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Both E1 and M1 γ strength functions below the neutron separation energy were analyzed based on
experimental data from 143Nd(n, γ)144Nd and 143Nd(n, γα)140Ce reactions. It is confirmed that the
commonly adopted E1 model based on the temperature dependence of the width of the giant dipole
resonance works well. The popular M1 strength function due to the spin-flip magnetic resonance
located at around neutron binding energy is not capable of reproducing experimental data. The
low energy enhancement of the M1 strength or the energy independent model of Weisskopf, both
leading to the low energy strength sizable to E1 one, fit experimental data best.

PACS numbers: 21.10.Ma,21.10.Pc,24.60.Dr,27.60.+j,28.20.Np

I. INTRODUCTION

Experimental study of low-energy (1-3 MeV) γ-
transitions between highly excited compound states in
continuum populated in nuclear reactions has always
been a challenging problem. The nature of the strength
of such transitions is still poorly understood. This is re-
lated largely to experimental difficulties of isolating such
transitions from usually more intense, same energy tran-
sitions between low-lying discrete nuclear levels in exper-
imental γ-spectra.
The first experimental estimation of strength of such

transitions has been done with 143Nd(nth, γα)
140Ce re-

action where the compound nucleus 144Nd formed with
the thermal neutron capture reaction decays down by the
cascades consisting of the primary low-energy γ and the
secondary α-transitions. Several such experiments have
been performed with consistent results [1–3]. The γα
cascades are seen as a continuum distribution in the α
spectrum between peaks corresponding to population of
the ground and the 1.5 MeV 2+ first excited state of
140Ce (Fig.1). The shape of this distribution was used
to determine the γ-strength for low energy γ-transitions
between excited compound states. Specifically, it was
found that the hypothesis of a zero E1 strength resulted
from extrapolation of the Lorentz function describing
the giant dipole resonance towards the low-energy γ-
transitions (fE1(Eγ)Eγ→0 → 0) is not correct. The
new model was developed for the E1 strength assum-
ing its dependence on the temperature of final states [4].
Since then similar models have been proposed for the E1
strength function [5]. All these models are now used in
nuclear reaction codes [6, 7]. The general feature of all E1
strength function models is nonzero limit of E1 strength
(fE1(Eγ)Eγ→0 →∼ 10−8 MeV−3). Such a limit results
from the spreading of the GDR width which is due to
its dependence on both the γ-energy and temperature of
final states populated by γ-transitions [4].
However, the following assumptions were made when

the analysis of the (n, γα) reaction was performed [3].
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FIG. 1. α- spectrum from thermal neutron capture reaction
on 143Nd. The figure is taken from Ref.[2] (Fig.1), with per-
mission of Springer

The effect of the level density on shape of the γα spec-
trum was assumed to be negligible. The strength of low
energy M1 transitions which were mentioned to play an
important role, was approximated by the Weisskopf sin-
gle particle model [8] which assumes an independence of
the γ-strength on the γ-energy, i.e. fM1(Eγ) = const.
However, as is shown later [5], the γ-spectra and total
radiative widths of neutron resonances for spherical nu-
clei from the same mass range are reproduced best with
assumption of M1 strength based on the Lorentzian func-
tion (not Weisskopf estimate). The latter model is based
on the spin-flip M1 giant resonance which predicts the
M1 strength to be about 100 times less than either E1
or Weisskopf M1 ones for low-energy γ-transitions that
is not in accord with conclusion from the (n, γα) analy-
sis [9]. Now modern reaction codes, such as Empire [6]
and Talys [7] use RIPL-3 data base recommendations for
the M1 strength function which is assumed to be due to
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M1 spin-flip resonance described by the Lorentzian func-
tion centered around the neutron separation energy [10].
On the other hand, there are steady results seen from
Oslo type of experiments indicating the low-energy en-
hancement of the γ-strength function in different mass
regions which was interpreted as an enhancement of the
M1 strength [11].
In order to resolve existing ambiguities about M1

strength function, it appears to be important to rean-
alyze the data from 143Nd(n, γα) reaction taking into
account new developments and new experimental data
occurred after the paper of Ref.[4] was published.

