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We implemented a variation after projection (VAP) algorithm based on a triaxially deformed
Hartree-Fock-Bogoliubov vacuum state. This is the first projected mean field study that includes
all the quantum numbers (except parity), i.e., spin (J), isospin (T ) and mass number (A). Systematic
VAP calculations with JTA-projection have been performed for the even-even sd-shell nuclei with
the USDB Hamiltonian. All the VAP ground state energies are within 500 keV above the exact
shell model values. Our VAP calculations show that the spin projection has two important effects:
(1) the spin projection is crucial in achieving good approximation of the full shell model calculation.
(2) the intrinsic shapes of the VAP wavefunctions with spin projection are always triaxial, while
the Hartree-Fock-Bogoliubov methods likely provide axial intrinsic shapes. Finally, our analysis
suggests that one may not be possible to associate an intrinsic shape to an exact shell model wave
function.

PACS numbers: 21.60.Jz,21.60.Cs,21.10.Hw

I. INTRODUCTION

Hartree-Fock-Bogoliubov (HFB) method has been very
successful in describing the global properties of the
ground states throughout the whole nuclear region. As
a mean field method, HFB breaks the symmetries of the
nuclear system, and can be used to study the intrinsic
shapes. The HFB calculations with Gogny force show
that almost all the calculated 1712 nuclei have axially
symmetric HFB minima[1].

Projection can be done on a HFB vacuum to recover
the symmetries that the Hamiltonian obeys. To test the
quality of the projected wavefunctions, one can compare
them with the exact shell model ones using a common
Hamiltonian. HFB and variation after projected HFB
calculations with shell model Hamiltonians have been re-
ported by several authors [2–5]. For those calculations
without projection, the HFB vacuum states are often as-
sumed to be axially symmetric [4]. Indeed, we will see
below that all the calculated HFB minima in sd-shell
nuclei, except 24Mg, are exactly axial with the USDB
Hamiltonian [6].

However, if one performs the variation of the projected
HFB vacuum, usually called variation after projection
(VAP) [7], it is likely that the intrinsic shape may changes
due to the inclusion of beyond mean field correlations.
One typical example is the ground state (g.s.) of 32Mg,
which is predicted to be spherical at the mean field level
[8], but it turns out to have a quadrupole deformation
when the correlations associated with the restoration of
the broken rotational symmetry are considered [9]. An-
other example is 56Ni, whose ground state is spherical
at the mean field level, but is slightly deformed when
performing the projected energy surface calculation [10].

Moreover, the triaxial (γ) degree of freedom plays im-
portant roles on the low-lying collective dynamics in this
mass region [12]. In 24Mg the possibility of the triaxial

deformation in the ground state was discussed for decades
[13–15], and it is still being used as the testing ground
for modern theories involving angular momentum (spin)
projection [16–18].
In this work, we perform VAP calculations of the even-

even sd-shell nuclei using the USDB Hamiltonian. Here,
we allow the γ degree of freedom in the HFB transfor-
mation. The shell model Hamiltonian conserves the spin
(J), isospin (T ), as well as the mass number (A). Hence
a complete projection should recover all J, T , and A
quantum numbers. This is generally very much time-
consuming because of the 7-dimensional integration ( 3
for J , 3 for T , and 1 for A). Presently, we can only carry
out such extensive studies in the sd shell. For efficiency,
we use the new techniques of Refs. [19–21] to evaluate
the kernels for projections.

II. THE VAP METHOD

From a randomly chosen HFB vacuum state |Φ0〉, one
can construct a new HFB vacuum state |Φ〉 using the
Thouless theorem [7]. Namely,

|Φ〉 = N e
1

2

∑
µν dµνa

†
µa

†
ν |Φ0〉, (1)

where d is a skew symmetric matrix, andN is the normal-
ization factor. The triaxiality of the HFB vacuum can be
treated similar to Ref. [22] so that the Q2±1 components
of the quadrupole moment vanish.
Projecting |Φ〉 onto good quantum numbers J , T , and

A, one gets the so called JTA-projection (similarly, TA-
projection for T,A, etc.). The JTA-projected wavefunc-
tion can be written as

|ΨJTA,MMT
〉 =

∑

KKT

fKKT
P J
MKPT

MTKT
PA|Φ〉 (2)
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where P J
MK , PT

MT KT
and PA are the spin, isospin and

mass number projection operators, respectively. The
isospin projection operator is similar to the spin projec-
tion operator but in the isospin space. The corresponding
JTA-projected energy is

EJTA = 〈ΨJTA,MMT
|Ĥ |ΨJTA,MMT

〉
=

∑

K′KK′
T
KT

f∗
K′K′

T
fKKT

〈Φ|ĤP J
K′KPT

K′
T
KT

PA|Φ〉.

