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We develop an effective field theory (EFT) for nuclear vibrations. The key ingredients –
quadrupole degrees of freedom, rotational invariance, and a breakdown scale around the three-
phonon level – are taken from data. The EFT is developed for spectra and electromagnetic moments
and transitions. We employ tools from Bayesian statistics for the quantification of theoretical uncer-
tainties. The EFT consistently describes spectra and electromagnetic transitions for 62Ni, 98,100Ru,
106,108Pd, 110,112,114Cd, and 118,120,122Te within the theoretical uncertainties. This suggests that
these nuclei can be viewed as anharmonic vibrators.

I. INTRODUCTION

The quest for quadrupole vibrations in atomic nuclei is
a long and confusing one. Based on the groundbreaking
work by Bohr and Mottelson [1–3], low-energy excita-
tions of atomic nuclei are viewed as quadrupole oscilla-
tions of the liquid-drop surface. This approach suggests
that some spherical nuclei can be viewed as harmonic
quadrupole oscillators, i.e. the five-dimensional U(5)
symmetric harmonic oscillator determines their spectra
and low-lying transitions. Cadmium isotopes, for in-
stance, have been employed as textbook cases of vi-
brational motion [3–5]. While corresponding harmonic
spectra (including one-, two-, and possibly three-phonon
states) were early identified in several nuclei, B(E2) tran-
sition strengths exhibit considerable deviations from the
predictions of the harmonic quadrupole oscillator, see,
e.g. Refs. [6–17] for recent references to a long-standing
problem [3, 18]. Proposed anharmonicities were deemed
insufficient to account for the considerable differences be-
tween data and the harmonic model [3, 19]. Particu-
larly concerning were the considerable variance between
B(E2) strengths for decays from two-phonon states (pre-
dicted to be equal), and the relatively large diagonal
quadrupole matrix elements of low-lying 2+ and 4+ states
(predicted to vanish), see, e.g. Refs. [20–22]. The ob-
served deviations from the harmonic quadrupole oscil-
lator are sometimes attributed to deformation of these
thought-to-be spherical nuclei.

Based on the data it is clear that harmonic quadrupole
vibrations have not (yet) been observed in atomic nuclei.
It is not clear, however, how to understand the vibra-
tional spectra that are evident in many nuclei. In this
paper, we revisit nuclear vibrations within an effective
field theory (EFT). The key ingredients of the EFT –
quadrupole degrees of freedom, spherical symmetry, the
separation of scales between low-lying collective excita-
tions and a breakdown scale at about the three-phonon
level – are consistent with data for spins and parities
of low-lying states in the nuclei we wish to describe.
The low-energy scale is approximately ω ≈ 0.6 MeV in
nuclei of mass number 100, while the breakdown scale
Λ ≈ 3ω is due to pairing effects and other excluded

physics. At leading order (LO), the EFT yields the
harmonic quadrupole oscillator. The breakdown scale is
based on the observed proliferation of states at about the
three-phonon level, which is clearly incompatible with the
expectations from the LO Hamiltonian. In an EFT, cor-
rections to the LO Hamiltonian are due to the excluded
physics beyond the breakdown scale. A power counting
can be used to estimate their size, and to systematically
improve the Hamiltonian – order by order – as well as
transition operators. This is the program we follow in
this paper.

We note that EFTs now have a decades-old history in
the physics of nuclei. Most effort has been dedicated to
an EFT of the interactions between nucleons itself, see
Refs. [23–26] for reviews. Paired with ab initio calcu-
lations [27–29], such interactions now provide us with a
model-independent approach to atomic nuclei. Halo EFT
exploits the separation of scales between weakly-bound
halo nucleons and core excitations at much higher en-
ergy [30–33]. The EFT for heavy deformed nuclei [34, 35]
exploits the separation of scales between low-lying rota-
tional modes and higher-energetic vibrations that result
from the quantization of Nambu-Goldstone modes in fi-
nite systems [36, 37].

In this paper we also spend a considerable effort on the
quantification of theoretical uncertainties. If a theoretical
result is within the experimental uncertainties, theorists
usually claim success. However, for meaningful predic-
tions, theoretical uncertainties are crucial. Likewise, dis-
agreement between theoretical results and data can only
be claimed based on the absence of overlap between the-
oretical and experimental uncertainties. Thus, the claim
that traditional vibrational models do not describe the
existing data is hard to quantify in the absence of theo-
retical uncertainties. This makes uncertainty quantifica-
tion particularly relevant for this work.

When it comes to theoretical uncertainties, EFTs have
a key advantage over models. The power counting imme-
diately provides the EFT practitioner with uncertainty
estimates. Very recently, progress has also been made
toward the quantification of uncertainties [38–42] using
Bayesian statistics. In an EFT, uncertainties can be
quantified because the (testable) expectation of “natural-
ness” can be encoded into priors. Here, one assumes that
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natural-sized coefficients govern the EFT expansion for
observables. In this work, we build on these advances and
also present analytical formulas for uncertainty quantifi-
cation based on log-normal priors that are so relevant for
EFTs.

This paper is organized as follows. In Sect. II, we de-
velop the EFT for nuclear vibrations and construct the
Hamiltonian and electromagnetic operators. In Sect. III
we employ Bayesian tools for uncertainty quantification
based on the assumption of natural sized coefficients in
the EFT expansion for observables. We compare theoret-
ical results with data for spectra and for electromagnetic
moments and transitions in Sect. IV and Sect. V, respec-
tively. Finally, we present our summary in Sect. VI. More
detailed derivations are relegated to the Appendix A.

II. EFFECTIVE THEORY FOR QUADRUPOLE
VIBRATORS

In this Section, we develop the EFT for nuclear vibra-
tions. As our intended audience is wide, we aim at a
self-contained description. In the following subsections
we will introduce the leading-order Hamiltonian, discuss
the power counting and higher-order corrections, and de-
velop electromagnetic couplings and observables.

A. Leading-order Hamiltonian and spectrum

The spins and parities of low-energy spectra of even-
even nuclei near shell closures suggest these can be de-
scribed in terms of quadrupole degrees of freedom. In
several cases, the spectrum resembles – at least at low
energies – that of a quadrupole harmonic oscillator. In
nuclei with mass number about 100, the oscillator spac-
ing is ω ≈ 0.6 MeV. The fermionic nature of the nucleus
manifests itself through pair-breaking effects, which en-
ter at about 2–3 MeV of excitation [43]. Thus the break-
down scale will be Λ ≈ 3ω, and for definiteness we will
set Λ = 3ω in this work.

The boson creation and annihilation operators d†µ and
dµ with µ = −2,−1, . . . , 2, respectively, fulfill the usual
commutation relations[

d†µ, dν
]

= −δνµ. (1)

We note that d†µ are the components of the rank-two

spherical tensor d†. For the general construction of spher-
ical tensors we also introduce the spherical rank-two ten-
sor d̃ with components

d̃µ = (−1)µd−µ. (2)

For the construction of spherical tensors we follow
Ref. [44] and introduce tensor products and scalar prod-
ucts. The spherical tensor I(I) of rank I

I(I) =
(
M(I1) ⊗N (I2)

)(I)

(3)

results from coupling the spherical tensors M(I1) and
N (I2) of ranks I1 and I2, respectively. Its components

I(I)
M =

∑
M1M2

CIMI1M1I2M2
M(I1)

M1
N (I2)
M2

(4)

are given in terms of the Clebsch-Gordan coefficients
CIMI1M1I2M2

that couple spins I1 and I2 to spin I. Sim-

ilarly, the scalar product of two spherical tensors M(I)

and N (I) of the same rank I is

M(I) · N (I) =
∑
µ

(−1)µM(I)
µ N

(I)
−µ (5)

=
√

2I + 1
(
M(I) ⊗N (I)

)(0)

. (6)

There are two simple operators we need to consider.
The number operator

N̂ ≡ d† · d̃ (7)

is a scalar that counts the total number of phonons N .
The angular momentum operator is the vector

Î =
√

10
(
d† ⊗ d̃

)(1)

. (8)

Both operators conserve the number of phonons. We note
that the commutation relations[

Îµ, d
†
ν

]
=
√

6C2ν+µ
2ν1µ d

†
ν+µ, (9)[

Îµ, d̃ν

]
=
√

6C2ν+µ
2ν1µ d̃ν+µ, (10)

clearly identify d† and d̃ as spherical tensors of rank two.
In contrast, dµ are not components of a spherical tensor.

The Hamiltonian must be a scalar under rotation. The
simplest (i.e. quadratic in the fields d† and d̃) Hamilto-
nian is

ĤLO = ωN̂

= ω
∑
µ

(−1)µd†µd̃−µ

= ω
∑
µ

d†µdµ. (11)

Here, ω is a low-energy constant (LEC) that has to be
adjusted to data. We note that one could also consider
an operator proportional to

d† · d† + d̃ · d̃ (12)

as part of the LO Hamiltonian. However, a Bogoli-
ubov transformation that introduces (quasi-)boson cre-
ation and annihilation operators

D†µ = u∗µd
†
µ + v∗µd̃µ, Dµ = uµdµ + vµd̃

†
µ (13)

with |uµ|2 − |vµ|2 = 1 would transform such a Hamilto-
nian into the diagonal form

ĤLO = ω̃
(
D† · D̃

)
. (14)
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Here, D̃ is defined in terms of D similar to Eq. (2). This
Hamiltonian conserves the number of (quasi-)bosons and
cannot be distinguished from the LO Hamiltonian (11).

Clearly, the LO Hamiltonian of the EFT for nuclear
vibrations is equivalent to the quadrupole vibrator sub-
model of the Bohr Hamiltonian [1–3, 5, 45]. We note
that the five-dimensional quadrupole oscillator exhibits
an U(5) symmetry. Within the EFT approach, this sym-
metry is a (trivial) consequence of the choice of degrees
of freedom and the quadratic LO Hamiltonian. While
this symmetry might be useful in labeling basis states, it
does not reflect symmetry properties of the interaction
between nucleons.

