This is the accepted manuscript made available via CHORUS. The article has been published as:

Collective excitations of $\wedge\{96\}$ Ru by means of $\left(p, p^{\wedge}\left\{{ }^{\prime}\right\} \gamma\right)$ experiments

A. Hennig, T. Ahn, V. Anagnostatou, A. Blazhev, N. Cooper, V. Derya, M. Elvers, J. Endres, P. Goddard, A. Heinz, R. O. Hughes, G. Ilie, M. N. Mineva, P. Petkov, S. G. Pickstone, N.

Pietralla, D. Radeck, T. J. Ross, D. Savran, M. Spieker, V. Werner, and A. Zilges
Phys. Rev. C 92, 064317 - Published 21 December 2015
DOI: 10.1103/PhysRevC.92.064317

Study of collective excitations of ${ }^{96} \mathrm{Ru}$ by means of ($\mathbf{p}, \mathrm{p}^{\prime} \gamma$) experiments

A. Hennig, ${ }^{1, *}$ T. Ahn, ${ }^{2, \dagger}$ V. Anagnostatou, ${ }^{2,3}$ A. Blazhev, ${ }^{1}$ N. Cooper, ${ }^{2}$ V. Derya, ${ }^{1}$ M. Elvers, ${ }^{1,2}$ J. Endres, ${ }^{1}$ P. Goddard, ${ }^{2,3}$ A. Heinz, ${ }^{2,4}$ R. O. Hughes, ${ }^{2,5}$ G. Ilie,,2,6 M. N. Mineva, ${ }^{7,8}$ P. Petkov, ${ }^{1,6,7}$ S. G. Pickstone, ${ }^{1}$ N. Pietralla, ${ }^{9,10}$ D. Radeck, ${ }^{1,2}$ T. J. Ross, ${ }^{3,5}$ D. Savran, ${ }^{11,12}$ M. Spieker, ${ }^{1}$ V. Werner, ${ }^{2,9}$ and A. Zilges ${ }^{1}$
${ }^{1}$ Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
${ }^{2}$ Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA
${ }^{3}$ Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
${ }^{4}$ Fundamental Fysik, Chalmers Tekniska Högskola, SE-41296 Göteborg, Sweden
${ }^{5}$ University of Richmond, Richmond, Virginia 23173, USA
${ }^{6}$ National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, RO-77125, Romania
${ }^{7}$ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
${ }^{8}$ Faculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria
${ }^{9}$ Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
${ }^{10}$ GSI Helmholtzzentrum, D-64291, Darmstadt, Germany
${ }^{11}$ ExtreMe Matter Institute EMMI and Research Division, GSI, D-64291 Darmstadt, Germany
${ }^{12}$ Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt a.M., Germany

Background: One-phonon mixed-symmetry quadrupole excitations are a well-known feature of near-spherical, vibrational nuclei. Their interpretation as a fundamental building block of vibrational structures is supported by the identification of multi-phonon states resulting from a coupling of fullysymmetric and mixed-symmetric quadrupole phonons. In addition, the observation of strong M1 transitions between low-lying 3^{-}and 4^{+}states has been interpreted as an evidence for one-phonon mixed-symmetry excitations of octupole and hexadecapole character.
Purpose: The aim of the present study is to identify collective one- and two-phonon excitations in the heaviest stable $N=52$ isotone ${ }^{96} \mathrm{Ru}$ based on a measurement of absolute $M 1, E 1$, and $E 2$ transition strengths.
Methods: Inelastic proton-scattering experiments have been performed at the Wright Nuclear Structure Laboratory (WNSL), Yale University, and the Institute for Nuclear Physics (IKP), University of Cologne. From the acquired proton- γ and $\gamma \gamma$ coincidence data we deduced spins of excited states, γ-decay branching ratios, and multipole mixing ratios, as well as lifetimes of excited states via the Doppler-shift attenuation method (DSAM).
Results: Based on the new experimental data on absolute transition strengths, we identified the 2^{+}and 3^{+}members of the two-phonon mixed-symmetry quintuplet $\left(2_{1, \mathrm{~ms}}^{+} \otimes 2_{1, \mathrm{~s}}^{+}\right)$. Furthermore, we observed strong $M 1$ transitions between low-lying 3^{-}and 4^{+}states suggesting one-phonon symmetric and mixed-symmetric octupole and hexadecapole components in their wave functions, respectively. The experimental results are compared to $s d g$-IBM- 2 and shell-model calculations.
Conclusions: Both, the $s d g$-IBM-2 and the shell-model calculations, are able to describe key features of mixed-symmetry excitations of ${ }^{96} \mathrm{Ru}$. Moreover, they support the one-phonon mixedsymmetry hexadecapole assignment of the experimental 4_{2}^{+}state.

I. INTRODUCTION

Protons and neutrons are the building blocks of atomic nuclei. Because of the two-component character the isospin degree of freedom has to be considered for their description. This features excitation modes that are symmetric or anti-symmetric under pairwise exchange of protons and neutrons and are denoted as fully-symmetric and mixed-symmetric states, respectively [1-3]. Mixedsymmetry states are naturally predicted in the framework of the $s d$ proton-neutron version of the Interacting Boson Model ($s d$-IBM-2) [4-7]. The model accounts for the pairing force by coupling like valence nucleons to pairs

[^0]with $L=0$ and $L=2$, treated as bosons, i.e., s and d bosons. In the IBM-2, the proton-neutron symmetry of the wave functions of excited states can be obtained from the F-spin quantum number $[5,6]$, which is the bosonic analog of isospin for fermions: states with maximum F-spin quantum number $F=F_{\max }$ are unchanged under pairwise exchange of proton and neutron bosons and are therefore referred to as fully-symmetric states, while states with non-maximum F-spin quantum number are denoted as mixed-symmetry states. Besides the description in the IBM-2 framework, the properties of mixed-symmetry states have successfully been obtained from shell-model and quasiparticle-phonon model (QPM) calculations, see, e.g., Refs. [8, 9].

Experimentally, mixed-symmetry quadrupole states can be identified by their specific $E 2$ and $M 1$ decay properties [10]:

1. Strong M1 transitions with matrix elements in the
order of $1 \mu_{\mathrm{N}}^{2}$ to their symmetric counterparts.
2. Weakly collective $E 2$ transitions to symmetric states reducing the phonon number by one. The corresponding $B(E 2)$ values are in the order of a few W.u. or less.
3. Collective $E 2$ transitions among mixed-symmetry states with $B(E 2)$ values comparable to that of the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition.

Based on these experimental signatures, extensive studies of mixed-symmetry states have been performed in the $A \approx 100$ mass region and, in particular, on the nucleus ${ }^{94} \mathrm{Mo}$ [11-14], which is up to now the prime example for low-lying mixed-symmetry structures. Moreover, states with mixed-symmetry character are also found in the other stable $N=52$ nuclei ${ }^{92} \mathrm{Zr}[15,16],{ }^{93} \mathrm{Nb}$ [17], and ${ }^{96} \mathrm{Ru}[18-20]$, as well as in the vicinity of the $Z=28,50$ and $N=28,82$ shell closures, see, e.g., Refs. [10, 21] for a review.

The interpretation of the mixed-symmetry quadrupole phonon as a fundamental building block of vibrational structures in atomic nuclei becomes particularly evident in the Q-phonon scheme [22-24], which provides an intuitive and semi-quantitative picture of mixed-symmetry states. In this formalism, the lowest-lying symmetric and mixed-symmetric states, labeled in the following as $2_{1, \mathrm{~s}}^{+}$ and $2_{1, \mathrm{~ms}}^{+}$, respectively, can be described in terms of Q phonon excitations of the correlated ground state. In particular, the combination of a symmetric and a mixedsymmetry Q-phonon excitation results in a quintuplet of mixed-symmetry states with spin and parity quantum numbers $J=0^{+}, 1^{+}, 2^{+}, 3^{+}$, and $4^{+}[1,12,13]$.

In addition to the quadrupole case, mixed-symmetry states of octupole and hexadecapole character have been proposed recently $[25,26]$. The assignment is based on the experimental observation of strong $M 1$ transitions with $B(M 1)$ values in the order of $1 \mu_{\mathrm{N}}^{2}$ connecting low-lying 3^{-}and 4^{+}states, respectively. Candidates for mixed-symmetry octupole excitations have been proposed for several vibrational nuclei in the $A \approx 100$ mass region, among others also for the $N=52$ isotones ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$. This excitation mode was predicted in $s d f$ -IBM-2 calculations [27], suggesting strong $E 1$ transitions to the symmetric one-phonon quadrupole excitation as an additional signature along with the $M 1$ fingerprint. First evidences for enhanced F-vector $E 1$ transitions have been observed indeed in a few selected cases [28].

Similarly, one-phonon mixed-symmetry hexadecapole excitations were described by taking into account the hexadecapole degree of freedom in IBM-2 calculations, i.e, in the scope of $s d g$-IBM-2 calculations for ${ }^{94} \mathrm{Mo}$ [26]. In a recent paper, we adopted this approach for the description of the exceptionally large $M 1$ strength of the $4_{2}^{+} \rightarrow 4_{1}^{+}$transition in ${ }^{96} \mathrm{Ru}$ [29]. It is the purpose of this paper to provide more comprehensive information on the recently performed experiments on ${ }^{96} \mathrm{Ru}$ and their results, focusing on the identification of the 2^{+}and
3^{+}members of the two-phonon mixed-symmetry quintuplet as well as on symmetric quadrupole-octupole coupled states. Moreover, we present shell-model calculations aiming for the description of the strong $4_{2}^{+} \rightarrow 4_{1}^{+}$ M1 transition in ${ }^{96} \mathrm{Ru}$ within a microscopic model and to compare the results with those from an algebraic approach in the $s d g$-IBM-2 framework.

Sec. II describes the experimental details, while the results and their discussion are presented in Secs. III and IV. Results of the $s d g$-IBM- 2 calculations are shown in Sec. V, focusing on two-phonon mixed-symmetry states that have not been discussed in our previous article [29]. The shell-model calculations and a comparison of the experimental data to the neighboring $N=52$ nuclei ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$ are presented in Secs. VI and VII, respectively.

II. EXPERIMENTAL DETAILS

Two inelastic proton-scattering experiments were performed to extract comprehensive spectroscopic information on excited low-spin states of ${ }^{96} \mathrm{Ru}$. The experiment at the Wright Nuclear Structure Laboratory (WNSL), Yale University, USA, was performed to extract spins of excited states as well as branching ratios and multipole mixing ratios of de-exciting γ-ray transitions. To extract nuclear level lifetimes an additional proton-scattering experiment was performed at the Institute for Nuclear Physics (IKP), University of Cologne, Germany. Both experiments are described in the following.

A. The ${ }^{96} \mathrm{Ru}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right)$ experiment at WNSL, Yale

An 8.4 MeV proton beam, provided by the ESTU Tandem accelerator impinged on a $106 \mu \mathrm{~g} / \mathrm{cm}^{2}$ isotopically enriched ${ }^{96} \mathrm{Ru}$ target supported by a ${ }^{12} \mathrm{C}$ backing with a thickness of $14 \mu \mathrm{~g} / \mathrm{cm}^{2}$. Data were acquired for 134 hours at an average beam current of 50 nA .

De-exciting γ-rays were detected with eight BGOshielded Clover-type HPGe detectors of the YRAST ball spectrometer [30] positioned at $45^{\circ}(2 \times), 90^{\circ}(5 \times)$, and $135^{\circ}(1 \times)$ with respect to the beam axis. The energy of the scattered protons was measured with five silicon detectors mounted inside the target chamber at angles of $135^{\circ}, 133^{\circ}, 131^{\circ}, 119^{\circ}$, and 90° with respect to the beam axis. In an off-beam calibration, an energy resolution of 70 keV was obtained for the particle detectors. Because of the energy straggling of the protons in the target material and kinematic effects, the energy resolution degraded to 146 keV for the in-beam particle spectra. For the data acquisition, four triggers were implemented, namely p γ and $\gamma \gamma$ coincidences as well as downscaled single- γ and single-proton events. Further details of the experimental setup can be found in Ref. [31]. The listmode data were processed using the sorting code cscan. Randomly coincident events were eliminated by subtracting peak and background matrices that were obtained by gating

FIG. 1. (a) Proton γ coincidence matrix obtained in the ${ }^{96} \mathrm{Ru}$ experiment at WNSL, Yale. Transitions stemming from ${ }^{96} \mathrm{Ru}$ are visible as thin horizontal lines due to the better energy resolution of the HPGe detectors compared to the silicon particle detectors. (b) The summed HPGe singles spectrum is already dominated by transitions of ${ }^{96} \mathrm{Ru}$, marked with asterisks. (c) By applying a proton gate on the excitation energy of the 4_{2}^{+}state of ${ }^{96} \mathrm{Ru}$ at $E_{x}=2462$ keV the peak-to-background ratio is significantly improved. (d) The proton singles spectrum is dominated by elastically scattered protons and reactions in the backing material. (e) By applying a γ gate on the $4_{2}^{+} \rightarrow 4_{1}^{+}$transition at $E_{\gamma}=944 \mathrm{keV}$ reveals peaks in the excitation spectrum corresponding to the excitation of the 4_{2}^{+}level as well as states feeding the 4_{2}^{+}state.
on the prompt peak and random background events in the acquired time-difference spectra. An excerpt of the acquired proton- γ coincidence matrix is shown in Fig. 1 (a). Transitions appear as thin horizontal lines due to the worse energy resolution in the particle spectra compared to the γ-ray spectra.

From the energies of the scattered protons the excitation energies E_{x} of the residual ${ }^{96} \mathrm{Ru}$ nuclei were extracted. By applying gating conditions on the excitation energy of a particular excited state γ-ray spectra were generated that contain its de-exciting transitions as well as their subsequent γ decays. This allows to easily construct the level scheme of ${ }^{96} \mathrm{Ru}$. The additionally acquired $\gamma \gamma$ coincidence data were used to resolve remaining ambiguities. Furthermore, γ-decay branching ratios were extracted with high sensitivity because of the increased peak-to-background ratio compared to, e.g., the γ-ray singles spectra and thus, even weak transitions could be resolved from the background. However, the γ-ray intensity detected in the HPGe detectors depends on the angular distribution of the emitted γ-rays and thus on their multipolarity. Since for several transitions the multipole mixing ratio of the transitions, and in some cases even the spins of the involved states, are not known a systematic error of 10% was assigned in addition to the statistical error for the γ-decay branching ratios.