(3)

EJTA and the corresponding coefficients fKKT
are ob-

tained by solving

∑

KKT

〈Φ|(Ĥ − EJTA)P
J
K′KPT

K′
T
KT

PA|Φ〉fKKT
= 0, (4)

with fKKT
satisfying

∑

K′KK′
T
KT

f∗
K′K′

T
fKKT

〈Φ|P J
K′KPT

K′
T
KT

PA|Φ〉 = 1. (5)

One can also perform the TA-projection by simply re-
moving the spin projection from Eqs. (2-5),

|ΨTA,MT
〉 =

∑

KT

fKT
PT
MTKT

PA|Φ〉, (6)

ETA = 〈ΨTA,MT
|Ĥ |ΨTA,MT

〉
=

∑

K′
T
KT

f∗
K′

T
fKT

〈Φ|ĤPT
K′

TKT
PA|Φ〉. (7)

For the A-projection, the corresponding energy, EA, is
reduced to

EA =
〈Φ|ĤPA|Φ〉
〈Φ|PA|Φ〉 . (8)

Without any projection, we define

EHFB = 〈Φ|Ĥ |Φ〉. (9)

It is natural that one may consider the neutron (N)
and proton (Z) projection, as has been done in Refs.
[2, 5]. However, this is essentially the same as the MTA-
projection (MT = (N − Z)/2). Here, we prefer to take
TA-projection to recover the total isospin symmetry. In
our case, the MT -projection is no longer necessary be-
cause the total isospin and the mass number are good
quantum numbers. Thus all quantum numbers J, T ,N
and Z (parity is automatically good in the sd valence
space) have been recovered in the present work. The sd
valence space wave functions have the center-of-mass in
its g.s., provided that harmonic oscillator single particle
wave functions are considered.
VAP calculations can be performed by changing the d

matrix in Eq.(1). Here, we impose the following restric-
tions for the d matrix: (1) d is real, (2) keeping the time

reversal symmetry, and (3) no mixing between neutron
and proton in the HFB transformation. Therefore the
total number of free VAP parameters for sd-shell is re-
duced to NV AP = 42. In practice we start with d = 0
and with Nilsson+BCS vacuum states |Φ0〉 obtained with
randomly chosen quadrupole parameters [10]. The triax-
ial degree of freedom is also allowed in |Φ0〉.
We follow the VAP algorithm whose details were in-

troduced in Ref. [5]. Here are the main steps used in
our VAP calculations. Given a certain d matrix, one
can get the corresponding HFB transformation for the
vacuum |Φ〉 [5]. Solving Eq. (4), one can obtain sev-
eral EJTA eigen-energies for the single |Φ〉. The lowest
EJTA and the corresponding coefficients fKKT

are con-
sidered. Having fixed all fKKT

, one can evaluate the
partial derivatives ∂EJTA

∂dµν
whose expression can be ob-

tained from Eq.(3) [5]. If EJTA reaches a minimum, then
∂EJTA

∂dµν
≈ 0 for all selected dµν parameters and the VAP

calculation terminates. Otherwise, we continue to search
for a minimum using a gradient method [11] that updates
the d matrix and is going to the next iteration.
To extract the intrinsic shape, the quadrupole moment

and the triaxial degree of freedom, Q and γ, are defined
such that

Q cosγ = 〈Ψ|
√

16π

5

r2

b2
Y20|Ψ〉, (10)

Q sin γ = 〈Ψ|
√

16π

5

r2

b2
1√
2
(Y22 + Y2−2)|Ψ〉, (11)

where b is the harmonic oscillator length. |Ψ〉 refers to
an intrinsic state, which may have different forms. Ex-
plicitly, we define,
(1) QHFB and γHFB for |Ψ〉 = |Φ〉,
(2) QA and γA for |Ψ〉 = PA|Φ〉√