The energies of the LO Hamiltonian

ĤLO|ψ〉 = ELO|ψ〉 (15)

are

ELO = ωN. (16)

For the construction of the eigenstates we follow Rowe
and Wood, and also refer the reader to Ref. [46]. The
eigenstates of the LO Hamiltonian can be labeled by
the quantum numbers of the symmetry subgroups in the
chain

U(5) ⊃ SO(5) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
N v ν I M

.

Here, ν is a radial quantum number, I and M are the
usual SO(3) angular momentum and its projection onto
the z-axis, while the seniority v is the SO(5) analog of
the angular momentum. From now on, we refer to the
SO(3) angular momentum as spin.

The ground state of the system is the phonon vacuum,
denoted by |0〉. A state with N excited quanta is created
from the vacuum by the application of N creation oper-
ators, coupled to appropriate spin. Given the quantum
numbers v and ν, the highest-weight state is defined by

|N = v + 2ν, v, ν, I = 2v,M = 2v〉 ∝
(
d† · d†

)ν (
d†2

)v
|0〉.

(17)
Here, the proportionality sign expresses the absence of
proper normalization on the right-hand side. The re-
maining states with N = v+ 2ν phonons can be reached
from the highest-weight states by the application of suit-
ably defined lowering operators. This construction is sim-
ilar to the construction of SO(3) irreducible eigenstates
where one starts from the state |I,M = I〉 and obtains
the remaining states of the spin-I multiplet by succes-
sive application of the spin-lowering operator. For the
LO Hamiltonian, one finds a singlet with spin I = 2
at the one-phonon level, a triplet with spins I = 0, 2, 4
at the two-phonon level, and a quintuplet with spins
I = 0, 2, 3, 4, 6 at the three-phonon level. It is conve-
nient to determine the LEC ω from the excitation energy
of the one-phonon state.

B. Power counting and NLO corrections

Quadrupole excitations are the low-lying collective de-
grees of freedom in even-even nuclei near shell closures.
This picture breaks down at higher energies Λ where the
microscopic structure of the nucleus in terms of underly-
ing fermionic nucleons is resolved.

In an EFT, subleading corrections to the Hamiltonian
arise due to the omitted degrees of freedom. As one can
write down an unlimited number of rotational scalars in
the fields d† and d̃, we need a power counting (in powers
of the small parameter ω/Λ) for the systematic construc-

tion of the EFT. As the fields d† and d̃ do not carry any
dimension, we introduce quadrupole coordinates α̃ and
momenta π as

α̃µ ≡
√

1

2
`
(
d†µ + d̃µ

)
, (18)

πµ = i

√
1

2
`−1

(
d†µ − d̃µ

)
. (19)

Here, ` ≡ (Bω)−1/2 is the oscillator length, and B is
a mass parameter. These degrees of freedom fulfill the
canonical commutation relations

[πµ, αν ] = −iδνµ, α̃µ = (−1)µα−µ. (20)

We note that both α̃ and π are spherical tensors of rank
two. In terms of them, the LO Hamiltonian can be writ-
ten as

ĤLO =
1

2B

(
π · π +B2ω2α̃ · α̃

)
− 5

2
ω. (21)

Thus, the size of coordinates and momenta at the N -
phonon level is

α̃ ∼
√
N` π ∼

√
N`−1. (22)

At the breakdown scale, we have by definition

Bω2α̃2 ∼ Λ, and
π2

B
∼ Λ. (23)

Thus,

α̃ ∼
√

Λ

ω
`, and π ∼

√
Λ

ω
`−1 (24)

at the breakdown scale.
Let us write the subleading corrections to the Hamil-

tonian (11) as rotationally invariant terms of the form
gmnπ

mα̃n, with m + n > 2. At the breakdown scale
Λ, the energy shift due to these corrections must be so
large that N -phonon states cannot be distinguished from
states with N ± 1 phonons. Thus,

gmnπ
mα̃n ∼ ω, (25)

and this implies

gmn ∼ `m−n
(ω

Λ

)m+n
2

ω (26)
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for the natural size of these coefficients. When the term
gmnπ

mα̃n is evaluated for coordinates and momenta of
size (22), it scales as

gmnπ
mα̃n ∼ ε

m+n
2 ω. (27)

Here,

ε ≡ (Nω/Λ) (28)

is the relevant dimensionless expansion parameter of our
EFT at the N -phonon level. We note that leading-order
energies scale as ε0ω.

This simple analysis suggests that terms cubic in the
quadrupole fields are the dominant subleading correc-
tions. However, such terms change boson number and
thus enter only in second order perturbation theory,
yielding a contribution of size ε3ω. Thus, the next-to-
leading order contributions come from those terms quar-
tic in the quadrupole fields that preserve the boson num-
ber. They contribute corrections of the size ε2ω. We note
that some collective models differ from the EFT’s power
counting by employing cubic terms as dominant sublead-
ing corrections, see. e.g. Refs. [19, 47–50]. We also note
that the proliferation of higher-order terms was addressed
in some models by only considering certain combinations
of operators that are symmetric under exchange of the
operators.

We can now also consider the power counting directly
for the operators d† and d̃. When acting on states at
the breakdown scale d† ∼ d̃ ∼

√
Λ/ω. Demanding that

a Hamiltonian term of the form ωfmd
m containing m

boson operators is of size ω at the breakdown scale thus
yields fm ∼ (ω/Λ)m/2, and the whole term ωfmd

m scales
as ∼ ω(ω/Λ)m/2 at low energies.

Before we continue, it is interesting to discuss an al-
ternative – and less conservative – understanding of the
breakdown scale. One could also assume that the energy
corrections of the terms gmnπ

mα̃n (for m + n > 2) are
of size Λ (and not ω) at the breakdown scale. Then,
the contributions from such terms scale as gmnπ

mα̃n ∼
(ω/Λ)(m+n)/2Λ at low energies. This implies that the
off-diagonal terms with m + n = 3 contribute an energy
∼ ω2/Λ in second-order perturbation theory, and this
is equal to the contribution of the m + n = 4 terms in
first-order perturbation theory. Such an approach would
again differ from the early approach [19] because terms
with four boson operators are as important as terms with
three boson operators. Compared to the more conserva-
tive approach we are taking, this would add two addi-
tional terms (namely (π × π)(2) · α̃ and (α̃× α̃)(2) · α̃) at
NLO, increasing the number of unknown LECs consider-
ably. Such an approach would also probably increase the
breakdown scale beyond the three-phonon level, making
it difficult to identify states at higher energies. There-
fore, we did choose a more conservative – and physically
better motivated – power counting.

To identify the linearly independent NLO terms that
conserve phonon number, we turned to Chapter 3 of

Ref. [44] and determined the following three terms

N̂2 =
(
d† · d̃

)2

, (29)

Λ̂2 = −
(
d† · d†

) (
d̃ · d̃

)
+ N̂2 − 3N̂ , (30)

Î2 = 10
(
d† ⊗ d̃

)(1)

·
(
d† ⊗ d̃

)(1)

. (31)

Here, the operator Λ̂ is the SO(5) analog of the spin Î
(see, e.g., Ref. [5]). The action of these operators on the
LO states is

N̂2|NvνIM〉 = N2|NvνIM〉, (32)

Λ̂2|NvνIM〉 = v(v + 3)|NvνIM〉, (33)

Î2|NvνIM〉 = I(I + 1)|NvνIM〉. (34)

Thus, at NLO the Hamiltonian takes the form ĤNLO =

ĤLO + ĥNLO with

ĥNLO = gN N̂
2 + gvΛ̂

2 + gI Î
2. (35)

Here, the LECs gN , gv, and gI have to be adjusted to
data. The action of the NLO correction (35) on the eigen-
states of the LO Hamiltonian yields

ĥNLO|NvνIM〉 = eNLO|NvνIM〉 (36)

with

eNLO = gNN
2 + gvv(v + 3) + gII(I + 1). (37)

The total energy at NLO is thus

ENLO = ELO + eNLO. (38)

The four LECs ω, gN , gv, and gI can be determined
from the energies of the one-phonon state and the two-
phonon states. Higher excited states would then be pre-
dictions. It is clear that the quest for higher precision of
the EFT, e.g. by including next-to-next-to-leading order
terms introduces further LECs and requires even more
data to determine the Hamiltonian. This loss of pre-
dictive power is unsatisfactory, but it is also clear that
an approach solely based on symmetry arguments – as
proposed in this work – naturally leads to this state of
affairs. We note that the previous approaches [47–50]
avoid the proliferation of new coupling constants by only
considering certain combinations of higher-order terms.
From the EFT’s perspective, however, such a selection
does not constitute a systematic approach.

The breakdown scale Λ ≈ 3ω is not sufficiently large
to study contributions beyond NLO. To improve predic-
tive capabilities, we will quantify (rather than estimate)
theoretical uncertainties. This is done in Sect. III.

C. Electromagnetic couplings

Our EFT deals with quadrupole degrees of freedom.
As the gauge potential A(r) is a vector field, the elec-
tromagnetic coupling of the EFT is not obvious. We can
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view the quadrupole degrees of freedom as components
of a scalar field that depends on the position coordinate
r. This view suggests to employ r = rer(θ, φ) (with er
being the usual radial unit vector [44]) and to expand the
vector potential as [51]

A(r,Ω) =
∑
JM

∑
l

AJM,ljl(kr)
∑
mn

CJMlm1nYlm(Ω)en .