From the $\gamma \gamma$ coincidence data acquired in the experiment spin quantum numbers J of excited states as well as multipole mixing ratios δ of γ-ray transitions were extracted by means of the $\gamma \gamma$ angular correlation analysis, described in detail in, e.g., Ref. [32]. The $\gamma \gamma$ coincidence data were sorted into twelve groups that are characterized by the angles θ_{1}, θ_{2}, and $\Phi . \theta_{1}$ and θ_{2} denote the angles of the two active HPGe detectors with

FIG. 2. Results of the $\gamma \gamma$ angular correlation analysis for the $1518 \mathrm{keV} \rightarrow 832 \mathrm{keV} \rightarrow$ g.s. (a), the $2283 \mathrm{keV} \rightarrow 832 \mathrm{keV} \rightarrow$ g.s. (b), the $2462 \mathrm{keV} \rightarrow 1518 \mathrm{keV} \rightarrow 832 \mathrm{keV}$ (c), and the $3077 \mathrm{keV} \rightarrow 1818 \mathrm{keV} \rightarrow 832 \mathrm{keV}$ cascades (d). The obtained multipole mixing ratios δ_{1} of the first transitions are quoted in the captions. A dominant M1 character is obtained for the $2462 \mathrm{keV} \rightarrow 1518 \mathrm{keV}$ (c) and $3077 \mathrm{keV} \rightarrow 1818 \mathrm{keV}$ (d) transitions. In contrast, an assumed pure $E 2$ character cannot describe the experimental data for those transitions.
respect to the beam axis and Φ is the angle between the planes spanned by the beam axis and the directions of γ-ray emission. For a cascade of two coincident γ rays with energies $E_{\gamma_{1}}$ and $E_{\gamma_{2}}$ and respective multipole mixing ratios δ_{1} and δ_{2} connecting successively states with spins J_{1}, J_{2}, and J_{3}, information on δ_{1} and J_{1} can be obtained by fitting the parameters of the angular cor-
relation function $W\left(\theta_{1}, \theta_{2}, \Phi, J_{1}, J_{2}, J_{3}, \delta_{1}, \delta_{2}, \mu\right)$ to the efficiency-corrected coincidence intensity of the two γ rays. Here, μ denotes the width of the initial magnetic sub-state distribution and is treated as a free parameter. For the fits, the program RCorleone was used which explicitly takes the finite solid angles of the HPGe detectors into account. Sample fits to extract J_{1} and δ_{1} for several $\gamma \gamma$ cascades are shown in Fig. 2.

B. The ${ }^{96} \mathrm{Ru}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right)$ experiment at IKP, Cologne

To extract the lifetimes of excited states in the subpicosecond regime, the Doppler-shift attenuation method (DSAM) $[33,34]$ is usually the method of choice. However, no lifetimes could be extracted from the experiment at WNSL since the energy-bin width of 1 keV in the γ-ray spectra acquired with the 4 k analog-to-digital converters (ADCs) did not allow for an extraction of Dopplershifts in the sub-keV regime. Therefore, a second protonscattering experiment was performed at the Institute for Nuclear Physics at the University of Cologne, Germany, aimed at lifetime measurements.

The same target used for the previous experiment was bombarded with a 7.0 MeV proton beam, provided by the 10 MV FN Tandem accelerator. γ-rays were detected using the HORUS γ-ray spectrometer, equipped with 12 single-crystal and two Clover-type HPGe detectors positioned at angles of $35^{\circ}(2 \times), 45^{\circ}(2 \times), 90^{\circ}(6 \times), 135^{\circ}$ $(2 \times)$, and $145^{\circ}(2 \times)$ with respect to the beam axis. Four of the single-crystal and the two Clover-type detectors were equipped with BGO shields for an active Compton suppression. As in the experiment at WNSL, the scattered protons were detected in coincidence with the γ-rays by six Passivated Implanted Planar Silicon (PIPS) detectors of the SONIC array [35]. The energy resolution of 15 keV achieved with calibration sources degraded to 70 keV in the in-beam proton spectra. The preamplifier signals of the detectors were processed with eight DGF4C Rev. F modules [36], extracting the energy and time information of the signals by means of digital pulse processing techniques. The DGF-4C modules provide pulseheight spectra with 2^{15} channels which translates into a bin width of 0.12 keV . The small bin width as well as a careful energy calibration of the HPGe detectors were mandatory to extract centroid shifts in the sub-keV regime. To ensure the latter, a ${ }^{56} \mathrm{Co}$ source was mounted on the target ladder throughout the entire experiment, allowing for a run-by-run energy calibration. Data were acquired with a trigger on events with multiplicity two or higher. Randomly coincident events were eliminated in the same way as described in Sec. II A.

The centroid shift version of the Doppler-shift attenuation method utilizes the angular dependence of the energy centroid of the detected γ-ray peaks given by

$$
\begin{equation*}
E_{\gamma}(\Theta)=E_{\gamma}^{0}\left(1+F(\tau) \frac{v_{0}}{c} \cos \Theta\right) \tag{1}
\end{equation*}
$$

FIG. 3. Centroid shift of the γ-ray peaks obtained for the $2_{3}^{+} \rightarrow 2_{1}^{+}$transition (a), the $4_{2}^{+} \rightarrow 4_{1}^{+}$transition (b), the $3 \rightarrow 2_{1}^{+}$transition with the $J=3$ state at $E_{x}=2851 \mathrm{keV}$ (c), and the $2_{5}^{+} \rightarrow 2_{2}^{+}$transition (d) as a function of $\cos \Theta$. The linear trend giving the Doppler-shift attenuation factor is evident.
where E_{γ}^{0} is the energy of the unshifted γ-ray, $F(\tau)$ the Doppler-shift attenuation factor, v_{0} the initial recoil velocity, and Θ the angle between the initial direction of motion of the recoil nucleus and the direction of γ-ray emission [33]. As discussed in Refs. [37-39], the coincident detection of scattered protons and de-exciting γ rays has several advantages. In particular, the lifetimes extracted from γ-ray spectra that were gated on the excitation energy of the level of interest are not affected by feeding contributions.

To extract an experimental value for the Doppler-shift attenuation factor $F(\tau)$, the $\mathrm{p} \gamma$ coincidence data were sorted into eleven groups, characterized by different values of Θ. For several transitions, Fig. 3 shows the peak centroids obtained for each group as a function of the $\cos \Theta$ value characterizing the group for several transitions. The value for $F(\tau)$ is obtained from a linear fit according to Eq. (1). Detailed information on the method of lifetime determination via the ($\mathrm{p}, \mathrm{p}^{\prime} \gamma$) reaction and the $\mathrm{p} \gamma$-coincidence technique have been published in a dedicated article [39].

The slowing-down process of recoiling ${ }^{96} \mathrm{Ru}$ nuclei in the target $\left({ }^{96} \mathrm{Ru}\right)$ and stopper $\left({ }^{12} \mathrm{C}\right)$ materials was modeled by means of the Monte-Carlo simulation code DSTOP96 [40] which is based on the code DESASTOP [41, 42]. The electron stopping powers were obtained from the tables of Northcliffe and Schilling (NS) [43] and corrected for atomic electron structure effects following the approach of Ziegler and Chu [44, 45]. The nuclear stopping was treated according to the theory of Lindhard, Scharff, and Schiøtt theory (LSS theory) [46] using a Thomas-Fermi screened Coulomb potential describing the interaction between the incident ion and the medium atoms in the form given in [47]. Finally, using the velocity profiles at different times during the deceleration as generated by the Monte-Carlo simulation, theoretical values for the Doppler-shift attenuation factor $F(\tau)$ as a
function of the lifetime were obtained to allow the derivation of the latter by comparison with the experimental value.

For the simulation of the slowing-down process the compositions and thicknesses of the target and stopper materials have to be known precisely. This was achieved by analyzing the target by means of an additional Rutherford Backscattering Spectrometry (RBS) measurement at the RUBION Dynamitron-tandem accelerator laboratory at the Ruhr Universität Bochum, Germany, performed in the scope of this work.

In total, lifetimes of 30 excited states were determined. For those states where a previously measured lifetime value was available in literature our new value is in remarkably good agreement [39]. For several states it was possible to analyze more than one depopulating transition. This results in two or even three independent life-
time values that are consistent within the experimental uncertainties.

III. RESULTS

The combined data of both experiments provide comprehensive spectroscopic information on low-spin states of the nucleus ${ }^{96} \mathrm{Ru}$. They are compiled in Tab. I. The experimental level scheme obtained in this work is found to be in good agreement with the results of previous experiments [18, 19, 48, 49]. Moreover, 45 new transitions and 10 new excited states were added to the level scheme. In the following we briefly discuss the experimental results for several excited states that are either of particular interest for the discussion in Sec. IV or of those, whose experimental observables are in conflict with previous experiments.

TABLE I: Levels in ${ }^{96} \mathrm{Ru}$ obtained from the experiments at WNSL and at IKP Cologne. Levels, transitions, lifetimes, and multipole mixing ratios marked with * were determined for the first time. The quoted lifetime values are obtained in this work unless specified differently. Newly assigned or revised spin and parity quantum numbers are labeled with ${ }^{\dagger}$. Otherwise, they are adopted from NNDC data sheets [50]. For the excitation energies E_{x} and the γ-ray energies E_{γ}, a systematic error of 0.1 keV and the standard deviation are taken into account.

$\overline{E_{x}[\mathrm{keV}]}$	$J_{i}{ }^{\text {r }}$	J_{f}^{π}	$E_{\gamma}[\mathrm{keV}]$	$I_{\gamma}[\%]$	$\delta\left(J_{i}^{\pi} \rightarrow J_{f}^{\pi}\right)$	$F(\tau)$	τ [fs]
832.5(1)	2^{+}	0^{+}	832.5(1)	100			$4.2(3) \cdot 10^{3}{ }^{\text {a }}$
1518.2(2)	4^{+}	2^{+}	685.3(1)	100			$9.95(13) \cdot 10^{3}$ a
1930.9(2)	2^{+}	2^{+}	1098.4(1)	100	-1.1(2)	0.177(10)	$395{ }_{-43}^{+47}$
2148.5(2)	0^{+}	2^{+}	1315.9(1)	100		0.112(8)	$678{ }_{-87}^{+90}$
2149.2(2)	6^{+}	4^{+}	631.4(1)	100			
2283.3(2)	2^{+}	0^{+}	2283.3(1)	7.2(9)		0.74(3)	23(2)
		2^{+}	1450.9(1)	100(11)	0.01(5)	0.779(10)	
		2^{+}	352.3(1)*	0.36(10)			
2462.3(2)	$4^{+\dagger}$	2^{+}	1629.7(1)*	4.2(8)			72(5)
		4^{+}	944.1(1)	100(11)	$-0.19(10)^{*}$	0.516(12)	
2524.4(6)	$3^{+}, 4^{+}$	2^{+}	1692.3(1)	100(15)			100_{-10}^{+9} *
		4^{+}	1005.4(1)	29(4)		0.434(17)	
		2^{+}	593.7(2)	0.8(4)			
2528.0(2)	$1^{+}, 2^{+}$	0^{+}	2527.8(1)	26(3)		0.494(18)	79(8)*
		2^{+}	1695.6(1)	100(12)			
		2^{+}	597.1(2)*	$1.4(3)$			
2575.7(4)	$\left(2^{+}\right)$	0^{+}	2575.7(1)	77(11)		0.396(9)	119_{-8}^{+7} *
		2^{+}	1742.8(2)	100(17)	$-0.09(11)^{*}$		
		2^{+}	645.2(2)*	12(2)			
2578.5(5)	$1^{+}, 2^{+}, 3^{+}$	2^{+}	1745.6(2)	100(15)			
		2^{+}	648.0(2)	49(7)	$2.0_{-5}^{+6 \mathrm{~b}}$		
2588.6(2)	5^{-}	4^{+}	1070.2(1)	100	-0.01(4)	0.017(8)	$>4000^{\text {c }}$
2650.0(2)	$3^{(-)}$	2^{+}	1817.4(1)	100(12)	0.02(4)*	0.131(4)	$544{ }_{-41}^{+45}{ }^{*}$
		4^{+}	1131.6(1)	33(4)			
		2^{+}	719.0(1)	2.5(5)			
		2^{+}	366.7(2)	7.7(10)			
2699.7(2)	$4^{+\dagger}$	2^{+}	1867.0(2)*	$3.5(9)$			
		4^{+}	1181.5(1)	7.4(16)			
		4	237.7(2)	100(11)			
		$3^{+}, 4^{+}$	175(2)	- ${ }^{\text {d }}$			
		$5{ }^{-}$	111(2)	- ${ }^{\text {d }}$			
2739.7(5)	2^{+}	0^{+}	2739.5(1)*	1.9(3)			$444(37)^{*}$
		2^{+}	1906.8(1)	33(4)	3_{-1}^{+4} *	0.163(9)	
		2^{+}	808.4(1)	100(11)	-0.01(9)*	0.142(9)	