〈Φ|PA|Φ〉
, and

(3) QTA and γTA for |Ψ〉 = |ΨTA,MT
〉,

III. VAP CALCULATIONS FOR 24MG

When performing the energy variation, one may find
that there might be more than one energy minima.
Therefore, the energy variation should be calculated sev-
eral times with different starting |Φ0〉 states which are
randomly chosen. We then identify the lowest minimum,
and denote it with E∗. Here and below, we only discuss
the results corresponding to E∗.
In the present work, we adopt the USDB Hamiltonian

[6]. The HFB energy for 24Mg is E∗
HFB = −80.965 MeV

with the constraints 〈Φ|N̂ |Φ〉 = N and 〈Φ|Ẑ|Φ〉 = Z.
This is the only sd-shell nucleus for which the HFB cal-
culation gives a non-axial shape with Q∗

HFB = 18.659
and γ∗

HFB = 11.96◦ (here and below the Q∗ and γ∗ are
the shape parameters that can be associated with the
absolute minimum for some VAP choice). Let’s first do
the simplest VAP with only A-projection (called VAP-
A). Since the particle number is already projected out, it
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TABLE I: Results of the VAP-A calculations for 24Mg. We
perform the VAP calculations for several times. Each time we
start with different |Φ0〉 states. The numbers in the first col-
umn denote different |Φ0〉 states. The second column shows
the converged energy E∗

A. Quantities in other columns are cal-
culated with the converged |Φ〉 vacua. Energies are in MeV.

|Φ0〉 E∗

A QA γA(
◦) EHFB QHFB γHFB(

◦) 〈Â〉
1 -81.358 18.284 10.05 -81.008 18.005 9.46 8.110
2 -81.358 18.284 130.05 -90.178 18.371 128.94 9.013
3 -81.358 18.284 -109.95 -82.684 18.120 -110.61 8.259
4 -81.358 18.284 10.05 -79.720 17.905 9.05 8.000

might be unnecessary to impose a constraint to the aver-
age particle number of the HFB vacuum. To check this
conjecture, we start from several different |Φ0〉 states and
perform VAP-A. The results for few selected |Φ0〉 choices
are shown in Table I. One can see that the VAP-A en-
ergies are identical (E∗

A = −81.358 MeV). However, the

corresponding EHFB , QHFB , γHFB and 〈Â〉 ≡ 〈Φ|Â|Φ〉
appear randomly, but after the A-projection, the QA val-
ues are the same. Although the γA values look different,
the numbers indicate the same shape but with different
orientations. All these results imply that although the
converged vacua |Φ〉 are not unique, they correspond to
the same A-projected state. This can be further con-
firmed by calculating the overlaps between these pro-
jected states corresponding to different |Φ〉. Our calcula-
tions show that all these overlaps among the converged
HFB vacua in Table I are found to be 1 except for an
arbitrary phase, i.e.

〈Φ|PA|Φ′〉
√

〈Φ|PA|Φ〉〈Φ′|PA|Φ′〉
= eiδ, (12)

where δ is a real number. |Φ〉 and |Φ′〉 are different con-
verged HFB vacua, but |Φ′〉 is the reoriented one whose
γA value should be the same as for |Φ〉.
Therefore, one can adopt the values Q∗

A = 18.284 and
γ∗
A = 10.05 to define the shape of the VAP-A minimum.

If one imposes 〈Â〉 = A = 8, we still have E∗
A = −81.358

MeV, now the converged |Φ〉 vacuum becomes unique,
with EHFB = −79.720, QHFB = 17.905, and γHFB =
9.05◦ (see the last line in Table I). However, for the
VAP with TA-projection, the situation becomes a little
different.

VAP calculations with TA-projection (called VAP-TA)
are listed in Table II. Unlike VAP-A, even if one imposes
〈Â〉 = A = 8 for 24Mg, the converged |Φ〉 is still not
unique as the EHFB energy appears randomly. Moreover,
the EA energy is not unique either. Interestingly, after
TA-projection, those different |Φ〉 vacuum states have
exactly the same projected energy E∗