Here, we employed spherical basis vectors en with n =
−1, 0, 1, and jl denotes the spherical Bessel function. The
spherical wave has a momentum k. We note that AJM,l

are components of a tensor of rank J for fixed l.
The quadrupole degrees of freedom of the EFT must

couple to the components A2M,l, and only l = 1, 2, 3
contribute due to triangular relations on spins. In the
long wavelength approximation kr � 1, and jl(kr) ∝
(kr)l. Thus, A2M,1 is the dominant contribution, and we
gauge

πµ → πµ − qA2µ,1 . (39)

Here, the charge q is a LEC that needs to be adjusted
to data. We are interested in single-photon transitions
and only consider terms linear in A. The effective elec-
tric quadrupole operator, resulting from gauging the LO
Hamiltonian (11), is thus

Q̂LO = − q
B

∑
µ

(−1)µA2−µ,1πµ

= − iq√
2B`

∑
µ

(−1)µA2−µ,1

(
d†µ − d̃µ

)
. (40)

Let us also consider higher-order corrections. Hamil-
tonian terms involving two momentum operators πµ and
one coordinate operator α̃µ contribute to the energy at
next-to-next-to leading order, and were beyond the NLO
corrections discussed in this section. When consider-
ing single-photon transitions, gauging essentially replaces
one of the two momentum operators by the gauge field
and couples the latter to an operator of the structure

(π × α̃)
(2) ∝ −i

(
d† × d† − d̃× d̃

)(2)

. (41)

The EFT expectation is that this operator yields a cor-
rection of relative size ε1/2 to the LO operator (40).
It induces transitions between states that differ by two
phonon numbers, and we will come back to this point
after discussing nonminimal couplings.

Let us also consider nonminimal couplings and work
in the Coulomb gauge. Then, the electric field is E =
−∂tA = −ikA. Here, we assumed an exponential time
dependence and set the speed of light to c = 1. We note
that k ≈ ω for transitions between states that differ by
one phonon number. The electric field has an expansion
similar to Eq. (39), and the expansion coefficients ful-
fill EJM,l = −ikAJM,l. The electric field couples to the

quadrupole operator

Q̂µ =

√
2

`
Q0α̃µ

+
2

`2
Q1(α̃× α̃)(2)

µ

+
2
√

2

`3

∑
L=0,2,4

Q2L

(
α̃× (α̃× α̃)

(L)
)(2)

µ

+ . . . . (42)

Here, factors of the oscillator length ` have been inserted
such that the LECs Q0, Q1, and Q2L have the dimension
of a quadruple moment. The factors of

√
2 are inserted

for convenience. The expansion of the quadrupole mo-
ment should not be a surprise: what is not forbidden by
symmetries is allowed in an EFT. We recall that truly “el-
ementary” degrees of freedom couple to electromagnetic
gauge fields solely via minimal coupling. The EFT, how-
ever, does not deal with “elementary” degrees of freedom.
The quadrupole coordinates of the EFT are effective de-
grees of freedom at low energies. They are composite
and describe collective effects of more microscopic “high-
energy” degrees of freedom that are not resolved at the
low energy scale we are interested in. The nonminimal
couplings allow us to incorporate the subleading electro-
magnetic effects of any microscopic degrees of freedom.
Based on the EFT power counting, the natural sizes of
the LECs Q1 and Q2L are

Q1 ∼
(ω

Λ

)1/2

Q0 ,

Q2L ∼
ω

Λ
Q0 . (43)

It is useful to rewrite the expansion (42) in terms of cre-
ation and annihilation operators. This yields

Q̂µ = Q0

(
d†µ + d̃µ

)
+ Q1

(
d† × d† + d̃× d̃+ 2d† × d̃

)(2)

µ

+
∑

L=0,2,4

Q2L

(
d† ×

(
d† × d†

)(L)
+ d̃×

(
d̃× d̃

)(L)

+d† ×
(
d† × d̃

)(L)

+ d† ×
(
d̃× d̃

)(L)

+ . . .

)(2)

µ

+ . . . . (44)

Let us consider the right-hand-side of Eq. (44). The first
line is the LO term for transitions between states that
differ by one phonon number. It is equivalent to the
term (40) obtained from gauging. This allows us to iden-
tify

q =
√

2Bk`Q0. (45)

The second line of Eq. (44) is the LO term for transi-
tions between states that differ by none or two phonon
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numbers, and also determines diagonal quadrupole ma-
trix elements. Thus, diagonal quadrupole matrix ele-
ments are expected to be a factor

√
ω/Λ smaller than

transition quadrupole moments between states that dif-
fer by one phonon number. The expected finite value
for diagonal quadrupole matrix elements is a significant
departure from vanishing diagonal quadrupole matrix
elements obtained for the harmonic quadrupole vibra-
tor. The third line has NLO corrections (LO terms) for
quadrupole transitions between states that differ by one
(three) phonon numbers. Thus, the expectations from
the harmonic quadrupole vibrator that B(E2) transitions
from the two-phonon states to the one-phonon state are
independent of the initial spin are expected to suffer cor-
rections of relative size ω/Λ. We note that all anhar-
monic corrections vanish in the harmonic limit, i.e. for
ω/Λ→ 0.

The reduced matrix elements of a tensor operator Ô of
rank λ between two states |i〉 and |f〉 are defined as

〈f ||Ô||i〉 =

√
2If + 1

C
IfMf

IiMiλµ

〈βIfMf |Ôµ|αIiMi〉. (46)

Here β and α denote quantum numbers irrelevant for the
reduced matrix elements. For transitions between states
differing by one phonon number we find the well-known
LO reduced matrix elements

〈0+
1 ||Q̂||2

+
1 〉LO = Q0〈0+

1 ||d||2
+
1 〉 =

√
5Q0 ,

〈2+
1 ||Q̂||0

+
2 〉LO = Q0〈2+

1 ||d||0
+
2 〉 =

√
2Q0 ,

〈2+
1 ||Q̂||2

+
2 〉LO = Q0〈2+

1 ||d||2
+
2 〉 =

√
10Q0 ,

〈2+
1 ||Q̂||4

+
1 〉LO = Q0〈2+

1 ||d||4
+
1 〉 =

√
18Q0 , (47)

and uncertainty estimates are of order Q0ω/Λ.
For transitions between two-phonon states we find

〈2+
2 ||Q̂||0

+
2 〉LO = 2Q1〈2+

2 ||
(
d† × d̃

)(2)

||0+
2 〉

= 4Q1 ,

〈2+
2 ||Q̂||4

+
1 〉LO = 2Q1〈2+

2 ||
(
d† × d̃

)(2)

||4+
1 〉

=
24

7
Q1 , (48)

and uncertainty estimates are of order Q1ω/Λ.
For the diagonal quadrupole matrix elements we find

the LO reduced matrix elements

〈2+
1 ||Q̂||2

+
1 〉LO = 2Q1〈2+

1 ||
(
d† × d̃

)(2)

||2+
1 〉

= 2
√

5Q1 ,

〈2+
2 ||Q̂||2

+
2 〉LO = 2Q1〈2+

2 ||
(
d† × d̃

)(2)

||2+
2 〉

= −6
√

5

7
Q1 ,

〈4+
1 ||Q̂||4

+
1 〉LO = 2Q1〈4+

1 ||
(
d† × d̃

)(2)

||4+
1 〉

=
6
√

110

7
Q1 , (49)

and uncertainty estimates are of order Q1ω/Λ. Thus the
LEC Q1 relates the three diagonal matrix elements (49)
and the two transition matrix elements (48) to each
other. This prediction of the EFT will be tested in
Sect. V.

For the transition involving a change by two phonons
we find

〈0+
1 ||Q̂||2

+
2 〉LO = Q1〈0+

1 ||
(
d̃× d̃

)(2)

||2+
2 〉

=
√

10Q1 , (50)

and uncertainty estimates are of order Q1ω/Λ. This non-
minimal correction is of the same size as the NLO correc-
tion (41) from gauging. The combination of both terms
involves the LEC of the term from gauging and the LEC
Q1. As there is only one E2 transition in vibrational nu-
clei below the breakdown energy (i.e. the three-phonon
energy), the EFT has no predictive power for this tran-
sition beyond an estimate of its natural size. Therefore,
we will not consider it here.

The B(E2) transition strengths are given in terms of
the reduced matrix elements as

B(E2, Ii → If ) =
|〈If ||Q||Ii〉|2

2Ii + 1
(51)

We finally also turn to magnetic moments. In the EFT
at LO, magnetic moments are due to the vector operator

µ̂ = gÎ , (52)

and g is a LEC constant. Thus, magnetic moments of
states with spin I have the reduced matrix elements

〈I||µ̂||I〉 = g
√
I(I + 1)(2I + 1) . (53)

Corrections from omitted higher-order terms are of rela-
tive size ε1/2 [e.g. from terms such as (α̃× µ̂)(1)]. At LO,

magnetic moments of I = 4 states are a factor
√

6 larger
than magnetic moments of I = 2 states. This is another
testable prediction of the EFT.

It is interesting to note that anharmonic corrections
to the quadrupole operator have been considered early
on [3, 19]. However, Bès and Dussel related the ex-
pansion coefficients of the quadrupole operator to those
of the Hamiltonian (also using terms cubic in the bo-
son annihilation and creation operators as corrections to
the harmonic quadrupole vibrator). While such an ap-
proach has fewer adjustable parameters than the EFT
we constructed, it did not yield a satisfactory description
of 114Cd. Of course, there are no symmetry arguments
that would link the expansion coefficients of nonminimal
couplings and the Hamiltonian.

Let us briefly recall the adjustable parameters. The
EFT for nuclear vibrations employs one LEC at LO
[namely ω in Eq. (16)] and three additional LECs at
NLO [namely gN , gv, and gI in Eq. (37)] for the Hamilto-
nian. These LECs need to be adjusted to the energies of
four states below the three-phonon level. Thus, LO has
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predictive power while NLO has predictive power only
for states at the three-phonon level. As we will see in
Sect. IV, NLO predictions for the energy of the 6+

1 state
are more accurate than expected.