continued on next page

$\overline{E_{x}[\mathrm{keV}]}$	J_{i}^{π}	J_{f}^{π}	$E_{\gamma}[\mathrm{keV}]$	I_{γ} [\%]	$\delta\left(J_{i}^{\pi} \rightarrow J_{f}^{\pi}\right)$	$F(\tau)$	τ [fs]
		0^{+}	591.4(2)	0.9(3)			
		2^{+}	456.2(2)	5.2(7)	$-0.20(17)^{*}$		
		$1^{+}, 2^{+}$	211.8(2)*	2.7(4)			
2760.1(2)	$4^{+}, 5$	4^{+}	1241.8(1)	100		0.74(3)	27(5)*
2794.0(4)	5, 6	4^{+}	1275.5(2)	46(11)			
		6^{+}	644.2(2)	100(19)			
2851.4(2)	3^{\dagger}	2^{+}	2018.8(1)	100(11)	0.04(5)*	0.120(5)	$596{ }_{-51}^{+55}$ *
		4^{+}	1333.3(1)	26(3)			
		2^{+}	920.4(1)	10.0(13)			
		2^{+}	568.2(2)	6.4(9)			
2891.0(2)	6^{+}	6^{+}	741.8(1)	100			$\begin{aligned} & <300^{\mathrm{e}} \\ & 432_{-46}^{+48} \end{aligned}$
2897.6(3)	3^{+}	2^{+}	2064.9(1)	27(3)		0.17(2)	$432_{-46}^{+48} *$
		4^{+}	1379.4(1)	38(5)			
		2^{+}	966.3(1)	100(11)	0.07(4)*	0.147(11)	
		2^{+}	614.3(2)	$6.5(12)$			
		4^{+}	435.8(2)	11.5(16)			
		$\left(2^{+}\right)$	322.1(2)*	2.4(6)			
$\begin{aligned} & 2987.8(2) \\ & 2996.1(2) \end{aligned}$	$\begin{aligned} & 0^{+\dagger} \\ & 3^{+}, 4^{+} \end{aligned}$	2^{+}	2155.3(1)	100$100(13)$		$\begin{aligned} & 0.494(77) \\ & 0.28(2) \end{aligned}$	$77(7)^{*}$ $205-31$
2996.1(2)	$3^{+}, 4^{+}$	2^{+}	2163.4(1)			$0.28(2)$	$205-30$ *
		4^{+}	1478.1(1)	$100(13)$ $19(3)$			
		$3^{+}, 4^{+}$	471.6(2)	18(3)			
3055.0(2)*	$2^{+}, 3,4^{+}$	2^{+}	2222.4(2)*	$\begin{aligned} & 54(7) \\ & 100(12) \end{aligned}$		0.30(3)	181_{-30}^{+29} *
		4^{+}	1536.9(2)*				
		2^{+}	1124.1(1)*	74(9)			
3059.9(4)	$4^{+\dagger}$	2^{+}	2227.0(2)	12.5(18)			
		2^{+}	1128.9(1)	100(11)	$-0.00(15)^{*}$		
		6^{+}	911.0(2)*	1.7(5)			
		2^{+}	$776.2(1)^{*}$	25(3)	0.4(3)*		
		$3^{(-)}$	410.4(2)	7.5(11)			
3072.8(2)	4^{\dagger}	$3^{(-)}$	422.7(2)*	63(8)	0.00(7)*		
		5^{-}	484.3(2)	100(12)			
3075.8(5)	$3^{(-)}$	2^{+}	2243.3(1)	$6.8(11)$			$0.73(12) \cdot 10^{3} *$
		4^{+}	1556.9(2)	45(5)		0.099(11)	
		2^{+}	1144.8(1)	100(11)			
		2^{+}	792.3(1)*	26(3)			
			615.0(2)	4.2(10)			
		$3^{(-)}$	426.2(2)	$34(4)$	$-0.2(3)^{*}$		
		$4^{+}, 5^{+}$	376.7(2)*	$14.9(19)$			
3089.7(2)	2^{+}	0^{+}	3089.8(2)	$3.4(6)$		0.695(17)	$32(3)^{*}$
		2^{+}	2257.0(1)	100(11)	$-0.6(2)^{*}$		
		2^{+}	1158.8(2)*	4.8(8)			
3154.3(2)	$1^{(+)}$	0^{+}	3154.1(1)	100(12)		0.89(2)	9(2)
		2^{+}	2322.0(2)	4.6(8)			
		2^{+}	1223.4(2)	12.0(17)			
3166.5(2)	$(5,6)$	4^{+}	1648.3(1)	100			
3208.1(3)	2,6	2^{+}	2375.5(1)	100(13)		0.87(5)	$11(4)^{*}$
		4^{+}	1690.2(1)	95(25)		0.78(4)	
		2^{+}	1277.0(1)*	47(7)		0.82(9)	
3231.8(2)	$\left(2^{+}\right)^{\dagger}$	0^{+}	$3231.9(2)^{*}$	12.7(18)			$39(5)^{*}$
		2^{+}	2399.3(2)*	13.5(19)			
		2^{+}	1300.8(1)	100(12)	$0.1(2)^{*}$	0.39(2)	
3261.5(8)	2^{+}	0^{+}	3262.3(2)	45(6)			48(11)*
		2^{+}	2428.1(1)	100(12)	$-0.06(12)^{*}$	0.65(3)	
		2^{+}	1331.7(1)	87(15)			
3282.4(2)	1	0^{+}	3282.2(1)	100(12)		0.66(3)	37(6)
		2^{+}	2450.0(2)*	42(6)			
		0^{+}	1133.8(2)*	9.4(17)			
3291.5(5)	4^{+}	2^{+}	2458.6(1)	100(17)		0.43(7)	100(29)*
		4^{+}	1773.8(2)	38(8)			

continued on next page

${ }^{3}$ Adopted from [51]
${ }^{\mathrm{b}}$ Adopted from NNDC database
${ }^{\text {c }}$ Adopted from [49]
${ }^{\text {d }}$ No reliable photopeak efficiency has been obtained for $E_{\gamma}<200 \mathrm{keV}$
${ }^{\mathrm{e}}$ Adopted from [19]
${ }^{\mathrm{f}}$ Adopted from [20]

1931 keV level. A γ-decay of this level to the ground state was reported in [19] which is not confirmed from our present data. From the present experiment, an upper limit for the γ-decay branching ratio of 0.5% was extracted for the ground-state transition, which is considerably smaller compared to the previously reported value of $6(1) \%$ [19]. The new measured level lifetime of $395_{-43}^{+47} \mathrm{fs}$ is smaller compared to the value reported in a previous measurement [49], but agrees within the experimental uncertainties. The error of the lifetime value is reduced by a factor of four. The obtained multipole mixing ratio of $\delta=-1.1(2)$ is in agreement with a previous measurement [19].

2283 keV level. The 2_{3}^{+}state at 2283 keV has been previously identified as the one phonon quadrupole mixedsymmetry state $2_{1, \mathrm{~ms}}^{+}$based on the measurement of absolute $M 1$ and $E 2$ transition strengths [18]. The multipole mixing ratio for the γ-decay to the 2_{1}^{+}state of $\delta=0.01$ (5) extracted in this experiment (see Fig. 2 (b)) is smaller than the value of $\delta=0.12(3)$ quoted in Ref. [19], however, agrees with the value of $\delta=0.03(10)$ reported in Ref. [48]. In any case, all measurements agree in a dominant $M 1$ character of the $2_{3}^{+} \rightarrow 2_{1}^{+}$transition. In our
previous article [29] a lifetime value of $\tau=25(3)$ fs was used to calculate the transition strengths quoted therein. Because of an improved error analysis, we slightly revise the value to $\tau=23(2) \mathrm{fs}$. The level lifetime is in excellent agreement with a previously measured value of $\tau=22(7)$ fs [18]. A new γ-decay branching to the 2_{2}^{+} state at 1931 keV has been observed in this work. The low γ-ray energy of 352 keV suggests a dominant $M 1$ character for this transition.

2462 keV level. Based on the observation of a new γ-ray transition from this $J=4$ level to the 2_{1}^{+}state a positive parity was assigned. The lifetime value of $\tau=72(5)$ fs (see Fig. 3 c)) obtained in this measurement is about a factor of two lower compared to the one reported in [49], however, still agrees within the uncertainties. The obtained multipole mixing ratio of $\delta=-0.19(10)$ indicates a dominant $M 1$ character for the $4_{2}^{+} \rightarrow 4_{1}^{+}$transition (see Fig. 2 (c)).

2740 keV level. On the basis of its γ-decay branching ratios, this state has been previously interpreted as the 2^{+}member of the $\left(2_{1, \mathrm{~ms}}^{+} \otimes 2_{1, \mathrm{~s}}^{+}\right)$quintuplet [19]. In this work we extracted the multipole-mixing ratios for the transition to the $2_{1}^{+}\left(\delta=3_{-1}^{+4}\right)$ and $2_{2}^{+}(\delta=-0.01(9))$
states, indicating dominant $E 2$ and $M 1$ characters, respectively. The extracted lifetime of $\tau=444(37)$ fs is in agreement with a previously quoted upper limit of 0.58 ps [19]. A weak γ-decay branching to the ground state has been observed in this work for the first time.

2898 keV level. This state has been previously assigned as the 3^{+}member of the $\left(2_{1, \mathrm{~ms}}^{+} \otimes 2_{1, \mathrm{~s}}^{+}\right)$quintuplet [19]. For the decay to the 2_{2}^{+}state a multipole mixing ratio of $\delta=0.07(4)$ was obtained for the first time. The extracted lifetime of $\tau=432_{-46}^{+48} \mathrm{fs}$ is in agreement with the upper limit of 0.58 ps which was reported in [19]. However, the deduced branching ratios are in conflict with previous results [19]. While the relative intensities for the decays to the 4_{1}^{+}and 2_{3}^{+}states are a factor of two and three weaker, respectively, the branching ratio for the decay to the 4_{2}^{+} state is larger by a factor of four. Since the branching ratios obtained from the present ($\mathrm{p}, \mathrm{p}^{\prime} \gamma$) experiments at IKP Cologne and WNSL are in agreement within the quoted uncertainties, a systematic error, e.g., stemming from perturbed $\mathrm{p} \gamma$-angular correlations, is unlikely. Possible contributions from other γ-ray transitions to the peak intensities were excluded on the basis of the $\gamma \gamma$ coincidence data. Hence, we revise the γ-decay branching ratios quoted in Ref. [19].

3076 keV level. For this state, a negative parity had been assigned based on the observation of a γ-decay to the 5^{-}state at $E_{x}=2588 \mathrm{keV}$ [49]. As in Ref. [19], this γ-decay was not confirmed in the present experiments so that a positive parity cannot be ruled out. However, the excitation energy of this level is close to known 3^{-}states of ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}[14,15]$ at 3040 keV and 3011 keV , respectively. Hence, a negative parity is tentatively assigned since no other possible $J^{\pi}=3^{-}$state is found up to an excitation energy of 3.4 MeV . A lifetime of $\tau=0.73(12) \mathrm{ps}$ and a multipole mixing ratio of $\delta=-0.2(3)$ for the decay to the $3_{1}^{(-)}$state were extracted from the present data for the first time.

3154 keV level. A $\left(2_{1, \mathrm{~ms}}^{+} \otimes 2_{1, \mathrm{~s}}^{+}\right)_{1^{+}}$character was proposed for this $J=1$ state due to a tentatively assigned positive parity [20]. The newly measured value for the lifetime of $\tau=9(2)$ fs is almost a factor of two larger compared to the value obtained from a previous $\left(\gamma, \gamma^{\prime}\right)$ experiment [20], however, still agrees within the uncertainties. The γ-decay branching ratio for the decay of this level to the 2_{2}^{+}state is found to be a factor of two smaller compared to the $\left(\gamma, \gamma^{\prime}\right)$ results [20].

3282 ke V level. Based on a tentatively assigned negative parity this state was proposed to be the 1^{-}member of the $\left(2_{1}^{+} \otimes 3_{1}^{-}\right)$quintuplet [20]. Two new γ-decay transitions to the 2_{1}^{+}and 0_{2}^{+}states were obtained with relative intensities of $42(6) \%$ and $9.4(17) \%$, respectively. The extracted lifetime of $\tau=37(6) \mathrm{fs}$ is in excellent agreement with the value obtained in a $\left(\gamma, \gamma^{\prime}\right)$ experiment [20], when taking into account these new decay branching ratios.

IV. DISCUSSION

A. Coupling of symmetric quadrupole and octupole phonons

The coupling of the symmetric quadrupole and octupole phonons $\left(2_{1}^{+} \otimes 3_{1}^{-}\right)$results in a quintuplet with spin and parity quantum numbers $J^{\pi}=1^{-}-5^{-}$[52]. The coupling of two non-identical phonons is of particular interest since one expects a high degree of harmonicity due to the reduced Pauli blocking compared to, e.g., the coupling of two symmetric quadrupole phonons. For the nucleus ${ }^{96} \mathrm{Ru}$, the center of gravity of the multiplet is expected around an excitation energy of $E\left(3_{1}^{-}\right)+E\left(2_{1}^{+}\right)=$ 3482 keV .

Signatures for the two-phonon character are transitions to the constituent phonons, i.e., the symmetric one-phonon quadrupole and octupole states with transition strengths equal to the $B\left(E 3 ; 3_{1}^{-} \rightarrow 0_{\text {g.s. }}^{+}\right)$and $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}\right)$values, respectively [53, 54]. In addition, a rather strong $E 1$ ground-state transition has been observed for the 1^{-}member of the quintuplet [55].