TA = −82.831(MeV)
and the same Q∗

TA = 17.295. Similarly, we found (after
rotation) γ∗

TA = 0.09◦, which describes an almost axial-
shape. Again, our calculations show that the overlaps of

the TA-projected states satisfy

〈ΨTA,MT
|Ψ′

TA,MT
〉

=
∑

KTK′
T

f∗
KT

f ′
K′

T
〈Φ|PT

KTK′
T
PA|Φ′〉 = eiδ, (13)

where |Φ′〉 generating |Ψ′
TA,MT

〉 should be treated similar

to that in Eq.(12). One can conclude that those VAP-TA
projected states in Table II are essentially identical and
the associated shape can only be described by QTA and
γTA.
A complete symmetry restoration is the JTA-

projection. VAP results with JTA-projection (called as
VAP-JTA) are shown in Table III. All the converged
E∗

JTA energies are −86.919 MeV, significantly closer to
the shell model result ESM = −87.105MeV. Overlap cal-
culations clearly confirm that those JTA-projected states
are identical, i.e.

〈ΨJTA,MMT
|Ψ′

JTA,MMT
〉

=
∑

KKTK′K′
T

f∗
KKT

f ′
K′K′

T
〈Φ|P J

KK′PT
KTK′

T
PA|Φ′〉

= eiδ. (14)

Here, |Φ′〉 does not need to be reoriented due to the in-
clusion of the spin projection.
Again, both EA and EHFB in Table III can not be

uniquely determined, even if one enforces the 〈Â〉 = A
constraint. Fortunately, with the additional spin pro-
jection, all ETA values are found to be −79.879 MeV,
and similarly the corresponding shape is described by
QTA = 19.057 and γTA = 16.96◦. Therefore, the quanti-
ties that can be associated with the shape of VAP-JTA
wavefunction should be Q∗

TA = 19.057 and γ∗
TA = 16.96◦.

One can study the shape evolution of 24Mg from HFB
to VAP-JTA. In VAP-TA, Q∗

TA looks smaller than Q∗
HFB

in HFB, and γ∗
TA tends to be close to zero (axial shape).

However in VAP-JTA, Q∗
TA is larger than the Q∗

HFB in
HFB, and γ∗

TA tends to describe a triaxial shape. This
triaxiality in VAP-JTA, in comparison with VAP-TA, is
likely caused by the spin projection. Nuclear triaxiality
caused by the spin projection has been previously dis-
cussed by several authors [16–18, 23–25]. To determine if
this phenomenon is more general, we performed system-
atic VAP calculations for a larger number of even-even
sd-shell nuclei.

IV. VAP CALCULATIONS FOR EVEN-EVEN

sd-SHELL NUCLEI

VAP calculations have been performed for the ground
states of even-even sd-shell nuclei. The calculated ener-
gies relative to the shell model ones are shown in Figure
1a. The numerical results are given in Table IV. Here,
we didn’t include the Oxygen isotopes and the N = 20
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TABLE II: Similar to Table. I but for the VAP-TA calculations. 〈A〉 = 8 is imposed.

|Φ0〉 E∗

TA(MeV) QTA γTA(
◦) EA(MeV) QA γA(

◦) EHFB(MeV) QHFB γHFB(
◦) 〈A〉

1 -82.831 17.295 -119.91 -75.826 16.376 -118.62 -74.921 15.755 -118.23 8.000
2 -82.831 17.295 0.09 -74.402 16.167 2.47 -73.909 15.563 3.06 8.000
3 -82.831 17.295 120.09 -76.633 16.526 120.09 -75.525 15.897 120.08 8.000

TABLE III: Similar to Table. I but for the VAP-JTA calculations. 〈A〉 = 8 is imposed.

|Φ0〉 E∗

JTA(MeV) ETA(MeV) QTA γTA(
◦) EA(MeV) QA γA(

◦) EHFB(MeV) QHFB γHFB(
◦) 〈A〉

1 -86.919 -79.879 19.057 -16.964 -75.600 17.482 -20.225 -73.781 16.230 -23.772 8.000
2 -86.919 -79.879 19.057 -16.963 -75.641 17.510 -20.119 -73.830 16.264 -23.604 8.000
3 -86.919 -79.879 19.057 -16.963 -75.644 17.520 -20.068 -73.845 16.281 -23.506 8.000

isotones because their VAP-JTA energies are exactly the
same as the shell model results (ESM ). This special case
is discussed below. The VAP-JTA energies are much
lower than those of HFB and VAP-TA. Moreover, The
VAP-JTA energies for 20Ne, 28Ne, and 36Ar nuclei are ex-
actly the same as the shell model results (see also Figure
1b). This can be understood by comparing the number
of VAP parameters, NV AP , with the shell model dimen-
sion, NJT (the total number of the independent basis
states with good JT ). Here, NV AP = 42. The NJT val-
ues with J = 0 and T = 0 for both 20Ne and 36Ar are
only 21. For 28Ne, NJT for J = 0 and T = 4 is 43. It
looks that when NJT is less than, or close to NV AP , then
the VAP-JTA energy is likely to be the same as the shell
model one. Indeed, for all even-even oxygen isotopes and
for the N = 20 isotones, for which NJT ≤ NV AP , we
have obtained E∗