II. METHOD OF ANALYSIS

In statistical reaction model the cross section of the
(n, γα) reaction proceeding through the initial i, inter-
mediate j and final f states can be expressed in the fol-
lowing manner:

dσ

dEα

(Eα) =

σi

∑

XLL′ Γ
XL

ij (Eγ) · Γ
L′

jf (Eα)

Γi(Bn) · Γj(Bn − Eγ)
ρj(Bn − Eγ) (1)

where the σi is the capture cross section average over
resonances with the same spin and parity, Γij(Eγ) is the

average width of the primary γ-transition, Γi(Bn) is the
total average γ-width of the initial i compound state,
Γj(Bn − Eγ) is the total average width of the interme-
diate j level populated by the primary γ-transition Eγ ,

Γjf (Eα) is the average α width of the intermediate level
j decaying to the final level f . The ρj(Bn − Eγ is the
density of intermediate levels j. Here we assume that
a compound nucleus is formed with the excitation en-
ergy equal to the neutron separation energy Bn. The
summation is performed over all possible multipolari-
ties XL of γ-transitions and orbital momenta L′ of α-
particles. The γ and α widths are expressed in terms
of the γ-strength function fXL(Eγ) and α-transmission

coefficients TL′

(Eα) respectively as:

Γ
XL

ij (Eγ) = DiE
2l+1fXl(Eγ) (2)

Γ
L′

jf (Eα) =
TL′

(Eα)

2π
Dj (3)

where Di and Dj are average spacings of i and j lev-
els respectively. α-transmission coefficients are calcu-
lated from optical model potentials. One can see from
Eq.1 that in order to estimate the γ-strength function

from Eqs.(1-3) the Γ
L′

jf (Eα) functions have to be known.
However, the α-optical potentials for α-energies 7-9 MeV
which is way below the coulomb barrier are highly un-
certain. Potentials collected in RIPL-3 data base [10]
produce transmission coefficients which differ up to 20
times from each other in this energy range. Therefore,

fist, we tested α-optical potentials against experimental
data on the 143Nd(n, α) reaction. Cross sections for 2-
500 keV neutrons have been measured recently in Ref.
[12]. At these energies Porter-Thomas fluctuations of
individual resonances can be neglected so the measured
cross sections are the ones averaged over resonances. The
143Nd(n, γ) cross sections were measured in Ref.[13] for
the same neutron energies. Taking into account that the
ratio of total (integrated over energies of an outgoing par-
ticle or γ) cross sections is proportional to the ratio of
total widths, σn,α/σn,γ ∝ Γα/Γγ , and the experimental

Γ
exp

γ =73 meV [14], the Γ
exp

α is estimated to be 6 µeV . We
also estimated the average α-width from α-widths of in-
dividual neutron resonances measured in Ref.[15]. From
nine 3− and 4− resonances with energies up to 705 eV,
the estimated average α width turned out to be 5.3 µeV
which is in 12% agreement with the value of 6 µeV ob-
tained from the cross section ratio. The total α-width
is mainly due to 9.45 MeV α-particles populating the
ground 0+ state of the 140Ce nucleus. However, it is im-

portant to use the correct energy dependence of Γ
L′

(Eα)
especially in the energy range Eα from 8 to 9.5 MeV
where the (n, γα) cross section is concentrated. For this,
we used the experimental cross section of the broad peak
located at the energy of 7 MeV in the experimental α
spectrum (see Fig. 1). This peak includes 10 levels of
140Ce with excitation energies from 2 to 2.6 MeV popu-
lated by α-particles with energies from 6.8 to 7.2 MeV.
Ten levels reduces Porter-Thomas fluctuations compared
to a single level population. The remaining estimated un-
certainty due to these statistical fluctuations is estimated
to be about 50%. Transmission coefficients obtained from
optical model parameters of Ref.[10] have been scaled to
reproduce the average Γexp

α of 6 µeV which is mainly due
to 9.45 MeV ground state transitions. This allows the
α transmission coefficients to be tested for the α energy
around Eα = 7 MeV to be able to get the correct energy
dependence between 7 and 9.45 MeV. Table I presents
the experimental α-width for the α-group 6.8-7.2 MeV as
well as widths calculated with different optical potentials
from Ref.[10] along with their scaling factors. The best
potential has been chosen to be the one from Ref. [16].
In calculations of thermal neutron capture by 143Nd, the
value of σi=325 barns was used as a capture cross sec-
tion by a 3− resonance [14] and only (n, γ) and (n, α)
outgoing channels were considered.
We tested the following γ-strength function models.

For the E1 strength function this is the model developed
by Kadmensky-Markushev-Furman (KMF) [4]:

fKMF
E1 (Eγ) =

1

3π2h̄2c2

0.7σE1Γ
2
E1(E

2
γ + 4πT 2)

EE1(E2
γ − E2

E1)
2

(4)

where σE1 , ΓE1, and EE1 are the giant electric dipole
resonance parameters derived from photo-absorption
cross sections [21]. The temperature T is usually de-
fined in terms of excitation energy U and the level den-
sity parameter a as

√

(U/a). Later, the so called en-
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TABLE I. Summed α-width for transitions with energies 6.8-7.2 MeV populating 10 levels of 140Ce in the excitation energy
interval 2-2.6 MeV. Widths are calculated with different optical potentials indicated by references. Uncertainties in brackets
are expected to be due to Porter-Thomas statistical fluctuations estimated for 10 populated levels.