From a previous $\left(\gamma, \gamma^{\prime}\right)$ experiment, the $1_{1}^{ \pm}$state at $E_{x}=3282 \mathrm{keV}$ has been proposed as a candidate for the 1^{-}member of the quintuplet despite a missing parity information [20]. Unfortunately, a possible γ-decay to the $3_{1}^{(-)}$state was not observed in the present experiments due to the intense $6_{1}^{+} \rightarrow 4_{1}^{+}$yrast-band transition, which is close in energy to a hypothetical $1_{1}^{ \pm} \rightarrow 3_{1}^{(-)}$transition. However, a γ-decay to the 2_{1}^{+} state was observed in addition to the previously known ground-state transition. In a simple phonon picture, the ratio of the $B(E 1)$ strength to the ground state and the $B\left(E 1 ; 3_{1}^{-} \rightarrow 2_{1}^{+}\right)$value is expected to be $7 / 3$ if a two-phonon $E 1$ operator is considered [56]. With values of $B\left(E 1 ; 3_{1}^{(-)} \rightarrow 2_{1}^{+}\right)=0.099(17) \mathrm{mW} . \mathrm{u}$. and $B\left(E 1 ; 1_{1}^{ \pm} \rightarrow 0_{\text {g.s. }}^{+}\right)=0.24(6) \mathrm{mW} . \mathrm{u}$. this is in excellent agreement with the phonon-picture estimate and supports the quadrupole-octupole coupled structure of the $1_{1}^{ \pm}$state. However, if a negative parity is assumed for the $J=1^{ \pm}$state at $E_{x}=3480 \mathrm{keV}$ a ground-state transition strength of $0.21 \mathrm{~mW} . \mathrm{u}$. is obtained which results in a similar value for the $B(E 1)$ ratio. Nevertheless, for most even-even nuclei where candidates for the $J^{\pi}=1^{-}$ member of the quintuplet have been proposed, the excitation energy has been found to be systematically lower by about $5-10 \%$ compared to the sum energy of the constituent phonons [57,58]. Thus, it is more likely that the state at $E_{x}=3282 \mathrm{keV}$ represents the main fragment of the $\left(2_{1}^{+} \otimes 3_{1}^{-}\right)_{1^{-}}$state of ${ }^{96} \mathrm{Ru}$. However, an experiment aiming for the parity determination of the dipole excitations would be desirable to clarify their structure. For the dipole excitation at $E_{x}=3449 \mathrm{keV}$ a two-phonon character is unlikely since no transitions other than the decay to the ground state were observed.

In total there are four states with a γ-ray transition to the $3_{1}^{(-)}$state. Because of the small multipole mix-

FIG. 4. The upper panel shows the measured $M 1$ strengths distribution for the decay of low-lying non-yrast 2^{+}states to the 2_{1}^{+}state. The corresponding $E 2$ transition strengths to the ground state are shown in the lower panel. Arrows mark transitions with strengths smaller than 0.05 W.u.. Because of its characteristic decay properties, the 2_{3}^{+}state represents a good realization of the one-phonon mixed-symmetry quadrupole excitation.
ing ratios for their transitions to the $3_{1}^{(-)}$state, the states at 3073 keV and 3076 keV can be excluded to be of quadrupole-octupole coupled structure, as well as the $J=4$ state at 3060 keV due to its positive parity. The γ-decay properties of the newly assigned state at $E_{x}=3398 \mathrm{keV}$ agree with the expectations for a quadrupole-octupole coupled state and therefore, this state is a candidate for the 3^{-}member of the quintuplet. However, a spin and parity assignment is missing for a firm identification.

B. One- and two-phonon mixed-symmetry quadrupole excitations

The 2_{3}^{+}state of ${ }^{96} \mathrm{Ru}$ at $E_{x}=2283 \mathrm{keV}$ has been previously identified as the one-phonon mixed-symmetry quadrupole state $2_{1, \mathrm{~ms}}^{+}$based on the particular combination of a strong $M 1$ transition to the 2_{1}^{+}state and a weakly collective $E 2$ transition to the ground state [18]. The transition strengths of $B\left(M 1 ; 2_{3}^{+} \rightarrow 2_{1}^{+}\right)=$ $0.75(14) \mu_{\mathrm{N}}^{2}$ and $B\left(E 2 ; 2_{3}^{+} \rightarrow 0_{1}^{+}\right)=1.5(3)$ W.u. obtained in this work are in excellent agreement with the previously reported values [18] and confirm the $2_{1, \mathrm{~ms}}^{+}$assignment. However, the uncertainty of the $B(M 1)$ strength was reduced by almost a factor of two.

The new data allow for a comprehensive study of the
$M 1$ strength distribution for decays to the 2_{1}^{+}state, i.e. study a possible fragmentation of the $2_{1, \mathrm{~ms}}^{+}$state. Figure 4 (a) shows the obtained $M 1$ strength distribution for transitions of low-lying 2^{+}states to the 2_{1}^{+}state while the corresponding $E 2$ strength distribution for decays to the ground state is shown in Fig. 4 (b). The former is dominated by the $M 1$ transition from the 2_{3}^{+}state while the transition from any other 2^{+}state is weaker by almost one order of magnitude. In particular, no other 2^{+}state shows decay characteristics similar to that of the 2_{3}^{+}state. Thus, no considerable fragmentation of the $2_{1, \mathrm{~ms}}^{+}$state is found in the case of ${ }^{96} \mathrm{Ru}$.

In a simple phonon picture, a two-phonon quintuplet of $0^{+}-4^{+}$states is expected from the coupling of symmetric and mixed-symmetric quadrupole phonons $2_{1}^{+} \otimes 2_{1, \text { ms }}^{+}$ at the sum energy of the constituent phonons, i.e., at $E\left(2_{1}^{+}\right)+E\left(2_{3}^{+}\right)=3.1 \mathrm{MeV}$. The $1^{+}, 2^{+}$, and 3^{+}members of the quintuplet are expected to decay via $M 1$ transitions to the symmetric two-phonon 2^{+}state with transition strengths comparable to that of the $2_{1, \mathrm{~ms}}^{+} \rightarrow 2_{1, \mathrm{~s}}^{+}$ transition. Along with the $M 1$ fingerprint, a weakly collective $E 2$ transition to the symmetric one-phonon state is expected with a transition strengths comparable to that of the $2_{1, \mathrm{~ms}}^{+} \rightarrow 0_{\mathrm{g} . \mathrm{s} .}^{+}$transition.

In a previous study, the 2_{5}^{+}and 3_{2}^{+}states at excitation energies of 2740 keV and 2898 keV , respectively, have been proposed to be members of the two-phonon quintuplet [19]. The assignments were based on the similarity of the γ-decay branching ratios to the well established 2^{+}and 3^{+}members of the two-phonon MS quintuplet in ${ }^{94} \mathrm{Mo}[12,13]$. However, no multipole mixing ratios and only upper limits for lifetime values were reported, so that a firm identification on the basis of reduced transition strengths was missing. The new experimental data obtained in this work allowed for a determination of transition strengths for the de-excitation of the 2_{5}^{+}and 3_{2}^{+}states. The decay properties of the 2_{3}^{+}, $2_{5}^{+}, 3_{2}^{+}$, and $1_{1}^{(+)}$states of ${ }^{96} \mathrm{Ru}$ are shown in Fig. 5, including the reduced transition strengths for transitions to lower-lying states. For the $2_{5}^{+} \rightarrow 2_{2}^{+}$transition an $M 1$ strength of $0.17(3) \mu_{\mathrm{N}}^{2}$ is obtained along with an $E 2$ transition strength of $0.58(15) \mathrm{W} . u$. for the decay to the 2_{1}^{+} state, supporting the $2_{2, \mathrm{~ms}}^{+}$assignment of the 2_{5}^{+}state.

For the 3_{2}^{+}state, only a small $M 1$ transition strength of $0.078(14) \mu_{\mathrm{N}}^{2}$ is obtained for the decay to the 2_{2}^{+} state. This is about one order of magnitude weaker compared to the $B\left(M 1 ; 2_{1, \mathrm{~ms}}^{+} \rightarrow 2_{1}^{+}\right)$value and a factor of three weaker compared to the $3_{\mathrm{ms}}^{+} \rightarrow 2_{2}^{+}$transition of ${ }^{94} \mathrm{Mo}$ [14]. However, the transition is of dominant $M 1$ character and the transition matrix element of $\left\langle 3_{2}^{+}\|\hat{T}(M 1)\| 2_{2}^{+}\right\rangle=0.74(7) \mu_{\mathrm{N}}$ does not exclude a mixedsymmetry character. A possible explanation of the decrease of $M 1$ strength might be a fragmentation of the 3_{ms}^{+}state. Indeed another $J=3$ state is located close in energy at $E_{x}=2851 \mathrm{keV}$. In Ref. [19], this state was rejected to be the 3_{ms}^{+}state, based on its different γ-decay properties compared to the 3_{ms}^{+}state of ${ }^{94} \mathrm{Mo}$.

FIG. 5. Decay properties of candidates for the $1^{+}, 2^{+}$, and 3^{+}members of two-phonon mixed-symmetry quintuplet. The thickness of the arrows corresponds to the measured γ-decay intensities. If available, the measured $M 1$ and $E 2$ transition strengths are quoted as well. M1 transitions are indicated with the unit μ_{N}^{2}, while $E 2$ transitions are quoted in W.u.. The dashed horizontal line indicates the sum of the excitation energies of the 2_{1}^{+}and 2_{3}^{+}states.

Unfortunately, no multipole mixing ratios could be extracted in this work for the transition to the 2_{2}^{+}state. Assuming a pure $M 1$ character, a transition strength of $0.086(16) \mu_{\mathrm{N}}^{2}$ is obtained which is of comparable size to the $B\left(M 1 ; 3_{2}^{+} \rightarrow 2_{2}^{+}\right)$value.

It has to be emphasized that also the $B\left(M 1 ; 2_{5}^{+} \rightarrow\right.$ 2_{2}^{+}) value is only 30% of the $2_{1, \mathrm{~ms}}^{+} \rightarrow 2_{1}^{+} M 1$ transition strength and about 40% weaker than the $B\left(M 1 ; 2_{2, \mathrm{~ms}}^{+} \rightarrow\right.$ 2_{2}^{+}) value for ${ }^{94} \mathrm{Mo}$ [14]. Thus, a fragmentation of the $2_{2, \mathrm{~ms}}^{+}$cannot be excluded as well. However, this cannot be studied on the basis of the present experimental data due to a lack of experimental multipole mixing ratios for $2_{i}^{+} \rightarrow 2_{2}^{+}(i>2)$ transitions.

A candidate for the 1_{ms}^{+}was obtained from a $\left(\gamma, \gamma^{\prime}\right)$ experiment, based on its excitation energy of $E_{x}=$ 3154 keV and a tentatively assigned positive parity [20]. Neither in the $\left(\gamma, \gamma^{\prime}\right)$ experiment nor in the present experiments, a γ-decay branching to the $2_{1, \mathrm{~ms}}^{+}$state was observed for any of the dipole excitations as it is, e.g., the case for the 1_{ms}^{+}state of the neighboring nucleus ${ }^{94} \mathrm{Mo}$. Moreover, no parity information was extracted from the present experiments, so that a firm identification of the 1_{ms}^{+}state of ${ }^{96} \mathrm{Ru}$ is still missing.

C. One-phonon mixed-symmetry octupole excitations

Strong $M 1$ transitions to their fully symmetric counterparts are a fingerprint of mixed-symmetry states. Thus, strong M1 transitions to the lowest-lying 3_{1}^{-}state, which is usually interpreted as the symmetric one-phonon octupole vibrational state, have been regarded as evidence for mixed-symmetry octupole excitations [25]. In addition, strong F-vector $E 1$ transitions to the 2_{1}^{+}state are predicted in the $U_{\pi \nu}(1) \otimes U_{\pi \nu}(5) \otimes U_{\pi \nu}(7)$ limit of the
$s d f$-IBM-2, according to the two-body nature of the E1 transition operator [27, 28].

In ${ }^{96} \mathrm{Ru}$, the $3_{2}^{(-)}$state was found at an excitation energy of 3076 keV . This is close to the excitation energies of the proposed 3_{ms}^{-}candidates of ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$. Assuming a negative parity for the $3_{2}^{(-)}$state, a transition strength of $B\left(M 1 ; 3_{2}^{(-)} \rightarrow 3_{1}^{-}\right)=0.14(4) \mu_{\mathrm{N}}^{2}$ is obtained. Thus, this state is a likely candidate for the one-phonon mixed-symmetry octupole state. Similar to ${ }^{94} \mathrm{Mo}$, a sizable $E 1$ strength of $B(E 1)=0.14(3) \mathrm{mW} . \mathrm{u}$. was obtained for the decay to the one-phonon quadrupole mixed-symmetry state. However, only a small E1 strength of $B\left(E 1 ; 3_{2}^{(-)} \rightarrow 2_{1}^{+}\right)=0.0017(3) \mathrm{mW}$.u. is obtained for the decay to the symmetric one-phonon quadrupole state, which is in conflict with the $s d f$-IBM-2 prediction.

In the $U_{\pi \nu}(1) \otimes U_{\pi \nu}(5) \otimes U_{\pi \nu}(7)$ limit of the $s d f-$ IBM- 2 , the reduced transition strength of the $3_{\mathrm{ms}}^{-} \rightarrow 3_{1}^{-}$transition can be calculated analytically [27]:

$$
\begin{equation*}
B\left(M 1 ; 3_{\mathrm{ms}}^{-} \rightarrow 3_{1}^{-}\right)=\frac{9}{\pi}\left(g_{\pi}-g_{\nu}\right)^{2} \frac{N_{\pi} N_{\nu}}{N^{2}} \tag{2}
\end{equation*}
$$

with g_{π} and g_{ν} being the proton and neutron g-factors for the f-bosons and N_{π}, N_{ν}, and N, the proton, neutron, and total boson numbers, respectively. Assuming ${ }^{100} \mathrm{Sn}$ as inert core gives $N_{\pi}=3$ and $N_{\nu}=1$. With the bare orbital g-factors for protons and neutrons $\left(g_{\pi}=1\right.$ and $g_{\nu}=0$), a reduced $M 1$ transition strength of $0.54 \mu_{N}^{2}$ is predicted, which is almost a factor of four larger compared to the experimental value. Note that the same value is obtained if ${ }^{88} \mathrm{Sr}$ is assumed as inert core.