JTA = ESM . In Figure 1b, one can also
see that the energy difference E∗

JTA−ESM increases with
NJT . The largest E

∗
JTA−ESM = 0.446 MeV is obtained

for 26Mg, corresponding to the largest NJT = 1132.

The quadrupole moment and the γ degree of freedom
can be extracted using Eqs. (10) and (11). In Fig. 2a,
the γ∗

HFB values in HFB are either 0◦ or 60◦, except
γ∗
HFB = 12◦ for 24Mg, thus supporting the conclusion

that HFB likely presents axially deformed shapes. In
Fig. 2b, the shapes in VAP-TA calculations still remain
axially symmetric, except for 26Mg, which has γ∗

TA =
25.7◦. Quite differently, the γ∗

TA values in the VAP-JTA
calculations (Fig. 2c) show that all these nuclei are non-
axial without exception. Comparing these results with
those of Fig. 2a, one can conclude that the triaxiality in
VAP-JTA is definitely a beyond mean-field effect, which
is likely to be a universal phenomenon. Fig. 2b, however,
excludes the possibility that the isospin projection and
the mass projection lead to triaxiality. Thus, the only
possible cause of the triaxiality is the beyond mean-field
spin projection.

To study directly the effect of spin projection, one can
start from a Hartree-Fock (HF) Slater determinant (SD)
and perform VAP calculations with only spin projection
(called VAP-HF). The converged energies, E∗

PHF , rela-
tive to ESM , are shown in Fig. 1a. The results show
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FIG. 1: (Color online) (a) Calculated ground state energies
relative to the shell model results, ESM . (b) Relative VAP-
JTA energy, E∗

JTA −ESM , versus the shell model dimension,
NJT , in JT subspace.

that VAP-HF is better than VAP-TA, and quite close
to the VAP-JTA. The quadrupole moment Q∗

PHF and
γ∗
PHF corresponding to E∗

PHF can be calculated using
Eqs. (10) and (11) with |Ψ〉 replaced by the converged
SD. These quantities are uniquely determined, and are
shown in Fig. 2d. Again, all the γ∗

PHF values are dis-
tributed in the interval (0◦, 60◦), which is very similar
to Fig. 2c. Therefore, we could conclude that VAP re-
sults that include spin projection can always be associ-
ated with intrinsic states having triaxial deformation.

One more interesting phenomenon, however, is re-
lated to the VAP-JTA calculations for 20Ne, 28Ne, and
36Ar. We have shown above that the E∗

JTA energies of
these nuclei are the same as the exact shell model re-
sults. Surprisingly, the corresponding QTA and γTA val-
ues are not unique, which is quite different from other
nuclei with E∗

JTA > ESM . For example, the results for
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TABLE IV: Converged energies and associated shape parameters for even-even sd-shell nuclei calculated with the USDB
Hamiltonian.

