, ρa(η) is
the charge density per unit of spatial rapidity and the brackets denote averages over events. Translational invariance
along the beam axis, or invariance to translations in spatial rapidity, is assumed. Spatial rapidity is a measure of the
position along the beam, or z, axis, z/t = tanh η. If all fluid elements begin at z = t = 0 and if the elements do not
accelerate longitudinally, which is expected for a boost-invariant system, the spatial rapidity can be associated with
the longitudinal velocity of the fluid element, vz = z/t. If a particle moves with the fluid, its spatial rapidity stays
constant [7].
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FIG. 1. (Color online) Charge fluctuations from lattice gauge theory [5, 6] (open symbols) are similar to those of a hadronic
gas (filled symbols for T = 165 MeV). For fixed entropy there are increased numbers of up and down quarks in the hadronic
phase, whereas the number of strange quarks is slightly smaller. The off-diagonal element disappears above Tc when hadrons
dissolve and quark-antiquark correlations disappear. At high temperatures the results approach those of a Stefan-Boltzmann
gas of massless partons (S.B. limit).

If chemical equilibrium is attained and if the correlations are local the correlation becomes

gab(∆η)→ χabδ(∆η), (5)

where the δ function can be relaxed to some function of short range that integrates to unity. For the realistic situation
where the charge is created locally and diffuses over a finite distance, the correlation becomes

gab(∆η) = χabδ(∆η) + g′ab(∆η), (6)∫
d∆η g′ab(∆η) = −χab.

The last condition derives from charge conservation.
Even though the net charge over the entire collision volume does not fluctuate and even though the short-range

correlation only carries information about the current value of χ, one can gain insight into the temporal history of
χab by analyzing the dependence of χab on ∆η, or in a three dimensional analysis on ∆x,∆y,∆η. For example, if
χab/s were to stay constant after the initial time, g′ab(∆η) would be a broad function with a width determined by
how far charge pairs produced early would separate over the history of the collision. This width might be driven by
a combination of two effects. First, if the balancing quarks are produced by the fragmentation of a longitudinal flux
tube, the tunneling would lead to the charges being significantly separated at birth along the beam direction, perhaps
by a solid fraction of one unit of spatial rapidity. For example, if the quarks were born with a separation of 0.5 fm, and
were created at a proper time of 0.5 fm/c, the separation would be on unit of spatial rapidity. In contrast, if particles
were born 0.5 fm apart at a time of 5 fm/c, the separation would be only 0.1 units of spatial rapidity. If the system
maintains local chemical equilibrium, as defined by the lattice calculations displayed in Fig. 1, at hadronization a
second contribution to gab would arise to account for the change in χab. This second contribution to g′ab(∆η) would
be more tightly constrained in ∆η due to the reduced time available for the charges to diffuse away from one another.

Diffusion represents another mechanism of separation. For a strongly interacting QGP the diffusion constant and
the separation would tend to be smaller. From [8] one can estimate the diffusive separation with a simple analytic
formula based on assuming cross sections stayed constant with temperature. The diffusive width to the balance
function was

σ2
η = 4β ln(τ/τ0), β = vt/(nτσ). (7)

If the cross section of σ = 10 mb = 1.0 fm2 were used, and if the density scaled by the time τ were nτ = 5 fm−2,
and if τ/τ0 = 10, the particles would separate by approximately one unit of spatial rapidity. If several collisions were
required to re-thermalize a particle the diffusive separation would increase.

The correlations in terms of charges, gab, translate into correlations between specific hadronic species α and β,,

Gαβ(∆η) ≡ 〈(nα(0)− nᾱ(0))(nβ(∆η)− nβ̄(∆η))〉. (8)

A relationship between gab(∆η) and Gαβ(∆η) can be derived if one assumes that a small balancing charge is spread
randomly, or thermally, amongst the hadrons [9].
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Using a blastwave prescription, which provides a parametric description of thermal emission overlaid with collective
flow and includes the effects of decays, one can then project the correlations in coordinate space to correlations in
momentum space. These correlations are divided by the yield of particles of type α and are called charge balance
functions,

Bαβ(∆y) =
〈(nα(0)− nᾱ(y))(nβ(0)− nβ̄(∆η))〉

n̄α + n̄ᾱ
, (9)

which have been measured by experiment [10–20].
In the next section, the methods are reviewed for translating charge correlations, gab(∆η), to Gαβ(∆η) and then

to balance functions Bαβ(∆y) using a blast-wave prescription. Preliminary measurements from STAR are reviewed
in Sec. III, while Sec.s IV and V illustrate how individual balance functions are determined by specific parameters
in the model. In Sec. V eight model parameters are systematically varied in a Markov Chain Monte Carlo (MCMC)
exploration of parameter space that implements model emulator techniques. The results make a strong case that the
matter created in central Au+Au collisions at RHIC is close to being chemically equilibrated early in the collision.
In Sec. VI these findings are summarized and some ideas for future analysis are presented.

II. GENERALIZED BALANCE FUNCTIONS AND THE TWO-SURGE BLAST-WAVE MODEL

In this paper we present comparisons to a simple model that can reproduce the behavior expected from the trends
seen in the lattice results displayed in Fig. 1. The picture assumes two surges of charge production: one where the
initial equilibrated matter would be formed and a second corresponding to the jump in the susceptibilities near Tc.
To that end, the model will assume that the first surge results in charge correlations significantly spread in rapidity,
while the second surge, occurring as the temperature falls below T ∼ 200 MeV, would result in significantly more
compact correlations. The spread in spatial rapidity at breakup from the two surges will be described by two widths,
σA for the first surge and σB for the second surge. First, we repeat the derivations in [9] and describe how these
correlations carry over into correlations in rapidity between two specific hadronic species.