As discussed in Ref. [25], the $\left\langle 3_{1}^{-}\|M 1\| 3_{2}^{(-)}\right\rangle$matrix element is expected to scale with the one for the $2_{1, \mathrm{~ms}}^{+} \rightarrow$ $2_{1, \mathrm{~s}}^{+}$transition if a 3_{ms}^{-}character is assumed for the $3_{2}^{(-)}$ state. With the bare orbital g-factors, the $s d f$-IBM-2 predicts a value of $\sqrt{14 / 5} \approx 1.67$ for the ratio of their absolute values. From the present data, an experimen-

FIG. 6. Ratio of the $\left\langle 3_{1}^{-}\|M 1\| 3_{i}^{-}\right\rangle$and $\left\langle 2_{1, \mathrm{~s}}^{+}\|M 1\| 2_{1, \mathrm{~ms}}^{+}\right\rangle$matrix elements for nuclei in the $A \approx 100$ mass region and for ${ }^{144} \mathrm{Nd}$. The ratio for ${ }^{96} \mathrm{Ru}$ is a factor of two lower compared to the other $N=52$ isotones ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$, but close to the value for ${ }^{96} \mathrm{Mo}$. For ${ }^{114} \mathrm{Cd}$, only an upper limit has been reported up to now. The data, except for ${ }^{96} \mathrm{Ru}$, are adopted from [25].
tal ratio of $\frac{\left\langle 3_{1}^{-} \| M 1\right|\left|3_{2}^{(-)}\right\rangle}{\left\langle 2_{\mathrm{s}}^{+} \| M 1\right|\left|2_{\mathrm{ms}}^{+}\right\rangle}=0.53(9)$ was obtained which is about a factor of three smaller compared to the predicted value. Figure 6 shows this value for ${ }^{96} \mathrm{Ru}$ in comparison to the other $A \approx 100$ nuclei that were investigated with respect to mixed-symmetry octupole excitations in Ref. [25]. Among others also the $N=52$ isotones ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$ are shown. The present value is about a factor of two smaller compared to the lighter $N=52$ isotones, but close to the value for ${ }^{96} \mathrm{Mo}$. The reduced value for ${ }^{96} \mathrm{Ru}$ compared to the other $N=52$ isotones might result from a fragmentation of the mixed-symmetry octupole excitation, a less collective nature of the $M 1$ transition in the case of ${ }^{96} \mathrm{Ru}$, or the more $O(6)$-like structure of ${ }^{96} \mathrm{Ru}$ compared to, e.g., ${ }^{94} \mathrm{Mo}$ (see Sec. V).

D. One-phonon mixed-symmetry hexadecapole excitations

Based on the observation of strong $M 1$ transitions connecting the lowest-lying 4^{+}states in ${ }^{94} \mathrm{Mo}$ and ${ }^{92} \mathrm{Zr}$ one-phonon hexadecapole components of symmetric and mixed-symmetric character have been discussed to contribute to the wave functions of the 4_{1}^{+}and 4_{2}^{+}states, respectively $[14,15,26]$. In particular for the case of ${ }^{94} \mathrm{Mo}$, the one-phonon hexadecapole assignment is supported by recent $s d g$-IBM-2 and shell-model calculations, the latter using a surface delta interaction (SDI) [26]. For ${ }^{96} \mathrm{Ru}$, the 4_{2}^{+}state is found at an excitation energy of $E_{x}=2462 \mathrm{keV}$. A transition strength of $B(M 1)=$ $0.90(18) \mu_{\mathrm{N}}^{2}$ is obtained for the transition to the 4_{1}^{+}state which is comparable to the corresponding $M 1$ transition strength of $B(M 1)=1.23(20) \mu_{\mathrm{N}}^{2}$ found in ${ }^{94} \mathrm{Mo}$. Thus, the strong $M 1$ transition suggests symmetric and mixedsymmetry one-phonon hexadecapole components in the wave functions of the 4_{1}^{+}and 4_{2}^{+}states, respectively.

In the case of ${ }^{94} \mathrm{Mo}$, strong $4_{i}^{+} \rightarrow 4_{1}^{+} M 1$ transitions with $i>2$ have been observed experimentally in addition to the $4_{2}^{+} \rightarrow 4_{1}^{+}$transition [14]. Unfortunately, the assignment of spins and multipole mixing ratios for higher lying 4^{+}states and transitions to the 4_{1}^{+}state in ${ }^{96} \mathrm{Ru}$ are ambiguous on the basis of the present experimental data and thus, a fragmentation of the corresponding $M 1$ strength could not be analyzed.

V. $s d g$-IBM-2 CALCULATIONS

The $s d g$-IBM- 2 calculations follow the approach of Ref. [26] for the description of ${ }^{94} \mathrm{Mo}$. Technical details of the present calculation for the case of ${ }^{96} \mathrm{Ru}$, such as the chosen Hamiltonian and transition operators as well as their adopted parameters, have already been discussed in a preceding article [29] and shall not be repeated here. In the previous paper, the discussion focused on the interpretation of the observed strong $M 1$ transition connecting the lowest-lying 4^{+}states as an F-vector transition
connecting mixed-symmetry and fully-symmetric states with one-phonon hexadecapole character. Indeed, this interpretation was supported by the calculations. In the present article, we restrict ourselves to the discussion of the $s d g$-IBM-2 results for the one- and two-phonon mixed-symmetry quadrupole excitations.

The results of the $s d g$-IBM- 2 calculations are compiled in Tab. II for the low-lying $J^{\pi}=0^{+}-4^{+}$states. Except for the 0_{2}^{+}and 2_{5}^{+}states the experimental level energies are reproduced within a deviation of less than 260 keV . Also the calculated transition strengths are in overall agreement with the experimental values.

From the calculated F-spin quantum numbers, a mixed-symmetry character is obtained for the $2_{3}^{+}, 2_{5}^{+}$, 3_{2}^{+}, and 4_{2}^{+}states. Experimentally, the 2_{3}^{+}state was identified with the one-phonon quadrupole mixed-symmetry state, which is in agreement with the present calculations. The IBM calculations result in a dominant onephonon character for this state with s - and d-boson contents similar to those of the symmetric one-phonon state. While the $M 1$ transition strength for the decay to the 2_{1}^{+} state is fixed in the calculation by the choice of the proton g-factor, the weakly collective $E 2$ transition to the ground state is reproduced by the calculation. However, the calculated value is larger by a factor of two. Since the weakly collective $E 2$ transition stems from a destructive interference of proton and neutron contributions in the $E 2$ transition operator, this might be improved by adjusting the adopted value for proton and neutron effective charges, however, at the cost of an additional free parameter in the calculation.

A two-phonon quadrupole mixed-symmetry character is predicted for the $1_{2}^{+}, 2_{5}^{+}$, and 3_{2}^{+}states. This is reflected in their d-boson contributions that are enhanced by about 30% compared to the one-phonon quadrupole excitations. However, they are similar to that of the 0_{2}^{+}and 2_{2}^{+}states which are the symmetric two-phonon states. The excitation energy of the 2_{5}^{+}state is overestimated by almost 1 MeV , but the transition strength for its decay to the 2_{2}^{+}state is in agreement with the data. As it is the case for the 2_{3}^{+}state, the weakly collective $E 2$ transition to the 2_{1}^{+}state is overestimated by a factor of three.

For the 3_{2}^{+}state, a strong $M 1$ transition to the 2_{2}^{+} state is predicted along with a weakly collective $E 2$ transition to the 2_{1}^{+}state, as it is expected for a two-phonon mixed-symmetry state. However, the experimental value is smaller by almost one order of magnitude. Also the small $E 2$ transition to the 2_{1}^{+}state is not described by the calculations. For the 3_{1}^{+}state, a dominant $\left(g^{\dagger} d^{\dagger}\right)^{(3)}-$ boson structure is predicted, reflected by the vanishing $E 2$ transition strength to the 2_{1}^{+}state because of d-parity conservation rules [59] and its enhanced g-boson contribution.

TABLE II. Results of the $s d g$-IBM-2 calculations in comparison to the experimental data. The experimental and calculated level energies (columns 2 and 3) are given in units of MeV . Columns 5, 6, and 7 show the calculated s-, d-, and g-boson contents in the IBM wave functions. In the last two columns, the reduced transition strengths are given. $M 1$ strengths are quoted in units of μ_{N}^{2}, $E 2$ strenghts are given in units of W.u.. The calculated F-spin quantum number is quoted in column 4 . An F-spin quantum number of 2 corresponds to maximum F-spin, i.e., a fully-symmetric character.

	Energies [MeV]		Boson numbers				Transition strengths [W.u. (E2) and μ_{N}^{2} (M1)]			
Level	$E_{\exp }$	$E_{\text {IBM }}$	F	$\left\langle n_{s}\right\rangle$	$\left\langle n_{d}\right\rangle$	$\left\langle n_{g}\right\rangle$	$J_{i}^{\pi} \rightarrow J_{f}^{\pi}$	$\sigma \lambda$	$B(\sigma \lambda)_{\exp }$	$B(\sigma \lambda)_{\text {IBM }}$
0_{1}^{+}	0.000	0.000	2	3.4	0.3	0.0	-	-	-	-
0_{2}^{+}	2.149	2.596	2	2.2	1.5	0.3	$0_{2}^{+} \rightarrow 2_{1}^{+}$	E2	11.7(18)	7.7
1_{1}^{+}	3.154	2.944	1	1.7	1.8	0.5	$1_{1}^{+} \rightarrow 0_{1}^{+}$	M1	0.17(6)	0.13
2_{1}^{+}	0.832	0.832	2	2.6	1.3	0.1	$2_{1}^{+} \rightarrow 0_{1}^{+}$	E2	18.1(5)	18.4
2_{2}^{+}	1.932	2.165	2	1.8	2.0	0.2	$2_{2}^{+} \rightarrow 2_{1}^{+}$	M1	0.05(2)	0
							$2_{2}^{+} \rightarrow 2_{1}^{+}$	E2	28(9)	24
2_{3}^{+}	2.283	2.322	1	2.5	1.2	0.3	$2_{3}^{+} \rightarrow 2_{1}^{+}$	M1	0.75(14)	0.69
							$2_{3}^{+} \rightarrow 0_{1}^{+}$	E2	1.5(3)	2.53
$2{ }_{5}^{+}$	2.740	3.637	1	1.7	1.8	0.5	$2_{5}^{+} \rightarrow 0_{1}^{+}$	E2	0.006(12)	0
							$2_{5}^{+} \rightarrow 2_{1}^{+}$	E2	0.58(15)	1.92
							$2_{5}^{+} \rightarrow 2_{2}^{+}$	M1	0.17(3)	0.17
3_{1}^{+}	2.852	3.072	2	1.7	1.5	0.8	$3_{1}^{+} \rightarrow 2_{1}^{+}$	E2	< 0.01	0
							$3_{1}^{+} \rightarrow 2_{1}^{+}$	M1	0.008(1)	0
							$3_{1}^{+} \rightarrow 2_{2}^{+}$	E2	< 5.58	14.7
3_{2}^{+}	2.898	3.158	1	1.7	1.9	0.4	$3_{2}^{+} \rightarrow 2_{1}^{+}$	E2	< 0.28	3.17
							$3_{2}^{+} \rightarrow 2_{2}^{+}$	E2	0.02(4)	0
							$3_{2}^{+} \rightarrow 2_{2}^{+}$	M1	0.078(14)	0.563
4_{1}^{+}	1.518	1.523	2	2.3	1.2	0.6	$4_{1}^{+} \rightarrow 2_{1}^{+}$	E2	22.6(17)	25.6
4_{2}^{+}	2.462	2.482	1	2.6	0.5	0.9	$4_{2}^{+} \rightarrow 4_{1}^{+}$	M1	0.90(18)	1.13
							$4_{2}^{+} \rightarrow 2_{1}^{+}$	E2	1.52(19)	1.44

VI. SHELL-MODEL CALCULATIONS

Several shell-model (SM) studies have been previously performed in the $A \approx 100$ mass region to describe the experimentally observed properties of mixed-symmetry states. The calculations focused on a description of the $N=52$ nuclei ${ }^{92} \mathrm{Zr}$ [16], ${ }^{94} \mathrm{Mo}$ [8], and ${ }^{96} \mathrm{Ru}$ [19], using two-body matrix elements (TBMEs) obtained from a surface delta interaction (SDI). Moreover, calculations for the whole $N=52$ isotonic chain have been performed using a $V_{\text {low-k }}$ interaction [60]. Additional studies have been carried out for neutron-deficient Cd isotopes [61] as well as for Zr isotopes [62].

The purpose of the present study is to obtain a microscopic interpretation of the observed strong $4_{2}^{+} \rightarrow 4_{1}^{+}$ M1 transition strength. While the $s d g$-IBM-2 calculations support the interpretation of an isovector $M 1$ transition connecting mixed-symmetric and fully-symmetric states, the large $M 1$ transition matrix element might also be explained by the underlying microscopic structure: if similar single-particle configurations with large g factors are assumed to be present in the wave functions of the
4_{1}^{+}and 4_{2}^{+}states, this might result in a strong $4_{2}^{+} \rightarrow 4_{1}^{+}$ transition as well. On the other hand, contributions from $d_{5 / 2} \leftrightarrow d_{3 / 2}$ spin-flip transitions might also account for the large $B\left(M 1 ; 4_{2}^{+} \rightarrow 4_{1}^{+}\right)$values that have been experimentally observed for all stable, even-even $N=52$ isotones. Because of their microscopic character, these interpretations are beyond the scope of $s d g$-IBM- 2 calculations. In order to examine these possibilities, the present shell-model calculations aim for an investigation of the proton-neutron symmetry of the wave functions of low-lying 2^{+}and 4^{+}states.

The SM calculations were performed with the mscheme code Nushell@MSU [64]. The model space for a ${ }^{88} \mathrm{Sr}$ core included the proton orbitals $p_{1 / 2}$ and $g_{9 / 2}$ as well as the neutron orbitals $d_{5 / 2}, g_{7 / 2}, s_{1 / 2}$, $d_{3 / 2}$, and $h_{11 / 2}$. The single-particle energies (SPEs) were adopted from Ref. [63], where they were fixed to reproduce the extrapolated values for a ${ }^{100} \mathrm{Sn}$ core [65]. The model space and the corresponding SPEs are depicted in Fig. 7. TBMEs were obtained from an effective interaction that was derived by employing a pertubative manybody scheme starting from the free nucleon-nucleon inter-

FIG. 7. Model space used for the present SM calculations. The single-particle energies for the proton (left) and neutron orbits (right) relative to the ${ }^{88} \mathrm{Sr}$ core are adopted from Ref. [63].