Exp Calculations

Reference [17] [18] [19] [20] [7] [16]

Scal. factor 0.35 0.08 0.11 4.44 1.7 2.53

Γ5

α
, 10−5 2.9 7.0(35) 13(7) 14(7) 1.1(6) 1.4(7) 2(1)

hanced Lorentzian model was developed and it became
more popular in interpreting experimental data [5]. How-
ever, it does not differ much from KMF model of Eq. 4.
Therefore, since the KNF model was originally used to
interpret the 143Nd(n, γα) reaction [3], we use it here as
well.
Two M1 models have been tested. The first one is

the Weisskopf estimate [8] based on the single particle
model which results in the constant strength function
fM1(Eγ) = const. The value of the constant is estimated
from fM1/fE1 systematics as prescribed in Refs.[5, 10]
which recommend this ratio to be 17.2A−0.87. The sec-
ond model is based on the assumption of the spin-flip
magnetic resonance described by the standard Lorentz
(SLO) function as:

fSLO
M1 (Eγ) =

1

3π2h̄2c2
σM1Γ

2
M1Eγ

(E2
γ − E2

M1)
2 + E2

γΓ
2
M1

(5)

where parameters σM1, ΓM1, and EM1 are taken from
Ref.[10].
In calculations of γ-cascades in 144Nd discrete levels

were used up to 2.36 MeV. The level density above that
energy was modeled with the Fermi-gas [22] and the con-
stant temperature [23] functions. Model parameters were
determined from fitting these two functions to the density
of discrete levels [24] and to the density of neutron res-
onances (to the neutron resonance spacing) taken from
Ref.[14]. In both cases, the spin cutoff parameter was
calculated according to the rigid body model with pa-
rameters obtained for Fermi-gas function. The number
of negative and positive levels was assumed to be equal.
Model calculations were tested against both the exper-

imental α spectrum from 143Nd(n, γα) [2] and the exper-
imental γ-spectrum from 143Nd(n, γ) reactions [25] mea-
sured with thermal and 15-90 keV neutrons respectively.
The comparison presented in Fig. 2. The best agree-
ment was found with the combination of the constant
temperature model for the level density, the KMF model
for the E1 strength function and the Weisskopf energy
independent approximation for the M1 strength func-
tion. However, even in the best case agreement, there is
still a noticeable underestimation of experimental (n, γ)
data points by calculations in the region of the high en-
ergy (Eγ > 3.8 MeV) γ-transitions. Since this under-
estimation also applies to the high energy peaks related
to individual γ-transitions, it may be concluded that it
is caused by underestimation of the γ-strength function
(rather than by level density) in the high energy region.

In order to estimate correct E1 and M1 strength func-
tions as well as their possible uncertainties which are
due to restricted experimental information and uncer-
tainties of experimental data points, the artificial ana-
lytical highly parameterized formulas were constructed
in the following way. For the E1 strength function it is
expressed as

fE1(Eγ) = fKMF
E1 (Eγ) ·

[

σ1

(

erf(
Eγ − Ecut

Γ1

) + 1

)

+ 1

]

(6)
The erf() function allows for step-like increase of the
KMF γ-strength function for Eγ > Ecut with a mag-
nitude determined by the parameter σ1. Here we
made the temperature T constant but it is allowed to
vary freely as an adjustable parameter. Zero T makes
Eq.4 approach zero similar to SLO model (5),such that
fKMF
E1 (Eγ)Eγ→0 → 0. The positive T increases the low
energy E1 strength such that it approaches the constant
limit fKMF

E1 (Eγ)Eγ→0 → const where the constant value
is determined by the parameter T.
The M1 γ-strength function was modeled by the equa-

tion

fM1(Eγ) = fSLO
M1 + fpole(Eγ), (7)

where fpole(Eγ) = σpexp(−ΓpEγ) models the low en-
ergy increase of the M1 γ-strength function with param-
eters σp and Γp. The E2 strength function was approx-
imated by SLO function with parameters from Ref.[10].
Parameters of both Eqs.(6,7) were varied randomly in
the following ranges: T = 0.1 − 3 MeV, σ1 = 0 − 1 mb,
Ecut = 4 − 5 MeV, Γ1 = 0.6 MeV, σp = 0.01 − 1 mb,
Γp = 0−2 MeV , resulting in random E1 and M1 gamma
strength functions. For each set of parameters both the
(n, γ) and (n, γα) spectra were calculated and compared
with experimental data points. Only those were selected
which deviate from experimental points by no more than
15%. It resulted in squeezing the range of the follow-
ing parameters: σ1 = 0.2 − 1 mb, σp = 0.1 − 0.5 mb,
and Γp = 0.2 − 1 MeV. Other parameters were allowed
within initially assumed ranges.
Both the constant temperature and the Fermi-gas level