The 3× 3 charge correlation matrix in coordinate space, g′ab(∆η), determines the observable hadronic correlations
in the final state if one assumes that the differential additional charges in a small volume are distributed thermally
amongst the hadrons. Here, we define a correlation between two hadronic species α and β [9],

Gαβ(∆η) ≡ 〈(nα(0)− nᾱ(0))(nβ(∆η)− nβ̄(∆η))〉, (10)

gab(∆η) =
1

4

∑
αβ

Gαβ(∆η)qαaqβb, (11)

where qαa is the charge of type a carried by the hadron species α. There are many more hadronic species than charges,
so Gαβ cannot be uniquely determined from gab without making assumptions. The factor of 1/4 accounts for the
double counting of species. For instance, the sum over α, β includes both π+π− and π−π+.

If one assumes that an additional differential charge density δρa within a given volume element is spread amongst
the various species randomly, i.e. thermally, the change in each species’ yield can be found by finding the chemical
potential δµa required to generate δρa.

δnα = (eδµaqαa − 1)n̄α (12)

= δµaqαan̄α,

where δµ has absorbed the 1/T factor typically used in defining chemical potentials and is dimensionless, while n̄α
refers to the average particle density. The three values δµa can now be found from the three constraints in Eq. (10).
In turn these then determine δnα.

δρa =
∑
α

qαa
∑
b

n̄αqαbδµb,

=
∑
b

χ
(had)
ab δµb,

δµa =
∑
b

χ
(had)−1
ab δρb,

δnα = n̄α
∑
ab

qαaχ
(had)−1
ab δρb. (13)
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Using the fact that in Eq. (10) nα − nᾱ = 2δnα,

Gαβ(∆η) = 4
∑
abcd

n̄αqαaχ
(had)−1
ab gbc(∆η)χ

(had)−1
cd qβdn̄β . (14)

Using the expression for χ(had) in Eq. (3) one can see that the form is consistent,

1

4

∑
αβ

Gαβ(∆η)qαaqβb = gab(∆η). (15)

In the two-surge model, calculating the experimentally measurable Gαβ(∆y), where ∆y is the correlation in relative
asymptotic rapidity, involves the following steps:

1. Calculate gab(∆η) at hadronization. Assume a form consisting of two surges,

g′ab(∆η) = −
(
χ

(had)
ab − χ(QGP)

ab

) e−∆η2/2σ2
B

(2πσ2
B)1/2

(16)

−χ(QGP)
ab

e−∆η2/2σ2
A

(2πσ2
A)1/2

Here, σA describes the width in spatial rapidity to which charges created in the first wave have separated by the
time one reaches breakup and σB characterizes the separation from the second wave at breakup. The strength

of the first surge, χ
(QGP)
ab , is the susceptibility using a number per unit rapidity, or taken from lattice,

χ
(QGP)
ab =

χ
(lattice)
ab (T ≈ 300 MeV)

s

dS

dη
, (17)

and χ
(had)
ab is given by the properties at chemical freezeout, which for this calculation will be defined by a tem-

perature Tchem = 165 MeV. One can also calculate the entropy density of a hadron gas at chemical equilibrium,
schem.

2. Gαβ(∆η) is calculated from gab using Eq. (14). After substituting Eq. (16) into Eq. (14),

Gαβ(∆η) = −wA,αβn̄αn̄β
e−∆η2/2σ2

A

(2πσ2
A)1/2

− wB,αβn̄αn̄β
e−∆η2/2σ2

B

(2πσ2
B)1/2

, (18)

wA,αβ = 4
∑
ab

qαa

(
χ(had)−1χ(QGP)χ(had)−1

)
ab
qβb,

wB,αβ = 4
∑
ab

qαaχ
(had)−1
ab qβb − wA,αβ .

3. Given Gαβ(∆η) at freezeout, the correlations in coordinate space are then mapped to correlations in spatial
rapidity, Gαβ(∆y), according to the blast-wave prescription. This mapping is done by the following Monte
Carlo procedure. (a) Pairs of particles are chosen with probability proportional to n̄αn̄β . (b) The particles
are then placed in coordinate space with the relative position randomly according to a Gaussian width σA. (c)
The particle’s local momenta are generated thermally, then boosted transversely according to the blast-wave
prescription described below. (d) If the particles are both stable the balance functions for the given relative
rapidity bin is incremented by wA,αβn̄

2
totεαεβ , where n̄tot is the number of hadrons per unity rapidity and εα is

the efficiency with which particle α is measured, and depends on the particle type, its transverse momentum
and rapidity[21] (e) If one or both particles are unstable, they are decayed and the relative rapidity is calculated
for each of the products α′ and β′. Each correlation Gα′β′ is then incremented by wA,αβn̄

2
totεα′εβ′ . Steps b-f are

repeated using the weight wB and the width σB . Decays are accounted for by considering the intra-correlations
between any of the particles of type A and species α′ and α′′ and using a weight n̄α.