FIG. 8. Comparison of the experimental level scheme (middle) with the results of the $s d g$-IBM-2 (left) and shell-model calculations (right). In the cases where a one-to-one correspondence of the experimental and calculated states on the basis of similar decay properties was obtained, they are connected with dashed lines.
action as described in Ref. [66]. This interaction has been previously used to study Gamow-Teller (GT) strength in ${ }^{100} \mathrm{Cd}[63]$ and for the description of ${ }^{98,100} \mathrm{Pd}$ nuclei $[67-$ $69]$. To adjust the proton and neutron effective charges e_{π} and e_{ν}, a method was applied that takes advantage of the different proton-neutron symmetries of the wave functions of the $2_{1, \mathrm{~ms}}^{+}$and $2_{1, \mathrm{~s}}^{+}$states. Instead of adjusting the proton and neutron effective charges e_{π} and e_{ν} separately, the isoscalar and isovector effective charges $e_{\mathrm{IS}}=\frac{1}{2}\left(e_{\pi}+e_{\nu}\right)$ and $e_{\mathrm{IV}}=\frac{1}{2}\left(e_{\pi}-e_{\nu}\right)$ were varied to simultaneously describe the experimental $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ and $B\left(E 2 ; 2_{3}^{+} \rightarrow 0_{1}^{+}\right)$values. Following this approach, as

TABLE III. Experimental reduced $E 2$ and $M 1$ transition strengths compared with the results from SM and $s d g$-IBM-2 calculations. E2 strengths are given in units of W.u., M1 transitions are quoted in μ_{N}^{2}. If not indicated differently, the experimental values are obtained from this work.

Transition	Experiment	SM	$s d g$-IBM-2
$B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$	$18.1(5)^{\mathrm{a}}$	18.1	18.4
$B\left(E 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)$	$11.7(18)$	2.6	7.7
$B\left(E 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)$	<0.002	0.95	0
$B\left(E 2 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)$	$28(9)$	19	24
$B\left(E 2 ; 2_{3}^{+} \rightarrow 0_{1}^{+}\right)$	$1.5(3)$	1.5	2.53
$B\left(E 2 ; 2_{5}^{+} \rightarrow 2_{1}^{+}\right)$	$0.58(15)$	0.22^{b}	1.92
$B\left(E 2 ; 3_{2}^{+} \rightarrow 2_{1}^{+}\right)$	$0.28(5)$	2.17	3.2
$B\left(E 2 ; 3_{2}^{+} \rightarrow 2_{2}^{+}\right)$	$0.2(4)$	1.0	0
$B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$	$22.6(17)^{\mathrm{a}}$	21.7	25.6
$B\left(E 2 ; 4_{2}^{+} \rightarrow 2_{1}^{+}\right)$	$1.5(4)$	1.1^{c}	1.44
$B\left(M 1 ; 1_{1}^{+} \rightarrow 0_{1}^{+}\right)$	$0.17(5)$	0.08	0.13
$B\left(M 1 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)$	$0.05(2)$	0.0012	0
$B\left(M 1 ; 2_{3}^{+} \rightarrow 2_{1}^{+}\right)$	$0.75(14)$	0.72	0.69
$B\left(M 1 ; 2_{5}^{+} \rightarrow 2_{2}^{+}\right)$	$0.17(3)$	0.44^{b}	0.17
$B\left(M 1 ; 2_{5}^{+} \rightarrow 2_{3}^{+}\right)$	$0.047(11)$	0.137^{b}	0
$B\left(M 1 ; 3_{2}^{+} \rightarrow 2_{2}^{+}\right)$	$0.078(14)$	0.265	0.563
$B\left(M 1 ; 4_{2}^{+} \rightarrow 4_{1}^{+}\right)$	$0.90(18)$	1.32^{c}	1.13

a Adopted from Ref. [19]
${ }^{\mathrm{b}}$ Value for the 2_{4}^{+}SM state.
${ }^{c}$ Value for the 4_{3}^{+}SM state.
described in more detail below, we obtained the effective charges of $e_{\pi}=2.215 e$ and $e_{\nu}=0.661 e$ used for the present calculation. For the spin g factors we applied a quenching factor of $\alpha=0.57$ in order to obtain pure isovector $M 1$ transitions [8].

The level scheme and transition strengths calculated with the SM are shown in Fig. 8 and Tab. III, respectively, in comparison to experiment and the results of the $s d g$-IBM-2 calculations. The SM low-lying level scheme is in good agreement with the experimental one. However, a few deviations are observed above an excitation energy of 2 MeV : the calculated 4_{3}^{+}state is found at an excitation energy similar to the experimental 4_{2}^{+}state. In addition, the largest $M 1$ transition strength to the 4_{1}^{+} state is calculated for the de-excitation of the 4_{3}^{+}level. The SM calculation does not predict any other 4^{+}state with a comparable transition strength. Because of their similar excitation energies and decay properties we identify the calculated 4_{3}^{+}state to correspond to the experimental 4_{2}^{+}state. Similarly, the calculated 2_{4}^{+}state is the only 2^{+}state above the 2_{3}^{+}state with a considerable $B(M 1)$ strength for a transition to the 2_{2}^{+}state and thus, we identify the $2_{4}^{+} \mathrm{SM}$ state to be the experimental 2_{5}^{+} state.

The transition strengths obtained from the SM calcu-
lations are in good agreement with the experimental data (see Tab. III). Note that only the $B(E 2)$ values for the ground-state transitions of the 2_{1}^{+}and 2_{3}^{+}states were fixed to reproduce the experimental values. The calculated $B\left(M 1 ; 2_{3}^{+} \rightarrow 2_{1}^{+}\right)$value is in excellent agreement with the experimental value and supports the assignment of the 2_{3}^{+}state as the one-phonon mixed-symmetry quadrupole state (see discussion below). In contrast, the calculated $M 1$ transition strength of $0.44 \mu_{\mathrm{N}}^{2}$ for the deexcitation of the 2^{+}member of the two-phonon mixedsymmetry quintuplet to the symmetric two-phonon 2^{+} state, i.e., the SM $2_{4}^{+} \rightarrow 2_{2}^{+}$transition, is overestimated by more than a factor of two compared to the experimental value and the $s d g$-IBM- 2 prediction. Similarly, the calculated $B(M 1)$ value of $0.265 \mu_{\mathrm{N}}^{2}$ for the $3_{2}^{+} \rightarrow 2_{2}^{+}$ transition, which is the de-excitation of the $3_{1, \mathrm{~ms}}^{+}$state to the symmetric two-phonon 2^{+}state, is larger by a factor of three compared to the data. However, the value obtained from the IBM calculations exceeds the experimental value by a factor of seven. The experimentally observed strong $E 2$ strength of $11.7(18)$ W.u. for the $0_{2}^{+} \rightarrow 2_{1}^{+}$transition is not reproduced by the SM calculations but in fair agreement with the $s d g$-IBM-2 result.

As an important result, the strong $M 1$ transition connecting the low-lying 4^{+}states is reproduced by both calculations. Though the M1 transition strength calculated with the SM is about 40% larger compared to the experimental value, the correct order of magnitude is predicted without any additional adjustment of the $M 1$ transition operator.

To investigate the proton-neutron symmetry (pn symmetry) of the calculated wave functions of 2^{+}states, the $E 2$ transition operator

$$
\begin{equation*}
\hat{T}(E 2)=e_{\pi} \hat{T}_{\pi}(E 2)+e_{\nu} \hat{T}_{\nu}(E 2) \tag{3}
\end{equation*}
$$

was decomposed into an isoscalar part

$$
\begin{equation*}
\hat{T}_{\mathrm{IS}}(E 2)=e_{\mathrm{IS}}\left(\hat{T}_{\pi}(E 2)+\hat{T}_{\nu}(E 2)\right) \tag{4}
\end{equation*}
$$

and an isovector part

$$
\begin{equation*}
\hat{T}_{\mathrm{IV}}(E 2)=e_{\mathrm{IV}}\left(\hat{T}_{\pi}(E 2)-\hat{T}_{\nu}(E 2)\right) \tag{5}
\end{equation*}
$$

Here, $\hat{T}_{\rho}(E 2)=\sum_{i}\left(r_{i}^{\rho}\right)^{2} \hat{Y}_{2}\left(\theta_{i}^{\rho}, \phi_{i}^{\rho}\right)$ are the proton $(\rho=$ π) and neutron ($\rho=\nu$) parts of the $E 2$ transition operator, e_{ρ} are the effective charges, and e_{IV} and e_{IS} can be expressed as $e_{\mathrm{IS}}=\frac{1}{2}\left(e_{\pi}+e_{\nu}\right)$ and $e_{\mathrm{IV}}=\frac{1}{2}\left(e_{\pi}-e_{\nu}\right)$, respectively.

The isovector contribution vanishes for transitions between two states with same, that is either pn-symmetric or mixed-symmetric wave functions, the latter denoting the case when the wave function is not symmetric under exchange of the pn labels of at least one protonneutron pair. On the contrary, isoscalar contributions vanish for transitions between two states with opposite pn-symmetry $[8,61]$. With this decomposition, the

FIG. 9. Calculated $B(E 2)$ strength of the ground-state transitions of the 2_{1}^{+}(upper panel) and the 2_{3}^{+}(lower panel) states as a function of the isoscalar (left) and isovector (right) effective charges. The respective other effective charge was fixed to zero. As suggested by Eq. (6), the calculated transition strengths are perfectly described by a fit with a second order polynomial (solid line). The correlation of the $2_{1}^{+} \rightarrow 0_{1}^{+}$and $2_{3}^{+} \rightarrow 0_{1}^{+}$transition strengths with the isoscalar and isovector effective charges, respectively, were used to fix the proton and neutron effective charges e_{π} and e_{ν}.
$B(E 2)$ strength between two states J_{i}^{π}, J_{f}^{π} can be written as

$$
\begin{align*}
B\left(E 2 ; J_{i}^{\pi}\right. & \left.\left.\rightarrow J_{f}^{\pi}\right) \propto e_{\mathrm{IS}}^{2}\left|\left\langle J_{f}^{\pi}\right| \hat{T}_{\mathrm{IS}}(E 2)\right| J_{i}^{\pi}\right\rangle\left.\right|^{2}+ \\
& \left.2 \cdot e_{\mathrm{IS}} \cdot e_{\mathrm{IV}}\left|\left\langle J_{f}^{\pi}\right| \hat{T}_{\mathrm{IS}}(E 2)\right| J_{i}^{\pi}\right\rangle\left\langle J_{f}^{\pi}\right| \hat{T}_{\mathrm{IV}}(E 2)\left|J_{i}^{\pi}\right\rangle \mid+ \\
& \left.e_{\mathrm{IV}}^{2}\left|\left\langle J_{f}^{\pi}\right| \hat{T}_{\mathrm{IV}}(E 2)\right| J_{i}^{\pi}\right\rangle\left.\right|^{2} \tag{6}
\end{align*}
$$

Thus, fixing one of the parameters, e_{IS} or e_{IV}, the $B(E 2)$ strength is related to the other via a second order polynomial. For the ground-state transitions of the 2_{1}^{+}and 2_{3}^{+}states this is shown in Fig. 9 for fixed values of $e_{\mathrm{IS}}=0$ or $e_{\mathrm{IV}}=0$. A strong correlation of the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition strength with the isoscalar effective charge is obtained, while the transition strength is very small and almost independent of a variation of the isovector effective charge. On the contrary, the $2_{3}^{+} \rightarrow 0_{1}^{+}$transition strength is strongly correlated to the isovector effective charge and is almost independent of the isoscalar effective charge. This already indicates a pn-symmetric and mixed-symmetric character of the calculated wave functions of the 2_{1}^{+}and 2_{3}^{+}states, respectively, since the ground state is of pn-symmetric character.

This correlation of the ground-state transition strengths of the 2_{1}^{+}and 2_{3}^{+}states was used to adjust the effective charges e_{IS} and e_{IV}. The isoscalar (isovector) effective charge was fitted to reproduce the experimental E2 strength of the $2_{1}^{+} \rightarrow 0_{1}^{+}\left(2_{3}^{+} \rightarrow 0_{1}^{+}\right)$transition, while the isovector (isoscalar) effective charge was fixed
to zero. From the obtained values for e_{IS} and e_{IV}, the proton and neutron effective charges $e_{\pi}=e_{\mathrm{IS}}+e_{\mathrm{IV}}$ and $e_{\nu}=e_{\mathrm{IS}}-e_{\mathrm{IV}}$ were calculated.

Because of small admixtures of isovector and isoscalar components in the wave functions of the 2_{1}^{+}and $2_{3}^{+} \mathrm{SM}$ states, the experimental $E 2$ strengths for of the $2_{1}^{+} \rightarrow 0_{1}^{+}$ and $2_{3}^{+} \rightarrow 0_{1}^{+}$transitions are not exactly reproduced with the fitted effective charges obtained with the initial choice of $e_{\mathrm{IV}}=0$ and $e_{\mathrm{IS}}=0$, respectively. Therefore, the described fitting procedure was applied in an iterative way. Convergence on a percent level is obtained after a fifth step of iteration. As a final set of effective charges the above stated values of $e_{\pi}=2.215 e$ and $e_{\nu}=0.661 e$ were obtained. These values were adopted for the present SM calculation.