Below the three-phonon level there are four strong E2
transitions (2+

1 → 0+
1 , 0+

2 → 2+
1 , 2+

2 → 2+
1 , 4+

1 → 2+
1 )

that change phonon number by one unit. They re-
quire the LEC Q0 to be adjusted to data. The some-
what smaller matrix elements that govern the two E2
transitions between the two-phonon states (4+

1 → 2+
2 ,

2+
2 → 0+

2 ), and the three diagonal E2 matrix elements of
the states 2+

1 , 2+
2 , and 4+

1 require the LEC Q1 to be ad-
justed to data. Finally, one LEC [namely g in Eq. (53)]
determines the three magnetic moments of the 2+

1 , 2+
2 ,

and 4+
1 states. In this way, the EFT provides us with

model-independent relations between observables.

III. QUANTIFIED THEORETICAL
UNCERTAINTIES

The quantification of theoretical uncertainties is of
growing interest in nuclear physics. For a wide collec-
tion of articles on this topic we refer the reader to the
2015 focus issue and its editorial [52].

The power counting provides the EFT practitioner
with a simple tool to estimate theoretical uncertainties
as missing contributions from higher orders. In our case,
uncertainties at LO are of the size O(ε2ω) [as they are
caused by missing NLO contributions], while uncertain-
ties at NLO are of the size O(ε3ω) [due to contributions
beyond NLO]. In such estimates, one implicitly assumes
that the dimensionless coefficients in front of these order-
of-magnitude estimates are of order one.

To quantify (rather than estimate) theoretical uncer-
tainties requires considerable effort [41, 53]. In this Sec-
tion, we follow Refs. [39, 40, 42] and employ Bayesian
statistics for uncertainty quantification. Within this
approach, theoretical uncertainties can be expressed as
degree-of-belief (DOB) intervals and have a statistical
meaning. The construction of such DOB intervals re-
quires one to make detailed quantitative assumptions
about the behavior of omitted orders in the power count-
ing. As a result, theoretical predictions and uncertainties
can be confronted by data (and underlying assumptions
can be verified, or modified if required).

A. Analytical results for log-normal priors

In this Subsection we follow Furnstahl et al. and
present the formalism required for uncertainty quantifi-
cation. We also present a few analytical expressions that
involve log-normal priors, which are particularly useful
when “naturalness” arguments are employed in EFTs.

We are interested in uncertainty estimates for observ-
ables computed in an EFT. The power counting, i.e. a
small ratio ε < 1 [cf. Eq. (28)] of the low-energy scale and

the breakdown scale, allows us to expand an observable
X as

X = X0

∞∑
n=0

cnε
n. (54)

Here, X0 sets the general scale. In practice, the sum
above can only be computed up to and including the term
involving εk. This implies that the relative uncertainty
is

∆k =

∞∑
n=k+1

cnε
n . (55)

It is our aim to quantify the uncertainty ∆k. We are
particularly interested in quantifying the residual

∆
(M)
k =

k+M∑
n=k+1

cnε
n , (56)

of the first M missing terms. To quantify uncertainties,
one has to make quantitative assumptions about the dis-
tribution of the expansion coefficients cn. A key assump-
tion is that the expansion coefficients are independent
of each other, and assumptions about the distribution of
expansion coefficients are employed as priors.

In an EFT, the expansion coefficients are assumed to
be of order unity. The log-normal distribution

pr(c) =
1√

2πσc
e−

1
2 ( log c

σ )
2

(57)

is consistent with this assumption. Choosing for instance
σ = logα (with α > 1), implies that 1/α ≤ c ≤ α with
about 68% probability.

The expansion coefficient cn is related to the prior (57)
by a second prior pr(cn|c). We consider two examples.
First, we assume that the log-normal distributed c yields
a hard bound on the size of cn. Thus,

pr(hw)(cn|c) =
1

2c
Θ(c− |cn|) . (58)

Here Θ(x) denotes the unit step function. The priors (57)
and (58) are “set B” of Ref. [42]. Alternatively, we as-
sume that the log-normal distributed c is related to the
width of the Gaussian prior

pr(G)(cn|c) =
1√
2πc

e−
c2n
2c2 . (59)

Following [42] the application of Bayes’ theorem yields a
probability distribution function for the uncertainty ∆,
which we write as

pM (∆|c0, . . . , ck) =

∞∫
0

dc pr(c)pM (∆|c)
k∏

m=0
pr(cm|c)

∞∫
0

dc pr(c)
k∏

m=0
pr(cm|c)

.

(60)
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Here, the prior pr(c) is the known (or expected) pdf and
pr(cn|c) is the pdf for a specific expansion coefficient cn
given c. The probability of finding an uncertainty ∆
given the prior for c is

pM (∆|c) ≡

 k+M∏
n=k+1

∞∫
−∞

dcn pr(cn|c)

 δ (∆−∆
(M)
k

)
.

(61)
We note that the structure of Eq. (60) is quite intuitive.
The numerator captures our understanding of how the
uncertainty depends on the expansion coefficients given
the pdf pr(c), while the denominator is a normalization.

Reference [42] presents detailed discussions of
pM (∆|c0, . . . , ck) for several combinations of priors but
does not give analytical expressions for the log-normal
distributed prior relevant for EFTs. In what follows,
we derive analytical results for the pdf (60) based on
the hard-wall prior (58) for M = 1, 2. For the Gaussian
prior (59), we reduce the pdf (60) to single integrations
for general M . We hope that these formulas might be
useful also for other applications of Bayesian uncertainty
quantification in EFTs.

To make progress in computing the pdf (61), we rewrite
the δ function as a Fourier integral

δ
(

∆−∆
(M)
k

)
=

1

2π

∞∫
−∞

dt eit∆
k+M∏
n=k+1

e−itcnε
n

.

Thus, pM (∆|c) is the Fourier transform of a product of
Fourier transforms

pM (∆|c) =

1
2π

∞∫
−∞

dtei∆t
k+M∏
n=k+1

∞∫
−∞

dcnpr(cn|c)e−itε
ncn . (62)

We evaluate the pdf (62) for the Gaussian prior (59) and
find

p
(G)
M (∆|c) =

1√
2πqc

e
− ∆2

2q2c2 . (63)

Here,

q2 ≡
k+M∑
n=k+1

ε2n = ε2k+2 1− ε2M

1− ε2
(64)

depends on M . Putting all together, we are left with a
single integration and can write

p
(G)
M (∆|c0, . . . , ck) =

1√
2πq

∞∫
0

dx xk+1e−
1

2σ2 (log(x))2

e−
γ2+∆2/q2

2 x2

∞∫
0

dx xke−
1

2σ2 (log(x))2

e−
γ2

2 x
2

. (65)

In this formula, the information from the expansion co-
efficients enters via

γ2 ≡
k∑

n=0

c2n . (66)

The numerical evaluation of the pdf (65) poses no diffi-
culty for any value of M . Formula (65) is one of the main
results in this Subsection.

Let us turn to the hard-wall prior (58). For the compu-
tation of the Fourier transform of the prior pr(hw)(cn|c)
we use

∞∫
−∞

dcn pr(hw)(cn|c)e−itcnε
n

=
sin (cεnt)

cεnt
, (67)

and obtain the pdf for the uncertainty ∆ as

p
(hw)
M (∆|c) =

1

2π

∞∫
−∞

dt cos (t∆)

k+M∏
n=k+1

sin (cεnt)

cεnt
. (68)

As we will see, the integration over dt can be performed
but becomes cumbersome for M > 1. Here, we focus on
M = 1 and present the result for M = 2 in the App. A.
For M > 2 it might be attractive to perform the inte-
grations numerically. In this case, two integrations [one
over dt for pM (∆|c) and one over dc] remain for the com-
putation of Eq. (60), and this number is independent of
M .

We set M = 1 in Eq. (68) and obtain [54]

p
(hw)
1 (∆|c) =

1

2cεk+1
Θ
(
cεk+1 − |∆|

)
. (69)

This result can also be written as p
(hw)
1 (∆|c) =

pr(hw)(∆|c)/(cεk+1). It could also have been obtained
by direct evaluation of the dck+1 integration in Eq. (60)
exploiting the δ function.

Let us compute p
(hw)
1 (∆|c0, . . . , ck). We insert the

pdf (69) and the priors (57) and (58) into Eq. (60), and
perform the integrations (see App. A for details). This
yields

p
(hw)
1 (∆|c0, . . . , ck) =

e
2k+3

2 σ2

2εk+1

1− Φ
(
σ√
2

(
k + 2 + log b

σ2

))
1− Φ

(
σ√
2

(
k + 1 + log a

σ2

)) ,
(70)

Here, Φ(x) ≡ (2/
√
π)
∫ x

0
dt exp (−t2) denotes the error

function,

a ≡ max(|c0|, . . . , |ck|), (71)

and

b ≡ max

(
a,
|∆|
εk+1

)
. (72)

Let us discuss the result (70). Increasing ∆ from zero,

p
(hw)
1 (∆|c0, . . . , ck) remains a constant for b ≤ a, i.e. for

∆ ≤ aεk+1. Past this point, p
(hw)
1 (∆|c0, . . . , ck) decays

rapidly to zero as 1 − Φ approaches zero for increasing
values of its argument.
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For x� 1, we have

1− Φ(x) ≈ e−x
2

√
πx

, (73)

and obtain for b ≤ a

p
(hw)
1 (∆|c0, . . . , ck) ≈ 1

2aεk+1
. (74)

Interestingly, the same value is found if the priors (57)
and (58) are replaced by “set A” of Ref. [42]. This sheds
light on the recent observation [42] that DOB percentages
depend very mildly on the prior as k increases.

So far, we have limited our considerations to priors
pr(cn|c) that have zero mean cn = 0. If one drives
an EFT to sufficiently high order, one could actually
study the distribution of the expansion coefficients cn
and thereby assess the prior. As we will see below, pri-
ors of interest to our applications have a nonzero mean
cn ≡ 〈cn〉 6= 0. Thus, we need to include this information.