4. After using the previous steps to calculate Gαβ(∆y), one can then calculate the “generalized” balance function,
i.e. the balance function for specific species, by the relation

Bαβ(∆y) =
Gαβ(∆y)

n̄α + n̄ᾱ
. (19)
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The denominator requires generating particles with the species being picked proportional to n̄α. Then one
should boost and decay the particles, and increment the denominator for the type α′ by the efficiency for the
final species by an amount εα′n(tot). As long as the number of samplings is the same as the previous step, the
normalization should be correct.

One can test calculations along the way by considering the normalization of various quantities with perfect
acceptance. ∑

β

(wA,αβ + wB,αβ)n̄βqβa = 4qαa, (20)

∑
αβ

∫
d∆η qαaGαβ(∆η)qβb = −4χab,

∑
β

∫
d∆y Bαβ(δy)qβb = −2qαb,

(21)

The quantities also have the symmetry, Gαβ̄ = −Gαβ and Bαβ̄ = −Bαβ .

The blast wave used to transversely boost the particles uses four parameters. The first is the kinetic temperature at
breakup. Although particle yields are determined by the temperature Tchem = 165 MeV, where chemical equilibrium
would be lost, the particle’s momenta are determined by the kinetic temperature Tkin = 102 MeV. The second
parameter is the transverse collective velocity, u⊥ = 0.732. After being generated thermally, they are boosted by a
transverse velocity chosen from the distribution,

dN

duxduy
∼ e−(u2

x+u2
y)/2u2

⊥ . (22)

The two parameters u⊥ and Tkin are chosen to roughly reproduce the mean transverse momentum of pions and protons
seen by the STAR [22] and PHENIX [23] collaborations at RHIC. The third and fourth parameters determine the
chemistry. In addition to Tchem, a parameter FB = 2/3 is used to reduce the yield of all baryons to account for
baryon annihilation below Tchem [24, 25]. Rather than employing the rather large baryon annihilation factors here,
calculations were also performed using lower values of Tchem as suggested in [6, 26, 27]. If the final p/π ratios are
similar, results change little.

The blast wave picture used here is perhaps the simplest model that can readily incorporate two surges while
providing a reasonable mapping between the correlations in coordinate space and those in asymptotic relative rapidity.
If both widths σA and σB are set equal to one another, it becomes a one-surge model. Of course, both charge creation
and emission are more complicated than what can be described in this picture. First, although one expects two
surges, the susceptibility seen in Fig. 1 does rise slowly as the temperature falls in the region T >∼ 200 MeV. One
could replace the two surges with a continuum of creation proportional to d/dτ(χab/s). Each point in space would
then contribute to the final gab. However it is clear that, if the system stays close to chemical equilibrium, the bulk
of these contributions comes from two surges. Additionally, if either surge is not strongly confined to a specific time,
the shape of the ensuing correlation should no longer be Gaussian, even if the separation is purely diffusive. A second
weakness of the model comes from the assumption that the matter disassociates simultaneously according to a single
breakup temperature, Tkin, but with yields determined by a single temperature Tchem. For shorter lived resonances like
the ρ meson, yields should substantially drop between the two temperatures. Thus, the contributions from resonance
decays are probably significantly overstated. However, if a neutral particle decays and rethermalizes, the ensuing
relative rapidity of the two charges is not wholly different than if the two decay prodcucts escaped unscathed, because
these decays have relative momenta of typical thermal scales. Despite these shortcomings, the two-surge model should
provide an insightful point of comparison. A more realistic picture of creation, transport and emission of conserved
charges is currently being pursued by some of the authors.

III. SUMMARIZING EXPERIMENTAL MEASUREMENTS

The STAR Collaboration has presented preliminary balance functions for four combinations of species: π+π−,
K+K−, pp̄ and K−p [28, 29], displayed in Fig. 2. Before discussing the result, we apply an approximate acceptance
and efficiency correction so that the true widths of the balance functions can be better discerned. This correction
is approximate and based on an assumption that the balance functions depend only on the relative rapidity, or
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equivalently that the balance functions do not depend on the transverse momenta of the two particles. Assuming
equal numbers of particles and antiparticles, the balance function can be exactly expressed as

B(∆y) =

∫
dpadyadpbdyb δ(|yb − ya| −∆y)

[
Nαβ(pa, ya, pb, yb)−Nαβ̄(pa, ya, pb, yb)

]∫
dpadya Nα(pa, ya)

, (23)

with pa referring to the transverse momentum coordinates of the particle of type α and pb doing the same for type β.
The rapidities of the two types are then ya and yb. In terms of the balance function,

Nαβ(pa, ya, pb, yb)−Nαβ̄(pa, ya, pb, yb) = Nα(pa, ya)B(p)(pa, ya, pb, yb)Aβ(pb, yb), (24)

where Aβ(pb, yb) is the efficiency that can vary between zero and unity, and B(p) is the balance function if the
acceptance for the particle of type β were perfect. Now, to make the approximation, one assumes that an addi-
tional particle of type β at yb has its transverse momentum distribution distributed according to the single-particle
probability, Nβ(pb, yb), with half the strength coming at yb = ya + ∆y and the other at yb = ya −∆y.

B(p)(pa, ya, pb, yb) ≈
1

2
B(p)(∆y)

N
(p)
β (pb, yb)∫

dpb N
(p)
β (pb, yb)

. (25)

One can now insert Eq.s (24) and (25) into Eq. (23) and see that B(p)(∆y) factors out of the expression,

B(∆y) = B(p)(∆y)

{∫
dpadyaNα(pa, ya)Ā(yb = ya + ∆y)

2
∫
dpadya Nα(pa, ya)

(26)

+

∫
dpadyaNα(pa, ya)Ā(yb = ya −∆y)

2
∫
dpadya Nα(pa, ya)

}
,

Āβ(yb) ≡
∫
dpb N

(p)
β (pb, yb)Aβ(pb, yb)∫
dpb N

(p)
β (pb, yb)

If the efficiency Aβ(pb, yb) is perfect, the balance function is B(p)(∆y). The expression in the brackets on the r.h.s.
represents the acceptance correction, C(∆y).