density models were tested. It was found that the con-
stant temperature model allowed reproducing both sets
of experimental data within 15% uncertainties, while the
fermi-gas model failed to do that.
Fig. 3 presents experimental against simulated spectra

along with corresponding E1 and M1 strength functions.
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FIG. 2. (Color online)Points are experiment from 143Nd(n, γ)144Nd [25] and 143Nd(n, α)140Ce [2] reactions with 15-90 keV and
thermal neutrons respectively. Lines are calculations with the constant temperature level density model, the KMF E1 strength
(4) and the SLO (5) for the M1 strength functions (left panel) and with the constant temperature level density model, the
KMF E1 strength (4) and the Weisskopf M1 constant strength (right panel).
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FIG. 3. (Color online) Experimental data as in Fig. 2 (left panel). Scattered points are result of simulations (see text for
explanations). Simulated points corresponding to population of the ground state in 143Nd(n, α)140Ce reaction are up off scale
and not visible in the left bottom plot. Open circles in the right bottom plot are from photo-absorbtion experiment of Ref.[21].
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The E1 one exhibits a nonzero limit at Eγ → 0 which is
consistent with KMF prediction of Eq.4. The high energy
part is little enhanced to be able to describe the high en-
ergy region of the (n, γ) spectrum. The M1 functions is
enhanced in the low energy region compared to prediction
based on the Lorentz function (5). This is in contradic-
tion with conclusions derived from analysis of γ spectra
from neutron capture reactions in this mass region [5].
However, it supports results of analysis of experimental
two-step cascade spectra [26] from the 143Nd(n, 2γ) reac-
tion on thermal neutrons where best agreement was ob-
tained with the energy independent Weisskopf model [8]
for the M1 strength function. This model was also found
best to describe the shape of the 143Nd(n, γα) spectrum
in the original work of Ref.[3].

Figure 3 shows the sum of E1+M1 strength function in
comparison with strength function obtained from cross
section data of the 143Nd(γ, n) reaction [21] in the re-
gion of the giant diploe resonance (Eγ >∼ 8) MeV. De-
spite the fact that these two data sets have been obtained
with different techniques from different experiments, they
show a good agreement at the matching point of about
8 MeV. This supports reliability of both sets of data.

III. SUMMARY

Analysis of both E1 and M1 γ-strength functions in
144Nd has been performed using available experimental
data from 143Nd(n, γ)144Nd and 143Nd(n, γα)140Ce reac-
tions. The E1 strength was confirmed to have a non-
zero limit at γ-energy approaching zero fE1(Eγ)Eγ→0 =
const. This is consistent with the KMF model of Ref.[4]
and with conclusions of original works of Ref.[3, 9]. How-
ever, for γ-energies greater than 3.5 MeV the step-like
enhancement is needed to reproduce the high energy
portion of the (n, γ) spectrum from Ref.[25]. The M1
strength was found to be comparable with E1 one in the
region of low-energy γ-transitions (<3 MeV) which im-
plies either low-energy enhancement of the SLO model
(5) or the validity of the energy independent Weisskopf
single particle model [8]. This finding is not consistent
with the commonly adopted SLO model for M1 strength
[10] but it is in accord with original work of Ref.[3] and
with the M1 hypothesis of the low-energy enhancement
seen in Oslo type experiments [11].
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M. Sin, A. Trkov, H. Wienke, and V. Zerkin, Nucl. Data
Sheets 108, 2655 (2007).

[7] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, in Pro-
ceedings of the International Conference on Nuclear Data
for Science and Technology (April 22-27, 2007, Nice,
France), edited by O. Bersillon, F. Gunsing, E. Bauge,
R. Jacqmin, and S. Leray (EDP Sciences, 2008) p. 211.

[8] M. Blatt and V. F. Weisskopf, Theoretical Nucelar
Physics (Willey, New-York, 1952).

[9] V. K. Thanh, V. A. Vtyurin, and Y. P. Popov, Inst.
Phys. Conf. Ser. 6, 431 (1982), paper presented at 4th
(n,g) Int. Symp., Grenoble 7-11 September 1981.

[10] R. Capote, M. Herman, P. Obložinský, P. G. Young,
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