In what follows, we assume that the priors for cn with
n ≤ k have a nonzero mean cn, but keep the priors for
ck+1, ck+2, . . ., with a zero mean (due to lack of better
knowledge). Then

pM (∆|c0, . . . , ck)→ pM (∆|c0 − c0, . . . , ck − ck) ,(75)

i.e. one only subtracts the mean from the coefficients
cn with n ≤ k before inserting them into the analytical
formulas.

For the Gaussian prior (59) we would also consider
the modification that the log-normal distributed c is pro-
portional (but not equal to) the width of the Gaussian.
Thus, we introduce a scale factor s and consider the prior

pr(G)(cn|c) =
1√

2πsc
e−( cn2sc )

2

. (76)

In this case, we need to replace q → sq in Eqs. (63) and
(65).

Given an interval [a, b] in the domain of a pdf p(x), its
degree of belief (DOB) is defined as

DOB(a, b) =

b∫
a

dx p(x). (77)

We note that DOB(a, b) ≤ 1, and the DOB of an interval
represents the probability for the variable x to take a
value within the interval [a, b].

Our probability distributions pM (∆|c0, . . . , ck) are
symmetric around ∆ = 0. We define the corresponding
DOB as

DOB(−δ, δ) =

δ∫
−δ

dx pM (x|c0, . . . , ck) . (78)

For a fixed DOB, one can thus give the corresponding un-
certainty interval ±δ. In what follows, we will consider
DOB = 0.68. We note that the interval ±δ would cor-
respond to the usual one-sigma uncertainty for Gaussian
distributions pM (∆|c0, . . . , ck). Our probability distribu-
tions (65) and (70) are, however, not Gaussians.

B. Uncertainty quantification for energy levels

Uncertainty quantification is a two-step procedure.
First we adjust LECs to data. Second, we quantify un-
certainties based on assumptions about the distributions
of LECs.

At LO, the energy spectrum is that of a harmonic
quadrupole oscillator, see Eq. (16), and the LEC ω has to
be adjusted to data. For nuclear vibrations in the mass
A ≈ 100 region, ω ≈ 0.6 MeV. Thus, the distribution
of this LEC is relatively sharp. It is neither log-normal
distributed, nor is it without a scale (i.e. log-uniform
distributed). In what follows, we fix the LEC ω for each
nucleus by performing a least-square fit of the objective
function

χ2
LO =

∑
s

[Eexp(s)− ELO(s)]
2

σ2
exp + σ2

LO

. (79)

Here, the sum is over states s = 2+
1 , 0+

2 , 2+
2 , and 4+

1 . In
the fit, the theoretical uncertainty is estimated as

σLO = ω

(
ELO(s)

Λ

)2

, (80)

and the experimental uncertainty is neglected because
σexp � σLO.

At NLO, three new LECs (gN , gv, and gI) enter the
determination of the energies, see Eq. (38). Instead of re-
adjusting ω at NLO, we replace it by ω → ω + gω, keep
the value of ω at what was obtained at LO, and adjust
gω. Thus, we rewrite

ENLO = ωN+gωN+gNN
2+gvv(v+3)+gII(I+1). (81)

It is clear that the parameters gN , gv, gI , and gω are
expected to scale as ω3/Λ2. In an EFT, one assumes
that gαΛ2/ω3 (for α = N, v, I, ω) are of order unity and
constrained by log-normal distributions. We adjust these
coefficients to data by minimizing the objective function

χ2
NLO =

∑
s

[Eexp(s)− ENLO(s)]
2

σ2
exp + σ2

NLO

. (82)

Here, the employed states s are as for the LO fit, but the
theoretical uncertainty is estimated as

σNLO = ω

(
ELO(s)

Λ

)3

. (83)

Again, the experimental uncertainty is neglected because
σexp � σNLO. As we adjust four parameters to four data
points, the fit is exact.

Let us now turn to the quantification of theoretical
uncertainties. We note that simple uncertainty estimates
can be based on the naive estimates (80) and (83) at
LO and NLO, respectively. For quantified uncertainties
we adapt the methods of the previous subsection to the
problem at hand.
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We start with uncertainty quantification at LO. As dis-
cussed above, the distribution for ω is a Dirac delta func-
tion, and LO uncertainties are solely due to assumptions
about the distribution of LECs from higher orders. Thus,

p
(hw)
1 (∆) =

e
σ2

2

4ε2

[
1− Φ

(
σ√
2

[
1 +

log(∆/ε2)

σ2

])]
(84)

for the hard-wall prior (58), and

p
(G)
M (∆) =

1

2πσqs

∞∫
0

dx e−
log2 x

2σ2 e
−∆2x2

2q2s2 (85)

for the Gaussian prior (59). Here q2 ≡
∑k+M
m=k+1 ε

2m with
k = 0 for uncertainties due toM terms above the LO con-
tribution. In Eq. (84) it is assumed that the uncertainty
comes fully from the term proportional to ε2.

We now turn to uncertainty quantification at NLO.
Returning to Eq. (81), the NLO energy correction for
the state |N, v, I〉 is ωε2c2 with

c2 ≡ c2(N, v, I)

=
gωN + gNN

2 + gvv(v + 3) + gII(I + 1)

ε2ω
, (86)

Table I shows the resulting coefficients c2 for each state
of the nuclei 62Ni, 98,100Ru, 106,108Pd, 110,112,114Cd, and
118,120,122Te considered in this work. These nuclei exhibit
low-energy spectra that resemble a harmonic quadrupole
oscillator. All coefficients c2 are of order one. Thus,
the products ωεc2 are of natural size. Also shown are
the values of the vibrational scale ω for each nucleus and
the LEC Q0 associated with the quadrupole moment, see
Sect. III. We note that these quadrupole moments are an
order of magnitude smaller than for rotational nuclei [3].

TABLE I. Values for the vibrational energy ω (in keV), the
coefficients c2 in states up to the two-phonon level, and the
LEC Q2

0 associated with the quadrupole moment (in Weis-
skopf units) for the nuclei studied in this work.

Nucleus ω [keV] c2(2+
1 ) c2(0+

2 ) c2(2+
2 ) c2(4+

1 ) Q2
0 [W.U.]

62Ni 1147.9 0.55 -0.29 0.19 0.26 10.6
98Ru 668.1 1.02 0.57 0.88 0.83 27.8
100Ru 573.9 2.35 1.39 2.36 1.79 23.6
106Pd 541.8 1.80 1.38 1.36 1.80 30.4
108Pd 464.5 1.14 1.53 0.90 1.51 36.9
110Cd 696.7 1.57 1.32 1.33 1.56 21.1
112Cd 635.2 1.72 0.82 1.14 1.52 23.2
114Cd 578.3 1.72 0.93 1.23 1.53 21.8
118Te 582.9 0.83 -0.52 0.19 0.40 –
120Te 567.8 0.79 0.32 0.71 0.56 31.0
122Te 593.5 -0.08 0.88 0.48 0.17 40.7

To determine a valid prior for the coefficients c2 we
turn to the distribution of the coefficients c2 for an en-
semble consisting of one-phonon and two-phonon states
in the nuclei we study. The cumulative distribution is

shown in Fig. 1. It is well approximated by a Gaussian
prior (59) with parameter s ≈ 0.65, or by a hard-wall
prior (58), once the mean is shifted from zero to c2 ≈ 1.
We note that the cumulative distribution is practically
unchanged when c2 values from three-phonon states are
included in the analysis. We employ σ = log (3/2) in the
log-normal prior (57).
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c2
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FIG. 1. (Color online) Cumulative distribution for the c2 co-
efficients for states up to the two-phonon level in the ensemble
of all nuclei studied in this work. The cumulative distribu-
tions of the hard-wall and Gaussian priors are also shown for
comparison.

Finally we turn to uncertainty quantification at NLO
for individual nuclei. For the hard-wall prior we find

p
(hw)
1 (∆|c2) =

e
3σ2

2

2ε3

1− Φ
(
σ√
2

[
2 + log(κ)

σ2

])
1− Φ

(
σ√
2

[
1 +

log(|c′2|)
σ2

]) . (87)

Here κ ≡ max(|c′2|,∆/ε3) and c′2 ≡ c2 − c2. For the
Gaussian prior we find

p
(G)
M (∆|c2) =

∞∫
0

dxxe−
log2 x

2σ2 e−
(c′22 +∆2/q2)x2

2s2

√
2πqs

∞∫
0

dx e−
log2 x

2σ2 e−
c′22 x

2

2s2

. (88)

In the determination of the prior, we employed an en-
semble of nuclei. To assess the consistency of this ap-
proach, and to verify the statistical interpretation of the
quantified uncertainties, we compare EFT predictions for
the one-phonon and two-phonon states of these nuclei.
To do so, we first normalize the energies by dividing
them by the nucleus-dependent ω, and then perform χ2

fits at LO and NLO. The results are shown in Figure 2.
Experimental data, LO calculations and NLO calcula-
tions are shown as black lines, red crosses and blue dia-
monds, respectively. The theoretical uncertainty at each
order, displayed as a shaded area of the corresponding
color, are 68% DOB intervals obtained with the Gaussian
prior. We note that 82% of the 44 one- and two-phonon
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FIG. 2. (Color online) Comparison between the normalized
energies E/ω of the one- and two-phonon states as a function
of spin I in the ensemble of the nuclei studied in this work.
Experimental energies are shown as thick black lines. LO and
NLO energies are shown as red crosses and blue diamonds,
respectively. Theoretical uncertainties quantified from 68%
DOB intervals are shown as shaded and hatched areas at LO
and NLO, respectively.

states lie within the NLO theoretical uncertainty. This
is within one sigma (1/

√
44 ≈ 15%) of the expected 68%

for the ensemble size. Thus, the statistical interpretation
of our DOB intervals is consistent for the energies.