B(p)(∆y) =
B(∆y)

C(∆y)
, (27)

C(∆y) =

∫
dpadyaNα(pa, ya)Āβ(ya + ∆y)

2
∫
dpadya Nα(pa, ya)

+

∫
dpadyaNα(pa, ya)Āβ(ya −∆y)

2
∫
dpadya Nα(pa, ya)

.

The acceptance probability Aβ(yb) is basically the ratio of the measured yield of particles of type β at yb relative to
the true yield. Using a STAR acceptance and efficiency filter [21], this can be found by generating particles with the
blast-wave prescription, then seeing what fraction are recorded. The correction factor C(∆y) then requires averaging
Aβ over the various possibilities for ya, which can again be performed with the blast-wave prescription. Figure 2
shows both the original preliminary balance function from STAR and the corrected version. For large ∆y the factor
is large and the experimental uncertainties are magnified. Points are not plotted where the uncertainty surpasses the
maximum size of the balance function.
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FIG. 2. (Color online) Preliminary balance functions from
STAR (green circles) are shown from four pairs of species:
π+π−, K+K−, pp̄ and K−p. The upper curves (red squares)
show the result after applying the approximate acceptance
and efficiency correction described here. Measurements are
for the most central collisions, 0-5%.

FIG. 3. (Color online) The acceptance and efficiency cor-
rected balance funtion, Bαβ(∆y), from model calculations
(red circles) is compared to the corresponding calculations
with the acceptance and efficiency for particle type β being
perfect (blue triangles) and for both particles having per-
fect acceptance (green squares). If the assumptions, upon
which the acceptance and efficiency corrections were based,
are justified, the three calculations would be nearly identical.

Because the form for the acceptance and efficiency corrections was built on what may be a dubious assumption,
they were also applied to model balance functions. In this case, the corrected balance functions can be compared to
those calculated with perfect acceptance to see whether the difference between corrected and perfect balance functions
differ. Figure 3 shows three sets of balance functions Bαβ(∆y), the corrected version as described above, the balance
function where the efficiency for the particle of type β is perfect but where the acceptance and efficiency for α is
given by the filter, and finally a balance function where the acceptance for both types is perfect. Because a balance
function’s denominator divides out the efficiency of the first particle, all three would be identical if the balance function
were truly only a function of ∆y as assumed in the approximation described by Eq. (25). The parameters used in
the model were for the two-surge model, chosen to roughly reproduce the experimental balance functions: σA = 1.0,
σB = 1/3. The susceptibility for the quark gluon plasma was chosen to be

∑
a χab/s = 0.18 and χss/χuu = 0.93, to

be roughly consistent with the lattice calculations in Fig. 1 for temperatures near 300 MeV.
Even without a model the STAR measurements make it clear that describing the separation of balancing charges

with a single scale in relative spatial rapidity cannot describe the data. The four experimental balance functions
for the most central collisions are displayed in Fig. 2. In the absence of acceptance corrections, a one-surge model,
such as Eq. (18) with σA = σB , would give balance functions of equal width if they were calculated as a function
of spatial rapidity. However, given that the mapping to spatial rapidity is thermally smeared to a larger extent for
lighter particles due to their higher thermal velocity, one would expect the following hierarchy of widths, σαβ :

σπ+π− > σK+K− > σpK− > σpp̄. (28)

The STAR data violates this expectation as it appears that

σpp̄ > σK+K− > σπ+π− > σpK− . (29)

The π+π− balance function should be strongly affected by decays. If one were to decay a chemically equilibrated
hadron gas at T = 165 without any further hadronic interactions, nearly half the positive pions would come from
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FIG. 4. (Color online) Balance functions for the one-surge blast-wave model characterized by a width σA = 0.25 (dotted blue
lines), σA = 0.5 (dashed green line) and σA = 1.0 (solid red line) are compared to preliminary STAR results in the left-side
panels. A width of ∼ 1.0 is necessary to explain the K+K− and pp̄ balance functions, but this width overestimates the width
of the π+π− balance functions and fails to approach the K−p balance function. The calculations include decays that occur
below T = 165 and result in a narrow contribution that is similar but smaller than what appears in the measured π+π− balance
function. The right-side panels show results for a two-surge model with σA = 1.0 and σB = 0.4. The two contributions to the
K−p balance function have opposite signs which allows the resulting sum to be narrower than either the pp̄ balance functions.
The strength of the first surge is determined by matching the expected quark susceptibility to entropy ratio as extracted from
lattice contributions.

decays where the π+ is accompanied by a π−. Thus, it should not be surprising that the π+π− balance function has
a relatively narrow component. This could either be considered a third surge, or as an extension of the second surge.
Determining what part of this narrowing is due to decays vs. the rise in the charge susceptibility in the transition
region requires detailed analysis. However, the fact that the K−p balance function is narrower than either the pp̄ or
K+K− balance functions, and even narrower than the π+π− balance functions, seems impossible to describe with a
one-surge model.