Nucleus VAP-JTA VAP-TA HFB VAP-HF
NJT ESM E∗

JTA Q∗

TA γ∗

TA E∗

TA Q∗

TA γ∗

TA E∗

HFB Q∗

HFB γ∗

HFB E∗

PHF Q∗

PHF γ∗

PHF

20Ne 21 -40.472 -40.472 – – -37.069 14.7 0.0 -36.404 15.3 0.0 -40.265 13.861 3.551
22Ne 148 -57.578 -57.501 12.1 13.8 -54.572 15.8 0.0 -53.474 16.5 0.0 -56.958 15.675 8.632
24Ne 287 -71.725 -71.570 11.0 30.1 -68.084 10.1 60.0 -66.402 12.0 0.0 -71.037 13.449 32.786
26Ne 191 -81.564 -81.465 9.2 28.4 -78.949 8.6 0.0 -77.518 8.3 0.0 -80.988 9.760 17.265
28Ne 43 -86.543 -86.543 – – -84.920 7.0 60.0 -83.949 7.1 0.0 -86.294 9.848 23.934
24Mg 325 -87.105 -86.919 19.1 17.0 -82.831 17.3 0.0 -80.965 18.7 12.0 -86.636 19.165 16.427
26Mg 1132 -105.521 -105.075 15.8 28.7 -100.648 13.8 25.7 -98.992 15.9 60.0 -104.264 16.238 32.331
28Mg 874 -120.500 -120.205 14.5 20.2 -117.091 14.4 0.0 -115.625 15.1 0.0 -119.354 16.306 19.835
30Mg 191 -130.474 -130.400 10.4 20.0 -128.035 10.3 0.0 -126.735 10.9 0.0 -129.926 11.864 27.322
28Si 839 -135.860 -135.539 16.1 58.6 -131.501 17.8 60.0 -130.021 19.8 60.0 -134.617 17.116 58.038
30Si 1132 -154.754 -154.402 14.3 47.0 -150.380 10.6 60.0 -148.475 14.5 60.0 -153.777 14.633 46.167
32Si 287 -170.519 -170.373 12.5 58.2 -167.721 10.6 60.0 -166.344 12.4 60.0 -169.996 12.175 52.023
32S 325 -182.452 -182.234 15.1 33.3 -179.925 0.6 60.0 -176.393 0.0 0.0 -181.856 14.681 33.188
34S 148 -202.504 -202.380 10.6 53.0 -200.331 0.0 0.0 -198.493 0.0 0.0 -202.039 11.496 50.992
36Ar 21 -230.277 -230.277 – – -228.355 0.0 0.0 -226.611 13.2 60.0 -230.112 12.068 52.293
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FIG. 2: (Color online) Associated intrinsic quadrupole mo-
ments Q and γ for (a) HFB vacuum states, (b) VAP-TA
states, (c) VAP-JTA states and (d) VAP-HF states which
is based on a slater determinant.

20Ne are shown in Table V. With the same converged
E∗

JTA = −40.472MeV, one can clearly see that starting
with different initial states |Φ0〉, the result for QTA and
γTA could be different. These results indicate that it may
not be possible to associate an unique intrinsic deforma-
tion with an exact eigenstate of the Hamiltonian.

TABLE V: VAP results with JTA projection for 20Ne.

|Φ0〉 E∗

JTA(MeV) ETA(MeV) QTA γTA(
◦)

1 -40.472 -28.284 6.314 -45.134
2 -40.472 -30.468 11.873 -124.746
3 -40.472 -27.932 9.876 2.592

V. SUMMARY

We implemented an algorithm that performs variation
after projection (VAP) on spin, isospin, and mass number
of a triaxially deformed Hartree-Fock-Bogoliubov vac-
uum state. This is the first projected mean field study
that includes all these quantum numbers.

We start from a randomly chosen HFB vacuum state
and carry out VAP calculations for 24Mg in sd-shell with
various projections. In the VAP-A case the converged
solution is independent of the Fermi level (chemical po-
tential). Although the associated HFB vacuum does not
have definite quadrupole moment QHFB and triaxial de-
formation parameter γHFB , one can use the unique QA

and γA to describe the intrinsic deformation of the VAP-
A state. Similarly, in the VAP-TA calculations, QA and
γA can not be uniquely determined, but QTA and γTA

are unique and can be associated with the intrinsic defor-
mation of the VAP-TA state. It is not possible to directly
define deformation parameters Q and γ for the VAP-JTA
wave function, which has the symmetries fully restored,
but the QTA and γTA calculated with the VAP-JTA vac-
uum state |Φ〉 are also unique, and can be associated with
the intrinsic deformation of the VAP-JTA state.

Systematical VAP calculations of even-even sd-shell
nuclei have been performed using the USDB Hamilto-
nian. The VAP-JTA energies, E∗

JTA, are very close to
the shell model results, ESM . Moreover, the relative en-
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ergy, E∗
JTA−ESM , increases with the shell model dimen-

sion NJT . The shapes described by the HFB minima are
always axial. However, with spin projection VAP calcu-
lations always produce triaxial shapes. We believe that
such triaxiality is an universal phenomenon caused by
the beyond mean-field dynamic correlations. Finally, we
show that those VAP-JTA states reaching the exact shell
model results do not have clearly defined intrinsic shapes.
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