C. Uncertainty quantification for quadrupole
moments

We quantify uncertainties for LO transition
quadrupole moments as follows. The expansion for
these matrix elements is

〈f ||Q||i〉 = 〈f ||Q||i〉LO

(
1 +

∑
i=1

ciε
i

)
, (89)

and coefficients ci that are expected to be of order one.
The expansion for the B(E2) transition strength (51) is
obtained from the expansion (89) of the corresponding
matrix element. We quantify uncertainties for these ma-
trix elements and transition strengths based on Eq. (85)
with s = 1 and compute 68% DOB intervals.

To summarize this Section, we have derived analyti-
cal formulas for uncertainty quantification based on log-
normal priors. For uncertainty quantification of LO re-
sults for energies and matrix elements we employ Eq. (85)
with s = 0.65 and s = 1, respectively, and compute 68%
DOB intervals. For uncertainty quantification at NLO
for energies, we confirmed that the prior for the employed
expansion coefficients is based on data from an ensemble
of vibrational nuclei. Based on this ensemble, Eqs. (87)
and (88) describe the distribution of uncertainties. These
are then used for the computation of 68% DOB intervals.

IV. ENERGY SPECTRA WITH QUANTIFIED
UNCERTAINTIES

To test the EFT, we compare the low-energy spec-
tra and reduced transition probabilities of the nuclei
62Ni, 98,100Ru, 106,108Pd, 110,112,114Cd, and 118,120,122Te
against LO and NLO results. We consider nuclei in which
the ratio of energies E(4+

1 )/E(2+
1 ) ≈ 2, states with the

spins of the two-phonon triplet are at about 2E(2+
1 ), and

states with the spins of the three-phonon quintuplet are
around 3E(2+

1 ). First, we discuss the description of the
energy spectra by the EFT. The LECs required for such
description were obtained from χ2 fits at LO and NLO,
with a breakdown scale set to Λ = 3ω, based on the
appearance of states that cannot be identified with har-
monic quadrupole excitations.

The low-lying spectrum of 62Ni exhibits states with the
spins and energies of a harmonic quadrupole vibrator up
to the three-phonon level, making this nucleus a can-
didate for low-energy vibrational behavior. The break-
down of vibrational motion at the three-phonon level
agrees with the results and discussion for this nucleus pre-
sented in Ref. [15], where shell model calculations with
a 40Ca core were required to simultaneously describe the
energies and electromagnetic properties of some multi-
phonon candidates. Similar results for this and other
nickel isotopes [55, 56], suggest that intruder configura-
tions need to be taken into account in in a microscopic
description of spectra and electromagnetic properties of
the low-lying states in these nuclei.

Figure 3 shows the comparison between experimental
data taken from Ref. [57], LO and NLO calculations for
energies up to the three-phonon level for this nucleus.
States up to the two-phonon level are shown as thick
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FIG. 3. (Color online) Partial energy spectrum of 62Ni up
to the three-phonon level. Experimental data [57], shown as
black lines, are compared to LO and NLO calculations, shown
as red crosses and blue diamonds, respectively. States up to
the two-phonon level are shown as thick black lines. Theo-
retical uncertainties quantified from 68% DOB intervals are
shown as shaded and hatched areas at LO and NLO, respec-
tively.
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black lines, while states above them are shown as thin
lines only if their spins have been assigned (consequently,
some of the nuclei studied in this work exhibit a higher
density of states above the two-phonon level than dis-
played in the figures). The uncertainty at each order
is shown as 68% DOB areas. The increased level den-
sity above the two-phonon states is consistent with our
identification of the breakdown scale at about the three-
phonon level. Below the breakdown level, the description
of the experimental data is improved order by order. We
note that the LO and NLO predictions for three-phonon
energies are relatively close.

Let us make three more comments that apply to 62Ni
and the other nuclei studied in what follows. First, LO
predictions are consistent with data within the quanti-
fied theoretical uncertainties. Second, we note that the
energies up to the two-phonon states are accurately de-
scribed at NLO, because the EFT Hamiltonian exhibits
four adjustable LECs. Thus, EFT predictions are accu-
rate (they agree with data) yet not very precise (theoret-
ical uncertainties are considerable). The comparison of
LO and NLO results shows the convergence properties of
the EFT. Third, we also note that the prediction for the
I = 6 three-phonon state is quite accurate. It thus seems
that the breakdown scale for yrast states could be higher
than for the other states. This is presumably due to the
lower level density of high-spin states.

Figure 4 compares the energy spectrum of 98Ru and
100Ru and our calculations. Again, the breakdown scale
seems properly identified. We note that the differences
between LO and NLO predictions for three-phonon levels
are considerable.

The ruthenium isotopes near the N = 50 shell clo-
sure appear to undergo a transition from spherical to
triaxial shapes, based on the behavior of the ratio
R4/2 ≡ E(4+

1 )/E(2+
1 ) with increasing neutron num-

ber [60]. From this chain, 98Ru is the first isotope ex-
pected to exhibit collective behavior based on its ratio
of energies R4/2 ≈ 2. Its low-energy spectrum exhibits
vibrational-like excitations, with several non-vibrational
states above the two-phonon level. Experimental energies
were taken from Ref [58]. For 100Ru, experimental data
were taken from Ref. [59]. Shell model calculations with
neutrons promoted across the N = 50 shell gap reveal
the importance of single particle motion in these isotopic
chain [61, 62]. As mentioned before, ruthenium isotopes
transit from spherical to triaxial shapes as the neutron
number increase. Larger deviations from the harmonic
behavior in 100Ru suggest that its shape is farther away
from sphericity than that of 98Ru.

The energy spectra of 106Pd and 108Pd are compared
against LO and NLO calculations in Figure 5. In 108Pd
there are fewer levels around the three-phonon states.
The considerable deviations of the I = 0, 2 three-phonon
energies from NLO predictions – consistent with the the-
oretical uncertainties – nevertheless suggests that the
breakdown scale has been identified correctly.

The energy spectra and enhanced transitions probabil-
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FIG. 4. (Color online) Partial energy spectrum of 98Ru (a)
and 100Ru (b) up to the three-phonon level. Experimental
data [58, 59], shown as black lines, are compared to LO and
NLO calculations, shown as red crosses and blue diamonds,
respectively. States up to the two-phonon level are shown as
thick black lines. Theoretical uncertainties quantified from
68% DOB intervals are shown as shaded and hatched areas
at LO and NLO, respectively.

ities for decays from the low-lying states in palladium iso-
topes, assumed to be spherical, suggest vibrational mo-
tion in these systems. For 106Pd and 108Pd, experimental
data was taken from Ref. [63] and Ref. [64], respectively.
Single particle states have been suggested for 108Pd [65].
The palladium isotopes exhibit ratios R4/2 ≈ 2.4 and

B(E2; 4+
1 ↓)/B(E2; 2+

1 ↓) ≈ 1.6. These quantities, in ad-
dition to the large diagonal quadrupole matrix elements
for states up to the two-phonon level in palladium iso-
topes [66], strongly suggest that the deviation from the
harmonic oscillator behavior in these systems is consid-
erable.

Figure 6 compares experimental spectra of cadmium
isotopes with LO and NLO results from the EFT. We
note that the deviations from expectations for the har-
monic quadrupole vibrator are pronounced in these iso-
topes, with additional energy levels just above the two-
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FIG. 5. (Color online) Partial energy spectrum of 106Pd (a)
and 108Pd (b) up to the three-phonon level. Experimental
data [63, 64], shown as black lines, are compared to LO and
NLO calculations, shown as red crosses and blue diamonds,
respectively. States up to the two-phonon level are shown as
thick black lines. Theoretical uncertainties quantified from
68% DOB intervals are shown as shaded and hatched areas
at LO and NLO, respectively.

phonon states. We also note that the energies of the
three-phonon 6+

1 states deviate stronger from EFT pre-
dictions than for the other nuclei we consider in this
work. In these nuclei, the breakdown scale for vibrations
is clearly low. From the EFT’s perspective anharmonic
corrections are expected to be most significant.

The cadmium isotopes have once been considered text-
book candidates of low-energy vibrational behavior based
only on their energy spectra [3–5], despite exhibiting in-
truder states due to protons promoted across the Z = 50
shell gap around the two-phonon level [70, 71]. Other
studies on cadmium isotopes [7, 8, 11, 13, 20, 22] in which
mixing between vibrational and non-vibrational states is
taken into account, cannot accurately describe the elec-
tromagnetic properties of multiphonon candidates. They
set the breakdown of vibrational behavior at the two- or
three-phonon level depending on the isotope, and suggest
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FIG. 6. (Color online) Partial energy spectrum of 110Cd (a),
112Cd (b) and 114Cd (c) up to the three-phonon level. Ex-
perimental data [67–69], shown as black lines, are compared
to LO and NLO calculations, shown as red crosses and blue
diamonds, respectively. States up to the two-phonon level are
shown as thick black lines. Theoretical uncertainties quanti-
fied from 68% DOB intervals are shown as shaded and hatched
areas at LO and NLO, respectively.

a quasi-rotational character for the low-lying excitations,
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FIG. 7. (Color online) Partial energy spectrum of 118Te (a),
120Te (b) and 122Te (c) up to the three-phonon level. Ex-
perimental data [74–76], shown as black lines, are compared
to LO and NLO calculations, shown as red crosses and blue
diamonds, respectively. States up to the two-phonon level are
shown as thick black lines. Theoretical uncertainties quanti-
fied from 68% DOB intervals are shown as shaded and hatched
areas at LO and NLO, respectively.

based on the large quadrupole moments of some yrast
states [20, 72]. For the three isotopes studied in this
work, A = 110, 112, 114, experimental data was taken
from Refs. [67–69], respectively. The 0+

2 and 2+
2 states

were employed as the two-phonon states for the χ2 fits.
The states identified as members of two-phonon triplet in
this work might be in disagreement with previous stud-
ies [11, 13, 20], where, for example, the 0+

2 in 112Cd have
been identified as an intruder state [70, 73]. Here, the
identification is made based on the assumption that non-
vibrational modes require more energy to be excited. As
we discuss in Sect. V, B(E2) values for decays from the
identified states seems to be in better agreement with the
EFT expectations than those from other states.