IV. COMPARING THE TWO-SURGE MODEL TO PRELIMINARY STAR RESULTS

The left-side panels of Fig. 4 compare calculations using one scale, σA = σB , at three values, σA = 0.25, 0.5 and
1.0. For σA < 1.0 the model predictions provide poor descriptions of the data. For σA = 1.0, the K+K− balance
function is well produced and the pp̄ balance function only differs at smaller relative rapidity. This latter failure could
well be due to the lack of baryon-annihilation in the one-surge picture. The π+π− balance function from the model is
wider than the data, as it seems the model would fit better with the narrowest of the three sample balance functions.
As expected, the K−p balance function cannot be explained with a single scale. As expected, the single-scale model
predicts widths that fall between the widths for the pp̄ and K+K− balance functions. Resonances that decay into
both a proton and kaon are already considered in this calculation.
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FIG. 5. (Color online) The sensitivity of balance functions
to various parameters in the two-surge blast wave model is
shown above. The default calculation (solid red line) as-
sumes the first surge achieved chemical equilibrium accord-
ing to lattice calculations for T ∼ 300 MeV. This would
be a strangeness to up quark ratio, χss/χuu = 0.93, and
a net quark to entropy ratio, (χuu + χdd + χss)/s = 0.18.
In the default calculation the spreads of the two surges are
σA = 1.0, σB = 0.4 units of spatial rapidity. The sensitivity
of the K+K− balance function to changes in the strangeness
content of the first wave is illustrated by comparing to
calculations with χss/χuu = 0.5 (green dashed line) and
χss/χuu = 1.4 (dotted blue line). For pp̄, calculations were
performed for different quark contents, (χuu + χdd + χss) =
0.1 (green dashed line) and (χuu +χdd +χss)/s = 0.25 (blue
dotted line). K−p balance functions results are shown for
varied widths, σB = 0.1 (green dashed line) and σB = 0.7
(blue dotted line).
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FIG. 6. (Color online) Balance functions for the two-surge
model with default parameters (solid black line) are divided
into three components. The first surge (dashed red line)
gives the widest contribution, with the width determined by
σA plus some thermal smearing. The width from the con-
tribution from the second surge (dotted green line) is set by
σB , plus thermal smearing. The third contribution is due to
decays (dot-dashed blue line). The decay contribution pro-
vides nearly half the π+π− balance function, but is much less
important for the other species pairs. The K+K− balance
function is dominated by the first surge. The pp̄ balance
function has contributions from both, with the small nega-
tive contribution from the second surge resulting in a very
flat balance function at small ∆y. The K−p balance function
has contributions of similar strength but opposite sign. This
results in a narrow peak at small ∆y that is much narrower
than either the pp̄ or K+K− balance functions. Further, at
large ∆y the K−p balance function turns slightly negative.

The two-surge model provides a far superior description of the data than a one-surge model. To illustrate the
sensitivity of the predictions to specific parameters, Fig. 5 shows how some of the balance functions react to changes
of the default parameterization (σA = 1, σB = 0.4, (χuu + χdd + χss)/s = 0.18, χss/χuu = 0.93). In the default
parameterization the quark to entropy ratios from the first surge are set to be consistent with lattice calculations.
Changing the ratio of strange to up quarks, χss/χuu, from the first surge significantly affects the K+K− balance
function as seen in Fig. 5. For smaller strangeness in the first surge, the second surge must then pick up the
difference, which gives a larger peak at small ∆y.

Adjusting the net-quark to entropy ratio, (χuu + χdd + χss)/s, of the first surge affects all the balance functions,
especially the pp̄ balance function as shown in the middle panel of Fig. 5. If the quark content of the first surge
is below equilibrium, the second surge would have to compensate for it and the pp̄ balance function would have a
positive narrow contribution, which is not seen in the data.

Of the four balance functions studied here, the K−p balance function is the most sensitive to the separation of scales,
σB/σA, and most strongly illustrates the need for two surges. This derives from the cancellation of the opposite-sign
weights for the A and B contributions in Eq. (18). If σA were to equal σB the balance functions would nearly cancel
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parameter σA σB (χuu + χdd + χss)/s χss/χuu Tkin u⊥ FB λvisc

Min 0.3 0 0.05 0.0 75 0.5 0.6 0.7

Max 1.5 1.0 0.35 1.3 120 0.875 0.8 1.0

TABLE I. (Color online) Eight parameters were simultaneously varied between the Min and Max ranges shown above. The first
four parameters were two spatial rapidity widths, σA and σB , the quark to entropy ratio of the first surge (χuu +χdd +χss)/s,
and the strangeness to up ratio of the first surge χss/χuu. The other four parameters varied the blast wave kinematics: the
kinetic freezeout temperature Tkin, the transverse flow parameter u⊥ defined in Eq. (22), the baryon reduction factor FB
which accounts for baryon annihilation, and λvisc, which accounts for the anisotropic shape of the phase space distribution in
momentum space due to viscous effects.

as can be seen in Fig. 4. As σB/σA → 0, both the narrow positive peak near ∆y = 0, and the broad negative feature
for ∆y ∼ 1 become more pronounced.