From Eq. (6), one obtains a ratio of isoscalar and isovector $E 2$ transition matrix elements $R_{\mathrm{E} 2}$ by choosing $J_{f}^{\pi}=0_{1}^{+}$as well as a combination of $e_{\mathrm{IS}}=1$ and $e_{\mathrm{IV}}=0$ and vice versa:

$$
\begin{align*}
R_{\mathrm{E} 2}: & =\sqrt{\frac{B\left(E 2 ; J_{i}^{\pi} \rightarrow 0_{1}^{+} ; e_{\mathrm{IS}}=1, e_{\mathrm{IV}}=0\right)}{B\left(E 2 ; J_{i}^{\pi} \rightarrow 0_{1}^{+} ; e_{\mathrm{IS}}=0, e_{\mathrm{IV}}=1\right)}} \\
& =\left|\frac{\left\langle 0_{1}^{+}\right| \hat{T}_{\mathrm{IS}}(E 2)\left|J_{i}^{\pi}\right\rangle}{\left\langle 0_{1}^{+}\right| \hat{T}_{\mathrm{IV}}(E 2)\left|J_{i}^{\pi}\right\rangle}\right| \tag{7}
\end{align*}
$$

Hence, the ratio $R_{\mathrm{E} 2}$ allows for a quantitative measure of the pn-symmetry of the wave function of the state J_{i}^{π} relative to the ground state: if the state J_{i}^{π} is characterized by a pn-symmetric wave function, J_{i}^{π} will be connected to the ground state via a dominant isoscalar E2 transition, so that $R_{\mathrm{E} 2}>1$, while $R_{\mathrm{E} 2}<1$ is obtained if the state J_{i}^{π} corresponds to an isovector valence-shell excitation. Note the similarity of Eq. (7) to the quantity which is frequently used in QPM calculations to quantify the isospin nature of the QRPA phonons, see, e.g., Refs. [70-72] and references therein.

Fig. 10 and Tab. IV show the $B(E 2)$ strengths of the five lowest-lying 2^{+}states to the ground state (Fig. 10 (a)), their $B(M 1)$ strengths to the 2_{1}^{+}state (Fig. 10 (b)), and the ratio $R_{\mathrm{E} 2}$ (Fig. 10 (c)). As expected from the discussion above, one obtains for the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition a value of $R_{\mathrm{E} 2}=9.8$ and thus, a dominant pnsymmetric character of the 2_{1}^{+}state. In contrast, a value of $R_{\mathrm{E} 2}=0.073$ indicates a dominant isovector character for the weakly-collective ground-state transition of the 2_{3}^{+}state. Along with the strong $2_{3}^{+} \rightarrow 2_{1}^{+} M 1$ transition, this manifests the one-phonon quadrupole mixedsymmetry character of the calculated 2_{3}^{+}state.

In the same way as discussed for the $E 2$ transition operator, the $E 4$ transition operator

$$
\begin{equation*}
\hat{T}(E 4)=e_{\pi} \hat{T}_{\pi}(E 4)+e_{\nu} \hat{T}_{\nu}(E 4) \tag{8}
\end{equation*}
$$

with $\hat{T}_{\rho}(E 4)=\sum_{i}\left(r_{i}^{\rho}\right)^{4} \hat{Y}_{4}\left(\theta_{i}^{\rho}, \phi_{i}^{\rho}\right)$, can be decomposed into an isoscalar and an isovector part, too. Thus, the ratio of the isoscalar and isovector transition matrix ele-

FIG. 10. Results of the shell-model calculations for the five lowest-lying 2^{+}states. (a) The calculated $E 2$ strengths to the ground state and (b) M1 strengths for the decay to the 2_{1}^{+} state are compared to the experimental data. Arrows indicate upper limits for the corresponding transition strengths. Based on their γ-decay properties, the 2_{1}^{+}and 2_{3}^{+}states are identified to be the one-phonon symmetric and mixed-symmetry excitations, respectively. (c) The calculated values of $R_{\mathrm{E} 2}$, that are based on SM $B(E 2)$ values, support the different proton-neutron symmetry of the wave functions of the 2_{1}^{+}and 2_{3}^{+}states. The dashed line separates the regions of dominant isovector and dominant isoscalar excitations from the ground state.
ments

$$
\begin{equation*}
R_{\mathrm{E} 4}:=\left|\frac{\left\langle 0_{1}^{+}\right| \hat{T}_{\mathrm{IS}}(E 4)\left|J_{i}^{\pi}\right\rangle}{\left\langle 0_{1}^{+}\right| \hat{T}_{\mathrm{IV}}(E 4)\left|J_{i}^{\pi}\right\rangle}\right| \tag{9}
\end{equation*}
$$

was calculated to investigate the proton-neutron symmetry of the wave functions of low-lying 4^{+}states. Similar to the 2^{+}states, the results are compiled in Fig. 11 and Tab. IV. A dominant isoscalar character is predicted for the $B(E 4)$ ground-state transition of the 4_{1}^{+}state $\left(R_{\mathrm{E} 4}=4.4\right)$. This indicates a proton-neutron symmetric wave function of the 4_{1}^{+}state which is supported by the large calculated $B\left(E 4 ; 4_{1}^{+} \rightarrow 0_{1}^{+}\right)$value of $9.86 \mathrm{~W} . u .$.

As already discussed, we identify the experimental 4_{2}^{+} state to be the calculated 4_{3}^{+}state because of its $M 1$ decay properties. Thus, in Fig. 11 (b) one should compare $B\left(M 1 ; 4_{2}^{+} \rightarrow 4_{1}^{+}\right)_{\text {exp }}$ with $B\left(M 1 ; 4_{3}^{+} \rightarrow 4_{1}^{+}\right)_{\mathrm{SM}}$. Note the small calculated $B\left(M 1 ; 4_{2}^{+} \rightarrow 4_{1}^{+}\right)$value of $3.0 \cdot 10^{-4} \mu_{\mathrm{N}}^{2}$. For the SM 4_{3}^{+}state, a dominant isovector character is obtained from the calculation ($R_{\mathrm{E} 4}=0.10$). Along with the large $B(M 1)$ transition strength to the 4_{1}^{+}

TABLE IV. Ratios $R_{\mathrm{E} 2}$ and $R_{\mathrm{E} 4}$ of the isoscalar and isovector SM matrix elements of ground-state transitions of low-lying 2^{+}and 4^{+}states, respectively. The ground-state transition strengths and the $M 1$ strengths for the decay to the 2_{1}^{+}and 4_{1}^{+} states are shown as well. For the 2_{3}^{+}and 4_{3}^{+}shell-model states a dominant isovector ground-state transition is obtained along with a sizeable $M 1$ strengths to the 2_{1}^{+}and 4_{1}^{+}states, respectively.

J_{i}^{π}	$R_{\mathrm{E} \lambda}$	$B\left(E \lambda ; J_{i}^{\pi} \rightarrow 0_{1}^{+}\right)$ $[\mathrm{W} . \mathrm{u}]$.	$B\left(M 1 ; J_{i}^{\pi} \rightarrow J_{1}^{\pi}\right)$ $\left[\mu_{N}^{2}\right]$
2_{1}^{+}	9.8	18.1	-
2_{2}^{+}	0.32	0.95	0.0012
2_{3}^{+}	0.073	1.50	0.72
2_{4}^{+}	0.81	0.047	0.24
2_{5}^{+}	0.55	$3.2 \cdot 10^{-5}$	0.011
4_{1}^{+}	4.4	9.86	-
4_{2}^{+}	1.3	7.20	$3.0 \cdot 10^{-4}$
4_{3}^{+}	0.10	0.81	1.32
4_{4}^{+}	0.030	0.48	0.0024
4_{5}^{+}	0.086	0.33	0.095

FIG. 11. Same as Fig. 10, but for the five lowest-lying 4^{+} states. While the 4_{1}^{+}state shows signatures of a symmetric one-phonon hexadecapole configuration, the γ-decay properties and the ratio $R_{\mathrm{E} 4}$ hint for a one-phonon hexadecapole configuration with mixed proton-neutron symmetry for the 4_{3}^{+}shell-model state, which we assign to the experimental 4_{2}^{+} state.
state and the weakly-collective ground-state transition,
this SM state matches the properties expected for a onephonon hexadecapole mixed-symmetry state in terms of decay properties and proton-neutron symmetry. In addition, the similarity to the one-phonon mixed-symmetry state in the quadrupole sector is striking. We note that even smaller values for $R_{\mathrm{E} 4}$ are obtained for the 4_{4}^{+}and 4_{5}^{+}states. However, their calculated $B(M 1)$ transition strengths to the 4_{1}^{+}state are at least one order of magnitude smaller compared to the calculated 4_{3}^{+}state and thus can be excluded as being a dominant fraction of the one-phonon hexadecapole mixed-symmetry state.

VII. COMPARISON TO ${ }^{92}$ ZR AND ${ }^{94} \mathrm{MO}$

With the new experimental data on one- and twophonon mixed-symmetry states, we perform a comparison of mixed-symmetry states of ${ }^{96} \mathrm{Ru}$ to the ones of the neighboring $N=52$ isotones ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$. In the case of ${ }^{92} \mathrm{Zr}$, the $Z=40$ sub-shell closure leads to a dominant neutron configuration for the 2_{2}^{+}state [73]. The breaking of F-spin symmetry caused by this unbalanced proton-neutron content in the wave function is referred to as configurational isospin polarization (CIP) [60, 73, 74]. However, the 2_{2}^{+}state of ${ }^{92} \mathrm{Zr}$ evolves into the collective mixed-symmetry states of ${ }^{94} \mathrm{Mo}$ and ${ }^{96} \mathrm{Ru}$ to which they are compared in this discussion. Therefore, the term "mixed-symmetry state" is used for the 2_{2}^{+}state of ${ }^{92} \mathrm{Zr}$ in the following, despite the presence of pronounced noncollective components. The first two rows of Fig. 12 show a compilation of experimental data on the excitation energies (left) and $M 1, E 1$, and $E 2$ transition strengths for the symmetric (s) and mixed-symmetric (ms) oneand two-phonon quadrupole states (right) for the nuclei ${ }^{92} \mathrm{Zr}$ [15], ${ }^{94} \mathrm{Mo}$ [14], and ${ }^{96} \mathrm{Ru}$ (this work). The corresponding values for the symmetric and mixed-symmetry one-phonon octupole and hexadecapole candidates are included in rows three and four, respectively. As expected for collective excitations, their excitation energies exhibit a smooth variation as a function of proton number.

For the one-phonon quadrupole excitations (top row), an increase of the $M 1$ strength is obtained for the $2_{1, \mathrm{~ms}}^{+} \rightarrow$ $2_{1, \mathrm{~s}}^{+}$transition towards the middle of the proton $g_{9 / 2}$ subshell. This is in contrast to the de-excitation of the 2^{+}and 3^{+}members of the mixed-symmetry two-phonon quintuplet to their symmetric counterparts, where the corresponding $M 1$ transition strengths decrease from ${ }^{94} \mathrm{Mo}$ to ${ }^{96} \mathrm{Ru}$ by about a factor of two and three, respectively. This decrease of $M 1$ strengths also holds for the candidates for the one-phonon octupole and hexadecapole states for which a maximum of the $M 1$ strength is obtained for ${ }^{94} \mathrm{Mo}$. While the $B(M 1)$ values for ${ }^{94} \mathrm{Mo}$ and ${ }^{96} \mathrm{Ru}$ are still comparable for the 4^{+}states, they decrease by a factor of three in the octupole sector. Interesting to note is also the evolution of the $3_{2}^{-} \rightarrow 2_{1}^{+} E 1$ transition strength which is predicted to be strong for a mixed-symmetry one-phonon octupole character of the

FIG. 12. Compilation of experimental data on one- and twophonon mixed-symmetry states of the $N=52$ isotones ${ }^{92} \mathrm{Zr}$, ${ }^{94} \mathrm{Mo}$, and ${ }^{96} \mathrm{Ru}$. The left panel shows the excitation energies while the $M 1, E 1$, and $E 2$ transition strengths are compiled in the right panel. Included are data on one-phonon quadrupole ($2_{1, \mathrm{~ms}}^{+}$) and two-phonon quadrupole $\left(2_{2, \mathrm{~ms}}^{+}, 3_{1, \mathrm{~ms}}^{+}\right)$ mixed-symmetry states in the first and second rows as well as data on candidates for one-phonon octupole (3_{2}^{-}) and hexadecapole mixed-symmetry states $\left(4_{2}^{+}\right)$in rows three and four. Data for ${ }^{92} \mathrm{Zr}$ and ${ }^{94} \mathrm{Mo}$ are taken from Refs. [14, 15].
3_{2}^{-}state in the $U_{\pi \nu}(1) \otimes U_{\pi \nu}(5) \otimes U_{\pi \nu}(7)$ limit of the $s d f-$ IBM-2. In the $N=52$ isotones, the corresponding $E 1$
strength decreases by more than two orders of magnitude from ${ }^{92} \mathrm{Zr}$ to ${ }^{96} \mathrm{Ru}$.

VIII. SUMMARY AND CONCLUSIONS

We studied collective low-spin excitations of ${ }^{96} \mathrm{Ru}$ by means of two inelastic proton-scattering experiments. Absolute $M 1, E 1$, and $E 2$ transition strengths were deduced from the combined experimental data of two experiments and allowed for a firm identification of the 2^{+}and 3^{+}members of the two-phonon mixed-symmetry quintuplet as well as candidates for one-phonon mixedsymmetry octupole and hexadecapole states. The origin of the strong $4_{2}^{+} \rightarrow 4_{1}^{+} M 1$ transition was investigated in the scope of shell-model calculations, that were performed with a realistic interaction. From the calculations, the pn symmetry of the wave functions of low-lying 2^{+}and 4^{+}states was extracted. The results indicate dominant pn-symmetric and mixed-symmetric configurations for the 4_{1}^{+}and 4_{2}^{+}states, supporting their symmetric and mixed-symmetry one-phonon hexadecapole interpretation. These findings are in line with the results obtained from $s d g$-IBM- 2 calculations. For a firm identification of hexadecapole contributions a measurement of $E 4$ transition strengths in ${ }^{96} \mathrm{Ru}$ is highly desirable. Experimentally, they are accessible, e.g., via inelastic electron and hadron scattering at higher energies, see, e.g., Ref. [75].