Figure 7 shows the comparison between experimen-
tal data taken from Refs. [74–76] for 118Te, 120 Te and
122Te, respectively, LO and NLO results from EFT. The
tellurium isotopic chain provides us with candidates of
low-energy vibrational behavior. The isotopes with A =
118, 120, 122 all exhibit very similar spectra with states
that can be identified with those of a quadrupole vibra-
tor up to the three-phonon level. From these isotopes,
the best candidate is 120Te with a non-vibrational state
slightly above the three-phonon quintuplet. 118Te and
122Te exhibit a non-vibrational state already at the three-
phonon level. The breakdown of the collective behav-
ior is a consequence of competing single-particle motion,
known to exist in tellurium isotopes [77–82], and signaled
in 122Te by the unusual energy ratios E(4+

1 )/E(2+
1 ) < 2

and E(6+
1 )/E(4+

1 ) < 1.5 [83]. The alignment of both va-
lence nucleons and protons promoted across the Z = 50
shell gap breaks the spherical symmetry and gives rise
to noncollective deformed states. These states compete
energetically with the collective states. In particular, the
6+

1 state have been interpreted both as a vibrational state
or in terms of valence protons coupled to a tin core.

Let us summarize our uncertainties as 68% DOB in-
tervals ±δ for the hard-wall (hw) prior and the Gaussian

TABLE II. Values of the uncertainties at NLO, with ±δ giving
the size of 68% DOB intervals in states up to the two-phonon
level. The uncertainty arising from the hard-wall (hw) and
Gaussian (G) priors are calculated as 68% DOB intervals of
the distribution functions (87) and (88), respectively.

2+
1 0+

2 2+
2 4+

1

Nucleus hw G hw G hw G hw G
62Ni 0.02 0.02 0.29 0.22 0.21 0.20 0.20 0.20
98Ru 0.02 0.02 0.18 0.19 0.18 0.18 0.18 0.18
100Ru 0.04 0.03 0.18 0.18 0.30 0.22 0.21 0.20
106Pd 0.03 0.02 0.18 0.18 0.18 0.18 0.21 0.20
108Pd 0.02 0.02 0.18 0.19 0.18 0.18 0.18 0.19
110Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.19 0.19
112Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.18 0.19
114Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.18 0.19
118Te 0.02 0.02 0.34 0.23 0.21 0.20 0.19 0.19
120Te 0.02 0.02 0.19 0.19 0.18 0.18 0.18 0.19
122Te 0.03 0.03 0.18 0.18 0.18 0.19 0.21 0.20
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(G) prior. The uncertainty is ωδ for the energy levels.
At LO, the pdfs in Eqs. (84) and (85) agree with each
other and yield values of δ = 0.07 and δ = 0.29 for the
one- and two-phonon levels, respectively. Table II sum-
marizes the values of δ for states up to the two-phonon
level at NLO. The columns labeled by hw and G show the
values of δ obtained from the pdfs in Eqs. (87) and (88),
respectively. With the exception of a few relatively large
uncertainties, both priors yield very similar results. For
large uncertainties δ, one samples the tails of the respec-
tive priors, and these are notably different (and not well
constrained by data, cf. Fig. 1).

V. ELECTROMAGNETIC MOMENTS –
COMPARISON WITH DATA

In this Section, we compare our results for transition
quadrupole moments, diagonal quadrupole matrix ele-
ments, and magnetic moments with data. Theoretical
uncertainties are quantified for all quadrupole observ-
ables we consider. As we will see, the EFT correctly
captures and consistently describes the main experimen-
tal features of vibrational nuclei.

To determine the LEC Q0 we perform χ2 fits to data
at LO with

χ2
LO =

∑
t

[
B(E2)

(t)
exp −B(E2)

(t)
LO

]2
σ2

exp + σ2
LO

. (90)

Here t labels the transitions from the one-phonon state
to the ground state and from the two-phonon states to
the one-phonon state, i.e. 2+

1 → 0+
1 , 0+

2 → 2+
1 , 2+

2 → 2+
1 ,

and 4+
1 → 2+

1 . In these fits we estimate the theoretical
uncertainty for decays from the N -phonon state as

σLO = B(E2)
(t)
LOε . (91)

Experimental data was mostly taken from the Nuclear
Data Sheets for the studied nuclei. For 62Ni, these data
were complemented with that from Ref. [15], while for
98Ru we took the data from Ref. [16], which establish a
ratio B(E2, 4+

1 → 2+
1 )/B(E2, 2+

1 → 0+
1 ) = 1.86(16) in

agreement with the expectations for vibrators instead of
taking data for which this ratio has anomalous values [10,
60, 61]. The lack of experimental data for 118Te makes
it impossible to perform a χ2 fit. For 120Te, we fixed Q2

0

to the only experimental value, and make predictions for
decays from the two-phonon states.

Table III compares experimental and theoretical
B(E2) values (in Weisskopf units) for each nucleus con-
sidered in this work. The theoretical uncertainty is shown
as 68% DOB intervals from the pdf (85) with s = 1.
Within the often considerable theoretical uncertainties,
the EFT consistently describes the available experimen-
tal data. These results, taken together with the results
for energy level in Table II, show that vibrational nuclei

TABLE III. B(E2) values (in Weisskopf units) for decays from
states below the three-phonon level in the ensemble of all
studied nuclei. Experimental data are in agreement with LO
calculations within theoretical uncertainty, given by the 68%
DOB interval for the normalized residual for B(E2) values.

Nucleus 2+
1 → 0+

1 EFT 0+
2 → 2+

1 2+
2 → 2+

1 4+
1 → 2+

1 EFT
62Ni 12.1(4) 11(4) 42(23) 14.9(42) 21(6) 21(7)
98Ru 31(1) 28(9) 47(5) 57.6(40) 56(19)
100Ru 35.6(4) 24(8) 35(5) 30.9(4) 51(4) 47(16)
106Pd 44.3(15) 30(10) 35(8) 44(4) 76(11) 61(20)
108Pd 49.5(13) 37(12) 52(5) 71(5) 73(8) 74(25)
110Cd 27.0(8) 21(7) 30(5) 42(9) 42(14)
112Cd 30.2(3) 23(8) 51(14) 15(3) 61(6) 46(15)
114Cd 31.1(19) 22(7) 27.4(17) 22(6) 62(4) 43(15)
120Te 31 (6) 31(10) 62(21)
122Te 36.9(3) 41(14) 100(30) 81(27)

can be described as such within an EFT with a break-
down scale around the three-phonon level. They are ex-
amples for anharmonic quadrupole oscillators.

How reasonable and consistent are the 68% DOB inter-
vals for the B(E2) transitions? To address this question,
we turn again to the ensemble of vibrational nuclei con-
sidered in this work. Excluding the isotopes 118,120Te,
the EFT prediction B(E2)/Q2

0 = N for decays from the
N -phonon state can be compared to the data from all nu-
clei in the ensemble. This comparison is shown in Fig. 8,
where the experimental data and the LO calculations are
shown as black errorbars and red lines with shaded un-
certainty bands, respectively. About 81% of the data
is within the 68% DOB intervals. This is a consistent
agreement for an ensemble of 32 data points.

The eigenstates of a harmonic quadrupole oscillator
have vanishing diagonal quadrupole matrix elements.
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FIG. 8. (Color online) Comparison between the normalized
B(E2) values for decays from the one- and two-phonon states
in the ensemble of the nuclei studied in this work. Experi-
mental B(E2) values are shown as black lines with error bars.
Theoretical uncertainties quantified from 68% DOB intervals
are shown as shaded areas.
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Compared to this ideal case, diagonal quadrupole ma-
trix elements for isotopes of Cd and Pd exhibit sizes that
are only somewhat smaller than transition quadrupole
moments. From the EFT’s perspective, sizeable diago-
nal quadrupole matrix elements are expected. Compar-
ing the expansion of the spectrum (38) with that of the
quadrupole operator (44) shows that anharmonic correc-
tions have relative size ε for energies and relative size ε1/2

for the quadrupole operator.

Let us consider diagonal quadrupole matrix ele-
ments (49). We employ experimental data for the di-
agonal quadrupole matrix elements of the 2+

1 , 2+
2 and

4+
1 in 106Pd and 108Pd from Svensson et al. and deter-

mine the LEC Q1 by a χ2 fit to these data. In these fits,
the theoretical uncertainty was estimated as Q0ε

3/2 as
discussed in Subsection II C.

The fits yield Q1 = −0.14 eb for both palladium iso-
topes. (We recall that for a nucleus with A nucleons
1 W. U. = 5.94× 10−6A4/3 e2b2.) Comparing the size of
Q1 against Q0 yields Q1/Q0 = 0.47 and Q1/Q0 = 0.41 in
106Pd and 108Pd, respectively. These ratios are consistent
with the EFT estimate Q1/Q0 ∼ ε1/2 =

√
1/3 ≈ 0.58.

In other words, sizeable diagonal quadrupole matrix ele-
ments are not a surprise for these anharmonic vibrators
but rather expected and due to the marginal separation
of scales, i.e. the breakdown of the EFT around the
three-phonon level.

The left part of both panels in Figure 9 compares EFT
results to data [66] for the diagonal quadrupole matrix
elements of the 2+

1 , 2+
2 and 4+

1 states in 106Pd and 108Pd.
Theoretical uncertainties are shown as 68% DOB bands.
They are based on the Gaussian prior (59) and M = 1 in
Eq. (65). Within the theoretical uncertainties, the EFT
is consistent with the data.