The π+π− balance function is the least sensitive to changing model parameters for two reasons. First, the pions
are light and their thermal motion smears any structure in relative rapidity. Second, nearly half the balancing π+π−

pairs come from resonance decays that produce both a positive and negative pion. Figure 6 shows the contribution to
each balance function in the default two-surge calculation from the first and second surges, and from decays below the
chemical freezeout temperature. The π+π− balance function is strongly affected by decays. The decay contribution
is constant in the context of this model, but could easily be sensitive to alterations of the model not considered here.
In particular, this model assumes the chemical yields of various resonances do not change below chemical freezeout,
T = 165 MeV, and kinetic freezeout when the particles are emitted, T = 102 MeV. In a realistic calculation resonances
like the ρ would decay and their products would rescatter before final emission. Their contribution might then move
to lower values of ∆y because the relative momentum of the pions from a ρ0 decay tend to be higher than those
from thermal motion. Of course, the yields themselves might be different. An improved calculation would include the
effects of rescattering and baryon annihilation, better account for the spectral shape of the broader mesons, and more
accurately describe the acceptance and efficiency for which weak decays, e.g. the Ks, are captured by the detector.

Because the strangeness susceptibility is rather flat near the transition region, and because few resonances decay
to K+K−, the K+K− balance function is dominated by the first surge. In both the preliminary STAR data and
in the models, contributions from φ decays have been removed. The K+K− balance function is then an excellent
candidate to determine σA. Due to baryon annihilation near and below chemical freezeout, the baryon susceptibility
drops and the second-surge contribution to the pp̄ balance function is negative. If not for thermal smearing, one would
see a dip in the pp̄ balance function. In reality, much of the annihilation occurs at the very end of the reaction and
involves baryons with small relative momenta. Thus, the negative contribution from baryon annihilation should be
more pronounced than the calculations shown here. The K−p balance function is especially insightful because the two
contributions have similar strengths and opposite signs. For this reason, the resulting peak can be remarkably narrow,
and followed by a shallow negative contribution at larger ∆y. This makes it possible for modest changes in model
parameters to significantly affect the size and shape of the K−p balance function. The negative dip at larger ∆y
requires a large experimental acceptance. Even though STAR has an acceptance of ±0.9 units of pseudo-rapidity, the
acceptance in rapidity for protons and kaons is effectively narrower due to the mapping of rapidity to pseudo-rapidity
for more massive particles. Combined with the small size of the balance functions, STAR’s measurements of the K−p
balance function for ∆y > 1 is difficult.

V. STATISTICAL COMPARISON OF MODEL TO DATA

Figure 5 makes a case that the first surge of particle production is close to what one would expect from chemically
equilibrated matter. However, the study of model responses shown in Fig. 5 is quite incomplete given that model
parameters can be changed in a coordinated fashion. A more rigorous method is to simultaneously vary all model
parameters while comparing to all the data. Here, we present results from not only changing the four model parameters
mentioned before, but four additional parameters. The posterior likelihood is calculated in this 8-dimensional space
by comparing to all four balance functions. This will provide a distribution of likely parameters that not only provides
the most likely point, but provides the full likelihood in the 8-dimensional space by a Markov Chain Monte Carlo
(MCMC) procedure.

Table I lists the parameters varied in this analysis. The first seven parameters were described in Sec. II and the
eighth accounts for the fact that the momentum distribution might not be anisotropic. After generating thermal
particles, the momenta are scaled by a matrix

pi = pi + Λijpj , Λzz = −λ, Λxx = Λyy = λ/2. (30)
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This factor reduces the thermal smearing when mapping the spatial and momentum rapidities and gives narrower
balance functions. However, it does not affect the width of the decay contribution.

Even though the calculation of the balance functions requires only ∼ 10 minutes of CPU time, hundreds of thousands
of points need to be calculated during the MCMC trace. Using the techniques of model emulators in [30], the likelihood
is calculated by interpolating principal components of the data from 1536 full model runs. The full model runs were
performed at points spread throughout the parameter space according to latin hyper-cube sampling. These techniques
are described in [31, 32].

The statistical analysis assumes Gaussian forms for the likelihood,

L ∼ exp

{∑
a

(y(model)
a − y(exp)

a )Σ−1
ab (y

(model)
b − y(exp)

b )/2

}
, (31)

Σab = σ2
aδab,

where the experimental, y
(exp)
a , and model, y

(model)
a (x), are compared relative to the uncertainty σa. The eight

parameters are considered to have uniform prior distributions as listed in Table I. The uncertainties σa encapsulate
not only experimental uncertainties, but any uncertainties one might expect from missing physics in the model. This
can be thought of as a systematic theory error. For a schematic model such used here, assigning uncertainties is ad
hoc, which means the final likelihood distribution is also suspect. However, even with that caveat, the statistical
analysis helps determine what parameters best fit the data and can also assist with understanding which observables
are best constraining specific parameters of interest. For this analysis, each individual point in the balance function
was used, except for the first bin in relative rapidity. This bin carries both experimental difficulties due to two-track
resolution and is strongly affected by femtoscopic correlations, which are ignored by the model. The uncertainty for
each point was defined as

σa =
√

(0.12ya)2 + (0.001)2 (32)

effectively a twelve percent error. This seems rather large, but because neighboring points in a balance function provide
similar information and are similarly susceptible to theoretical approximations, groups of points can be redundant.
For example, if the same quantity is measured four times, a 12 percent error falls to a six percent error. So if each
balance function were divided up into groups of four points, the error would translate into half this uncertainty. The
MCMC method described here was repeated with several forms for the uncertainty. For smaller uncertainties the
likelihoods became more compact, but the position of the maximum likelihood did not change significantly. In addition
to the balance functions, the mean transverse momenta for pions, kaons and protons were treated as observables. The
values were averaged from STAR and PHENIX measurements and a 6 percent uncertainty was assigned. Each balance
function had 17 points, due to the binning being in units of 0.1 in relative rapidity and extending to ∆y < 1.8, with the
first bin being neglected. The four balance functions thus provided 68 observables, adding the three mean transverse
momenta result in 71 observables.