ACKNOWLEDGMENTS

The authors thank R. Casperson and S. Heinze for support with the IBM calculations as well as R.V. Jolos, A. Poves, and R. Schwengner for stimulating discussions. Furthermore, we highly acknowledge the support of the accelerator staff at WNSL, Yale and IKP, Cologne during the beam times, as well as H.W. Becker and D. Rogalla from the Ruhr-Universität Bochum for the assistance during the RBS measurement. This work is supported by the DFG under grant No. ZI 510/4-2, ZI 510/7-1, and SFB 634, the U.S. Department of Energy grant No. DE-FG02-01ER40609, and the BMBF grant No. 05P12RDFN8. D.R. and D.S. acknowledge the German Academic Exchange Service (DAAD) for financial support. S.G.P. and M.S. are supported by the BonnCologne Graduate School of Physics and Astronomy.
[1] A. Faessler, Nucl. Phys. 85, 653 (1966).
[2] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
[3] K. Heyde and J. Sau, Phys. Rev. C 33, 1050 (1986).
[4] A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).
[5] A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. B 66, 205 (1977).
[6] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A 309, 1 (1978).
[7] P. van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann. Phys. 171, 253 (1986).
[8] A. F. Lisetskiy, N. Pietralla, C. Fransen, R. V. Jolos, and P. von Brentano, Nucl. Phys. A 677, 100 (2000).
[9] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 62, 047302 (2000).
[10] N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008).
[11] N. Pietralla, C. Fransen, D. Belic, P. von Brentano, C. Frießner, U. Kneissl, A. Linnemann, A. Nord, H. H. Pitz, T. Otsuka, I. Schneider, V. Werner, and I. Wiedenhöver, Phys. Rev. Lett. 83, 1303 (1999).
[12] N. Pietralla, C. Fransen, P. von Brentano, A. Dewald, A. Fitzler, C. Frießner, and J. Gableske, Phys. Rev. Lett. 84, 3775 (2000).
[13] C. Fransen, N. Pietralla, P. von Brentano, A. Dewald, J. Gableske, A. Gade, A. F. Lisetskiy, and V. Werner, Phys. Lett. B 508, 219 (2001).
[14] C. Fransen, N. Pietralla, Z. Ammar, D. Bandyopadhyay, N. Boukharouba, P. von Brentano, A. Dewald, J. Gableske, A. Gade, J. Jolie, U. Kneissl, S. R. Lesher, A. F. Lisetskiy, M. T. McEllistrem, M. Merrick, H. H. Pitz, N. Warr, V. Werner, and S. W. Yates, Phys. Rev. C 67, 024307 (2003).
[15] C. Fransen, V. Werner, D. Bandyopadhyay, N. Boukharouba, S. R. Lesher, M. T. McEllistrem, J. Jolie, N. Pietralla, P. von Brentano, and S. W. Yates, Phys. Rev. C 71, 054304 (2005).
[16] V. Werner, D. Belic, P. von Brentano, C. Fransen, A. Gade, H. von Garrel, J. Jolie, U. Kneissl, C. Kohstall, A. Linnemann, A. F. Lisetskiy, N. Pietralla, H. H. Pitz, M. Scheck, K.-H. Speidel, F. Stedile, and S. W. Yates, Phys. Lett. B 550, 140 (2002).
[17] J. N. Orce, J. D. Holt, A. Linnemann, C. J. McKay, S. R. Lesher, C. Fransen, J. W. Holt, A. Kumar, N. Warr, V. Werner, J. Jolie, T. T. S. Kuo, M. T. McEllistrem, N. Pietralla, and S. W. Yates, Phys. Rev. Lett. 97, 062504 (2006).
[18] N. Pietralla, C. J. Barton, R. Krücken, C. W. Beausang, M. A. Caprio, R. F. Casten, J. R. Cooper, A. A. Hecht, H. Newman, J. R. Novak, and N. V. Zamfir, Phys. Rev. C 64, 031301(R) (2001).
[19] H. Klein, A. F. Lisetskiy, N. Pietralla, C. Fransen, A. Gade, and P. von Brentano, Phys. Rev. C 65, 044315 (2002).
[20] A. Linnemann, C. Fransen, M. Gorska, J. Jolie, U. Kneissl, P. Knoch, D. Mücher, H. H. Pitz, M. Scheck, C. Scholl, and P. von Brentano, Phys. Rev. C 72, 064323 (2005).
[21] K. Heyde, P. von Neumann-Cosel, and A. Richter, Rev. Mod. Phys. 82, 2365 (2010).
[22] G. Siems, U. Neuneyer, I. Wiedenhöver, S. Albers, M. Eschenauer, R. Wirowski, A. Gelberg, P. von Brentano, and T. Otsuka, Phys. Lett. B 320, 1 (1994).
[23] T. Otsuka and K.-H. Kim, Phys. Rev. C 50, R1768 (1994).
[24] N. Pietralla, P. von Brentano, R. F. Casten, T. Otsuka, and N. V. Zamfir, Phys. Rev. Lett. 73, 2962 (1994).
[25] M. Scheck, P. A. Butler, C. Fransen, V. Werner, and S. W. Yates, Phys. Rev. C 81, 064305 (2010).
[26] R. J. Casperson, V. Werner, and S. Heinze, Phys. Lett. B 721, 51 (2013).
[27] N. A. Smirnova, N. Pietralla, T. Mizusaki, and P. van Isacker, Nucl. Phys. A 678, 235 (2000).
[28] N. Pietralla, C. Fransen, A. Gade, N. A. Smirnova, P. von Brentano, V. Werner, and S. W. Yates, Phys. Rev. C 68, 031305(R) (2003).
[29] A. Hennig, M. Spieker, V. Werner, T. Ahn, V. Anagnostatou, N. Cooper, V. Derya, M. Elvers, J. Endres, P. Goddard, A. Heinz, R. O. Hughes, G. Ilie, M. N. Mineva, P. Petkov, S. G. Pickstone, N. Pietralla, D. Radeck, T. J. Ross, D. Savran, and A. Zilges, Phys. Rev. C 90, 051302(R) (2014).
[30] C. W. Beausang, C. J. Barton, M. A. Caprio, R. F. Casten, J. R. Cooper, R. Krücken, B. Liu, J. R. Novak, Z. Wang, M. Wilhelm, A. N. Wilson, N. V. Zamfir, and A. Zilges, Nucl. Instr. and Meth. A 452, 431 (2000).
[31] M. Elvers, S. Pascu, T. Ahmed, T. Ahn, V. Anagnostatou, N. Cooper, C. Deng, J. Endres, P. Goddard, A. Heinz, G. Ilie, E. Jiang, C. Küppersbusch, D. Radeck, D. Savran, N. Shenkov, V. Werner, and A. Zilges, Phys. Rev. C 84, 054323 (2011).
[32] K. S. Krane, R. M. Steffen, and R. M. Wheeler, At. Data Nucl. Data Tables 11, 351 (1973).
[33] P. J. Nolan and J. F. Sharpey-Schafer, Rep. Prog. Phys. 42, 1 (1979).
[34] T. K. Alexander and J. S. Forster, Adv. Nucl. Phys. 10, 197 (1978).
[35] S. G. Pickstone, V. Derya, A. Hennig, J. Mayer, M. Spieker, M. Weinert, J. Wilhelmy, and A. Zilges, EPJ Web of Conferences 93, 01053 (2015), Proceedings of the 15th international Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15).
[36] B. Hubbard-Nelson, M. Momayezi, and W. K. Warburton, Nucl. Instr. and Meth. A 422, 411 (1999).
[37] G. A. P. Engelbertink and G. van Middelkoop, Nucl. Phys. A 138, 588 (1969).
[38] G. G. Seaman, N. Benczer-Koller, M. C. Bertin, and J. R. MacDonald, Phys. Rev. 188, 1706 (1969).
[39] A. Hennig, V. Derya, M. N. Mineva, P. Petkov, S. G. Pickstone, M. Spieker, and A. Zilges, Nucl. Instr. and Meth. A 794, 171 (2015).
[40] P. Petkov, J. Gableske, O. Vogel, A. Dewald, P. von Brentano, R. Krücken, R. Peusquens, N. Nicolay, A. Gizon, J. Gizon, D. Bazzacco, C. Rossi-Alvarez, S. Lunardi, P. Pavan, D. R. Napoli, W. Andrejtscheff, and R. V. Jolos, Nucl. Phys. A 640, 293 (1998).
[41] G. Winter, Nucl. Instr. and Meth. 214, 537 (1983).
[42] G. Winter, ZfK Rossendorf Report ZfK-497, 1 (1983).
[43] L. C. Northcliffe and R. F. Schilling, At. Data Nucl. Data Tables 7, 233 (1970).
[44] J. F. Ziegler and W. K. Chu, At. Data Nucl. Data Tables 13, 463 (1974).
[45] J. F. Ziegler and J. P. Biersack, Treatise on Heavy-Ion Science, vol. 6 (Plenum Press, New York, 1985) p. 95, D. A. Bromley (Ed.).
[46] J. Lindhard, M. Scharff, and H. E. Schiøtt, Mat. Fys. Medd., Dan. Vid. Selsk. 33, 1 (1963).
[47] W. M. Currie, Nucl. Instr. and Meth. 73, 173 (1969).
[48] J. Lange, J. Neuber, P. Tendler, C. D. Uhlhorn, A. T. Kandil, and H. V. Buttlar, Nucl. Phys. A 330, 29 (1979).
[49] E. Adamides, J. Sinatkas, L. D. Skouras, A. C. Xenoulis, E. N. Gazis, C. T. Papadopoulos, and R. Vlastou, Phys. Rev. C 34, 791 (1986).
[50] D. Abriola and A. Sonzogni, Nucl. Data Sheets 109, 2501 (2008).
[51] S. Landsberger, R. Lecomte, P. Paradis, and S. Monaro, Phys. Rev. C 21, 588 (1980).
[52] P. O. Lipas, Nucl. Phys. 82, 91 (1966).
[53] P. Vogel and L. Kocbach, Nucl. Phys. A 176, 33 (1971).
[54] M. Wilhelm, S. Kasemann, G. Pascovici, E. Radermacher, P. von Brentano, and A. Zilges, Phys. Rev. C 57, 577 (1998).
[55] U. Kneissl, H. H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 349 (1996).
[56] N. Pietralla, Phys. Rev. C 59, 2941 (1999).
[57] W. Andrejtscheff, C. Kohstall, P. von Brentano, C. Fransen, U. Kneissl, N. Pietralla, and H. H. Pitz, Phys. Lett. B 506, 239 (2001).
[58] M. Babilon, T. Hartmann, P. Mohr, K. Vogt, S. Volz, and A. Zilges, Phys. Rev. C 65, 037303 (2002).
[59] N. Pietralla, P. von Brentano, A. Gelberg, T. Otsuka, A. Richter, N. A. Smirnova, and I. Wiedenhöver, Phys. Rev. C 58, 191 (1998).
[60] J. D. Holt, N. Pietralla, J. W. Holt, T. T. S. Kuo, and G. Rainovski, Phys. Rev. C 76, 034325 (2007).
[61] N. Boelaert, N. Smirnova, K. Heyde, and J. Jolie, Phys. Rev. C 75, 014316 (2007).
[62] K. Sieja, G. Martínez-Pinedo, L. Coquard, and N. Pietralla, Phys. Rev. C 80, 054311 (2009).
[63] C. Plettner, L. Batist, J. Döring, A. Blazhev, H. Grawe, V. Belleguic, C. R. Bingham, R. Borcea, M. Gierlik, M. Górska, N. Harrington, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, and R. Schwengner, Phys. Rev. C 66, 044319 (2002).
[64] B. A. Brown and W. D. M. Rae, Nushell@MSU, MSUNSCL report (2007).
[65] H. Grawe and M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).
[66] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rev. 261, 125 (1995).
[67] A. Blazhev, private communication (2015).
[68] D. Radeck, M. Albers, C. Bernards, L. Bettermann, A. Blazhev, C. Fransen, S. Heinze, J. Jolie, and D. Mücher, Nucl. Phys. A 821, 1 (2009).
[69] D. Radeck, A. Blazhev, M. Albers, C. Bernards, A. Dewald, C. Fransen, M. Heidemann, J. Jolie, B. Melon, D. Mücher, T. Pissulla, W. Rother, K. O. Zell, and O. Möller, Phys. Rev. C 80, 044331 (2009).
[70] R. Nikolaeva, Ch. Stoyanov, and A. I. Vdovin, Eur. Phys. Lett. 8, 117 (1989).
[71] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 69, 044312 (2004).
[72] N. Lo Iudice, V. Yu. Ponomarev, Ch. Stoyanov, A. V. Sushkov, and V. V. Voronov, J. Phys. G 39, 043101 (2012).
[73] V. Werner, N. Benczer-Koller, G. Kumbartzki, J. D. Holt, P. Boutachkov, E. Stefanova, M. Perry, N. Pietralla, H. Ai, K. Aleksandrova, G. Anderson, R. B. Cakirli, R. J. Casperson, R. F. Casten, M. Chamberlain, C. Copos, B. Darakchieva, S. Eckel, M. Evtimova, C. R. Fitzpatrick, A. B. Garnsworthy, G. Gürdal, A. Heinz, D. Kovacheva, C. Lambie-Hanson, X. Liang, P. Manchev, E. A. McCutchan, D. A. Meyer, J. Qian, A. Schmidt, N. J. Thompson, E. Williams, and R. Winkler, Phys. Rev. C 78, 031301 (2008).
[74] A. P. Severyukhin, N. N. Arsenyev, N. Pietralla, and V. Werner, Phys. Rev. C 90, 011306 (2014).
[75] M. Pignanelli, N. Blasi, S. Micheletti, R. D. Leo, L. LaGamba, R. Perrino, J. A. Bordewijk, M. A. Hofstee, J. M. Schippers, S. van der Werf, J. Wesseling, and M. N. Harakeh, Nuclear Physics A 540, 27 (1992).

[^0]: * hennig@ikp.uni-koeln.de
 ${ }^{\dagger}$ Present address: Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA.