We turn to transition quadrupole moments (48) be-
tween two-phonon states because these are also deter-
mined by the LEC Q1 and are thus predictions of the
EFT. The right part of Fig. 9 shows the magnitude of
the transition matrix elements and compares them to
data [66]. We note that the EFT yields different signs
of these (non-observable) matrix elements and that only
the magnitude of these matrix elements is an observable
quantity, see the definition of the observable B(E2) tran-
sition strength in Eq. (51).

Theoretical results for quadrupole matrix elements in
114Cd are shown in Fig. 10 and compared to data [84].
The uncertainties are quantified as for the palladium iso-
topes. With the exception of the diagonal matrix ele-
ment of the 2+

2 state, the EFT yields a consistent de-
scription of the data, and has predictive power for the
off-diagonal matrix elements. Here, Q0 = 0.27 eb, and
Q1 = −0.09 eb.

Thus, the EFT consistently describes matrix elements
of electromagnetic operators. In the present approach,
the anharmonicities are due to the operators them-
selves, with states being the eigenstates of the harmonic
quadrupole oscillator. We note that Figs. 9 and 10 ex-
hibit very similar patterns for the different nuclei. As a
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FIG. 9. (Color online) Reduced electric quadrupole matrix el-
ements in 106Pd (a) and 108Pd (b). Experimental data, shown
as black lines with errorbars, are compared LO calculations,
shown as red crosses Theoretical uncertainties from 68% DOB
intervals are shown as shaded areas. The left side shows diag-
onal matrix elements employed in the fit of the LEC constant
Q1. The right side shows predictions for the absolute val-
ues of the reduced matrix elements governing E2 transitions
between two-phonon states.

last consistency check, we turn to magnetic moments.

The EFT needs one magnetic moment to determine a
LEC, i.e. the constant g in Eq. (53). While magnetic mo-
ments are typically known for the lowest 2+ state in many
even-even nuclei [72], the EFT can only be tested if more
magnetic moments are known below the three-phonon
level. The states 2+

1 , 2+
2 , and 4+

1 have non-zero spins
and thus exhibit magnetic moments. As discussed below
Eq. (53), the EFT predicts at LO that both 2+ states
have equal magnetic moments, i.e. µ(2+

1 ) = µ(2+
2 ) ≡

µ(2+), and that the 4+ state has a magnetic moment

µ(4+
1 ) =

√
6µ(2+) ≈ 2.44µ(2+). Weighted averages of

the experimental data [72] [in units of nuclear magne-
tons (nm)] for 106Pd show that µ(2+

1 ) ≈ 0.79± 0.02 nm,
µ(2+

2 ) = 0.71± 0.10 nm, and µ(4+
1 ) = 1.8± 0.4 nm. This

is consistent with EFT expectations. It would certainly
be interesting to test these EFT predictions in other vi-
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FIG. 10. (Color online) Comparison between data and EFT
results for some reduced quadrupole matrix elements in 114Cd.
Experimental data, shown as black lines with errorbars, are
compared LO calculations, shown as red crosses Theoretical
uncertainties from 68% DOB intervals are shown as shaded
areas. The left side shows diagonal matrix elements employed
in the fit of the LEC constant Q1. The right side shows pre-
dictions for the absolute values of the reduced matrix elements
governing E2 transitions between two-phonon states.

brational nuclei.
Overall, the EFTs results and predictions for electro-

magnetic properties of states and transitions below the
three-phonon level are consistent with data. This would
make it interesting to measure such complete data sets
for other vibrational nuclei as well.

VI. SUMMARY

We developed an EFT for collective nuclear vibrations
based on quadrupole degrees of freedom, rotational in-
variance, and a breakdown scale at around the three-
phonon level. For spectra, the EFT is driven to next-
to-leading order, while the computation of other matrix
elments is restricted to leading order. The terms appear-
ing in the Hamiltonian and quadrupole operator differ
from those employed in several models.

The EFT approach also allows us to quantify theoret-
ical uncertainties. To this purpose, we make testable as-
sumptions about priors regarding the distribution of low-
energy constants and employ recently developed tools
from Bayesian statistics. We give analytical results for
the important case of log-normal priors. The priors em-
ployed in the uncertainty quantification of energies are
consistent for the ensemble of nuclei we considered.

The EFT is minimally coupled to electromagnetic
gauge fields in a model-independent way, with non-
minimal couplings accounting for subleading corrections.
For states below the three-phonon level we describe LO
B(E2) transition strengths with quantified uncertainties
and present several results for diagonal and off-diagonal
matrix elements of the quadrupole operator. Comparing
the EFT results to an extensive data set shows that spec-

tra and transition strengths are consistently described
within the theoretical and experimental uncertainties for
62Ni, 98,100Ru, 106,108Pd, 110,112,114Cd, and 118,120,122Te.
In particular, relatively large diagonal matrix elements in
106,108Pd and 114Cd are consistent with the expectations
of the EFT. The consistent description of spectra, E2
transitions and matrix elements, and magnetic moments
within the EFT for nuclear vibration suggests that the
nuclei studied in this work can be viewed as anharmonic
quadrupole vibrators. This work also suggests that it
would be interesting to measure a combination of matrix
elements for electric and magnetic observables in nuclei
such as 120Te and 122Te.

It would be interesting to extend the EFT of nuclear
vibrations also to odd-mass neighbors of the even-even
nuclei considered in this work. Combining, for instance,
halo EFT with this work, one might explore to what ex-
tent such nuclei can be understood by coupling the odd
nucleon to the quadrupole degrees of freedom of vibra-
tional even-even nuclei.
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A. ANALYTICAL RESULTS FOR
LOG-NORMAL PRIORS

In this Appendix we present some details for the
derivation of analytical results for the combination of log-
normal priors (57) and hard-wall priors (58).

The denominator of Eq. (60) is

∞∫
0

dc pr(c)

k∏
m=0

pr(hw)(cm|c) =

2−(k+1)
√

2πσ

∞∫
a

dc c−(k+2)e−
1

2σ2 (log c)2

. (92)

Here,

a ≡ max(|c0|, . . . , |ck|) (93)

is a function of the expansion coefficients. Substitutions
z = log c and x = z − log(a) yield

e−(k+1) log ae−
1

2σ2 (log a)2

2(k+1)
√

2πσ

∞∫
0

dx e−
x2

2σ2−x(k+1+ log a

σ2 ) . (94)

This integral is known [54], and we find

2−(k+2)e
σ2

2 (k+1)2

[
1− Φ

(
σ√
2

(
k + 1 +

log a

σ2

))]
(95)
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as the final result for the denominator of Eq. (60). Here,
Φ(x) ≡ (2/

√
π)
∫ x

0
dt exp (−t2) denotes the error func-

tion. The numerator of the expression (60) can be eval-
uated in similar fashion. Employing the shorthand

b ≡ max

(
a,
|∆|
εk+1

)
(96)

we find for the numerator of Eq. (60)

e
σ2

2 (k+2)2

2k+3εk+1

[
1− Φ

(
σ√
2

(
k + 2 +

log b

σ2

))]
. (97)

Thus, for M = 1

p
(hw)
1 (∆|c0, . . . , ck) =

e
2k+3

2 σ2

2εk+1

1− Φ
(
σ√
2

(
k + 2 + log b

σ2

))
1− Φ

(
σ√
2

(
k + 1 + log a

σ2

)) ,
(98)

and the dependence on the expansion coefficients is en-
tirely contained in the functions a and b.

Let us continue and compute p
(hw)
2 (∆|c). The inte-

gral (68) is again known for M = 2 [54], and the final
result is

p
(hw)
2 (∆|c) =


1

2εk+1c
, |∆| ≤ (1− ε)εk+1c

0 , |∆| > (1 + ε)εk+1c
(1+ε)εk+1c−|∆|

4ε2k+3c2
, else

.(99)

As we need to integrate over c for the computation of

p
(hw)
2 (∆|C0, . . . , ck), we rewrite this function as

p
(hw)
2 (∆|c) =


0 for c ≤ |∆|

(1+ε)εk+1

1
2εk+1c

for c > |∆|
(1−ε)εk+1

(1+ε)εk+1c−|∆|
4ε2k+3c2

else

.(100)

The remaining integrations are similar to the ones solved
above, and one finds

p
(hw)
2 (∆|c0, . . . , ck) =

(
2εk+1

)−1
e

2k+3
2 σ2

1− Φ
(
σ√
2

(
k + 1 + log a

σ2

)){1− Φ

(
σ√
2

(
k + 2 +

log d

σ2

))

+
1 + ε

2ε
Θ(g − f)

[
Φ

(
σ√
2

(
k + 2 +

log g

σ2

))
− Φ

(
σ√
2

(
k + 2 +

log f

σ2

))]
− |∆|

2εk+2
Θ(g − f)e

2k+5
2 σ2

[
Φ

(
σ√
2

(
k + 3 +

log g

σ2

))
− Φ

(
σ√
2

(
k + 3 +

log f

σ2

))]}
.(101)

Here, Θ denotes the unit step function, and the expres-
sions

d ≡ max

(
a,

|∆|
(1− ε)εk+1

)
, (102)

f ≡ max

(
a,

|∆|
(1 + ε)εk+1

)
, (103)

g ≡ |∆|
(1− ε)εk+1

(104)

encode much of the functional dependence.

For M > 2, the evaluation of p
(hw)
M (∆|c) [Eq. (68)] be-

comes increasingly tedious. Fortunately, p
(hw)
2 (∆|c) is a

good approximation even for M > 2. The quality of this
approximation can be verified by inserting the expres-
sion (68) into Eq. (60) and performing the integrations
numerically. We note that the accuracy of the M = 2
result is not surprising. As the expansion coefficients cn
are natural in size, increasingly higher orders contribute
little to the residual (56). This makes Eq. (101) the main
result of this Appendix.
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