Figure 7 displays projections of the likelihood distribution as taken from the MCMC trace. The eight plots along
the diagonal show one-dimensional projections, while the off-diagonal plots show two-dimensional projections. The
quark content of the first surge is close to expectations from the lattice calculations shown in Fig. 1, but might be 5%
high. Given that entropy production during the collision might be at the ten percent level, the entropy used in the
denominator here might be ten percent higher than the entropy at early times. Thus, it would be not surprising if
the χ/s ratios extracted here would be 10 percent lower than the expected values for lattice calculations. This implies
that the (χuu +χdd +χss)/s ratio may actually be ∼ 15% higher than expectations and that the strangeness content,
may be about 15% lower than such expectations. This variation is at the 1 − σ level in the comparison here, but
because defining the uncertainty was rather arbitrary, stating a discrepancy between an extracted value and a lattice
value is correspondingly arbitrary.

The widths of the two surges are strongly constrained by the analysis. The first surge’s width is close to unity, which
is in line with expectations. The characteristic width of the second surge appears to be just below half the broader
width, σB/σA <∼ 0.5. This differs from the previous analysis of [33], which found a preference for σB/σA <∼ 0.3. This
change is being driven by the inclusion of the K−p balance function. If neglected, there is a preference to fit the π+π−

balance function by lowering σB . Thus, the two balance functions are somewhat at odds with one another, which
suggests that some physics is being poorly described or missing. A possible culprit would be the way in which decays
are treated. If the number of decaying particles is significantly reduced between chemical and kinetic freezeout, the
π+π− balance function, which is strongly affected by decays, might narrow. The balance function with σB/σA ∼ 0.45,
would then be able to better reproduce both balance functions. Additionally, in order to reproduce the narrow π+π−

balance function, the fitting procedure is skewing the choice of the final break up temperature, Tkin, to lower values.
Analyses based mainly on spectra have usually found temperatures in the 90-110 MeV range, whereas this analysis
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FIG. 7. (Color online) One- and two-dimensional projections of the posterior likelihood for the eight-parameter two-surge
blastwave model, as computed using preliminary balance functions from STAR. Red, green and blue lines represent 1−σ, 2−σ
and 3− σ contours. The gray lines show lattice expectations for χss/χuu and (χuu + χdd + χss)/s. The quark content of the
first surge, (χuu + χdd + χss)/s appears about 10 percent higher than the value expected from lattice and the strangeness to
up ratio is about 20% low.

prefers values centered around 80 MeV, with a width of about 10 MeV. Thus, reducing the decay contribution might
not only better reproduce the π+π− balance function, but should also become more consistent with the extracted
breakup temperature.

As a test of the statistical procedure we consider an assortment of balance functions calculated from random points
in parameter space. In the left-side panels of Fig. 8 the parameters are taken randomly from the prior, i.e. they
are random numbers generated between the minimum and maximum values listed in Table I. On the calculations
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FIG. 8. (Color online) The left-side balance functions (a-d) were calculated from 40 parameters randomly taken from the prior,
i.e. they were randomly generated in the regions defined in Table I. The parameters for the right-side balance functions (e-h)
were also randomly generated, but the choices were weighted with the experimental likelihood. This validates the statistical
procedure and serves as a guide for how strictly the definition of uncertainties constrains the fits.

for the right side of Fig. 8 the parameters were taken randomly from the posterior distribution, i.e. weighted by
the likelihood. These points were extracted from taking 40 points far away from one another in the MCMC trace.
Whereas the balance functions on the left-side panels vary widely and often stray far from the data, the balance
functions from experimentally constrained parameters on the right side come close to the data. The π+π− balance
function varies only modestly as parameters are varied throughout the prior, which means it has limited resolving
power, although this could change if the π+π− balance function turns out to be significantly sensitive to missing
or poorly represented physics, e.g. reabsorption of hadronic decays into the medium. In contrast, the other three
balance functions vary widely throughout the prior, as was expected from the studies presented in Fig. 5. These
measurements then have much higher potential to discriminate between different sets of parameters. The reasonably
good model-to-data match validate that the statistical method was effective in identifying the most likely regions of
parameter space.

Given the large numbers of parameters and observables, it can be difficult to understand the degree to which given
measurements contribute to constraining the parameters, or the degree to which a measurement, if changed by one
sigma, would lead to new parameters. In [34] methods were derived to perform sensitivity analyses from the MCMC

trace. One such measure is the quantity, ∂〈〈xi〉〉/∂y(exp)
a keeping all other yb6=a fixed. This addresses the question

of how the average value of a specific parameter xi in the posterior would change if a single observable ya were

altered without repeating the entire MCMC with a new value of y
(exp)
a . In the expression above the double brackets,

〈〈· · · 〉〉, refer to an average from the posterior, and single brackets 〈· · · 〉 denote the average over the prior. Figure 9
shows the values of this partial derivative where the parameters xi are scaled by the widths of their priors so that
〈(x− 〈x〉)2〉 = 1, and the observables ya are scaled by their uncertainties σa. The resulting derivative then describes
how much the parameter would change as a fraction of its prior width when the parameter ya is increased by σa.
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FIG. 9. (Color online) The ratio ∂〈〈xi〉〉/∂y(exp)a is shown for every combination of 71 observables and 8 parameters. This
describes how an extracted value for a parameter, 〈〈x〉〉, would change if a given observable were increased by one sigma
while keeping the other observables fixed. Each of the four balance functions provides 17 observables, corresponding to the 18
rapidity bins with the first bin being ignored. The first 17 observables along the x axis represent the π+π− balance function,
and the other three balance functions are represented by each subsequent group of 17 observables. Additionally, the three mean
transverse momenta for pions, kaons and protons are included as observables. For example, one can see that the extracted
value of χss/χuu would fall/rise if the low momentum bins of the K+K− balance function were raised/lowered. The response
is opposite for bins of higher relative rapidity. One can also see the relatively strong resolving power for the K+K−, pp̄ and
K−p balance functions.

Figure 9 presents a much more detailed set of information than what is shown in Fig. 5.

VI. SUMMARY AND OUTLOOK

Preliminary STAR measurements of charge balance functions for specific species provide strict constraints on any
picture of the chemical evolution of the super-hadronic matter created in heavy ion collisions. In order to fit all four
of the balance functions, the blast-wave model used here had to employ two separate surges of charge production.
Balancing charges from the first surge appear to have separated by approximately one unit of spatial rapidity by the
time the matter reaches chemical freezeout. Charges from the second surge appears to have spread a bit less than
half that amount. It is difficult to determine the physics driving the spread of the first surge. It may mainly be due
to the separation inherent to breaking strings, or equivalently the tunneling of balancing charges in the breaking of a
flux tube. Another possibility is that the spread is largely diffusive. Either way, the charges must be created early if
they are to separate by such a large distance by chemical freezeout.

The strengths of the two surges can also be determined by comparing the two-surge model to data. Remarkably,
the strength of the first surge is consistent with the matter from the first surge approaching chemical equilibrium. A
model run based on assuming perfect equilibrium, followed by an isentropic expansion, reproduces the preliminary
STAR data at the 5% level. A more comprehensive search through eight-dimensional parameter space, including four
parameters that adjust the blast-wave description, show that the best chemistry for fitting the data has susceptibilities
within 20% of those calculated on the lattice. The response of the measurements to the susceptibilities was found to
be strong, and thus should provide good resolving power within the context of any model. Measurements were shown
to be sensitive to both the spread and the strength of the charges.

The preliminary STAR measurements considered here are the first of their kind, and should inspire numerous
additional measurements of different species, measurements as functions of relative azimuthal angle [35, 36] and
transverse momentum, and as a function of the three-dimensional pair momentum. As a general statement, balance
functions are six-dimensional correlations that can be measured between any two species pairs. Every new combination
of species and every more differential binning of the six-dimensional phase space should provide new insights and better
shed light onto the story of the chemical evolution of the reaction. In addition to higher statistics, these goals may
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also require expanding the acceptance of current experiments. Here, we provide a quick list of some measurements
that would help illuminate an assortment issues:

• Measurements of unidentified particles have been made as a function of both the relative and total azimuthal
angle. However, one could consider the relation between the width in azimuthal angle and relative rapidity.
Balancing charges that are created early can be preferentially selected by considering the balance function at
large relative rapidity, and should also have broader balance functions in relative azimuthal angle. This might
help distinguish the physical cause of the separation of early charge pairs, diffusion vs. flux tube breaking.

• The STAR Collaboration’s acceptance for identified particles extends to ±0.9 units of pseudo-rapidity, but
when translated into real rapidity is significantly narrower for heavier particles like kaons and protons. The
ALICE detector at the LHC covers ±0.8 units of pseudo-rapidity. ATLAS and CMS cover much wider regions,
but without particle identification. The long-range correlations should better illuminate the early production
charges. For instance, if a measurable fraction of pairs comes from the initial state, those balancing charges
might be particularly well separated. The greater acceptance would also make it easier to perform the analysis
mentioned in the preceding bullet.

• In order to better understand decays, balance functions can be binned as a function of the invariant mass or
momentum. Contributions from specific decays, e.g. Ks → ππ, can be identified by their peak. Contribution
from broader resonances such as ρ0 → π+π− may be more difficult to see, but nonetheless the comparison
should be able to identify whether the populations of unstable resonances are poorly represented by this, or any
other, model.

• Measurements can be performed as a function of beam energy and centrality [17] and for different choices of
colliding nuclei [13]. The narrowing of the balance function for unidentified particles may be related to the
existence of two surges [8], but that conclusion needs to be investigated in detail alongside the analyses listed
above.

If these measurements are to lead to truly rigorous conclusions, the models must improve beyond the schematic blast
wave model considered here. In order to justify Gaussian forms for the two surges, each surge must be created during
a short time. More realistically, charges are created continuously according to the rate at which χab/s is changing.
The evolution of the charges and the creation of new charge pairs after chemical freezeout is an area that was poorly
modeled here. By the time of kinetic freezeout many of the resonances will already have decayed, with their products
being reabsorbed by the medium. Baryon annihilation, which was implemented here by reducing the baryon yield
at chemical freezeout, in fact occurs mostly later. The corresponding dip should then be more concentrated at low
relative momentum, a feature that is indeed seen in the data. These improvements cannot be naturally added to a
schematic blast wave model, but they can be accounted for in microscopic simulations. Such calculations are entirely
tractable and are being performed currently by this group. Once the models can encapsulate all the important physics,
statistical analyses like those presented here can lead to much more convincing and rigorous conclusions.
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