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Abstract
The quasiparticle random phase approximation is used to study the properties of the wobbling
bands in 163Lu. Assuming that the wobbling mode represents pure isoscalar orientation oscillations
results in too low wobbling frequencies and transition probabilities between the one- and zero-
phonon wobbling bands that are strongly collective but yet too weak for B(E2)out and too strong
for B(M1)out. The inclusion of an LL interaction, which couples the wobbling mode to the scissors
mode, generates the right upshift of the wobbling frequencies and the right suppression of the
B(M1)out values toward the experimental values, but does not change the B(E2)out values. In
analogy to the quenching of low-energy E1 transition by coupling to the Isovector Giant Dipole
Resonance, a general reduction of the M1 transitions between quasiparticle configurations caused
by coupling to the scissors mode is suggested. The small B(E2)out values are related to small
triaxiality of the density distribution, which is found by all mean field calculations for the triaxial
strongly deformed nuclei in the mass 160 region.

PACS numbers: 21.10.Re, 23.20.Lv, 27.70.+q

I. INTRODUCTION

Rotating nuclei that have a triaxially deformed shape
are expected exhibit a characteristic excitation mode
called ”wobbling” by Bohr and Mottelson [1], which is
an orientation vibration of the triaxial body about the
rotational axis. It is the nuclear analog to the motion
of the classical top with three different moments of in-
ertia, which is well known from the rotational spectra
of molecules. Experimental evidence for the wobbling
mode was established by the discovery [2–4] of rotational
bands in the 71Lu isotopes when they attain a triaxial
strongly deformed (TSD) shape at high spin. The simple
dynamics of a rotor with three different moments of iner-
tia results in an increase of the wobbling frequency with
angular momentum, which is seen in molecules. How-
ever, for the Lu isotopes a decrease is observed, which
makes the identification of the wobbling possible, because
it prevents the mode being fragmented among compet-
ing quasiparticle excitations. In the framework of the
Quasiparticle+Triaxial-Rotor (QTR) model, Frauendorf
and Dönau [5] demonstrated that the decrease results
from the presence of the odd i13/2 quasi proton, which
aligns its angular momentum along the short body axis,
transverse to the medium axis with the largest moment
of inertia. To notify the modification of the dynam-
ics by the odd quasiparticle, they introduced the name
”transverse wobbling”. They predicted the appearance
of transverse wobbling for the mass 130 region, where
the h11/2 quasiparticle couples transverse to the triaxial

rotor. The prediction was recently confirmed for 135Pr
[6]. The QTR calculations well account for the wobbling
energies and the B(E2)out values of the ∆I = 1 electric
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quadrupole transitions, which connect the one-phonon
wobbling band with the zero-phonon band. However,
the B(M1)con values of the connecting magnetic dipole
transitions are overestimated by about a factor of 3-10
(see Ref. [6] and Ref. [5]). The discrepancy turns out to
be robust, and it can be traced back to the transverse ge-
ometry: For a quasiproton that is rigidly coupled to the
triaxial charge density distribution (HFA approximation
of Ref. [5]) the amplitude of the wobbling vibrations of
the charge density, which generate the B(E2)out values
of the inter band transitions, determines the the ampli-
tude of the vibrations of the magnetic moment of the
odd quasi proton, which generate the B(M1) values of
the inter band transitions. Realistically, the odd quasi
proton is not rigidly coupled to the rotor, which reduces
the amplitude of the oscillations of the magnetic moment
and thus the B(M1)out values. However the reduction is
too weak to bring down the B(M1)out to the experimen-
tal values (see Fig. 19 of Ref. [5]). The present paper
addresses this problem of the too strong magnetic dipole
transitions from a microscopic perspective.

Following the discovery of the first wobbling struc-
ture in 163Lu [2], Hamamoto, Hagemann et al. [2, 7, 8]
used the QTR model to describe the wobbling mode.
These calculations made the ad hoc assumption that the
short axis has the largest moment of inertia, by exchang-
ing the hydrodynamic moments of inertia of the short
and medium axes. The large ratios B(E2)out/B(E2)in
of inter-band to intra band E2 transitions could be well
reproduced. The B(M1)out were only overestimated by
a factor of 2-3. However, the calculated wobbling fre-
quencies of the QTR model with the ”inverted moments
of inertia” assumption distinctly disagree with experi-
ment. Instead of the experimentally observed decrease,
the wobbling frequency increases with the spin I, which is
expected because the inverted moment of inertia arrange-
ment corresponds to the longitudinal wobbling geometry
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in the terminology of Ref. [5]. Ref. [9] suggested to
remedy the problem by assuming a decrease of the scale
of the rotational energy, which may reflect the increase
of the moments of inertia due to a reduction of the pair
correlations. In our view, the ”inverted moments of in-
ertia” assumption is unrealistic because any microscopic
calculation of the three moments of inertia in the frame
of the cranking model give the maximal moment of iner-
tia for the medium axis. This result is in accordance with
the hydrodynamic ratios between the moments of iner-
tia. It can be qualitatively understood by the fact that
the moment of inertia of a certain axis increases with the
deviation from cylindric symmetry, which is maximal for
the medium axis. Hence, the problem with the too strong
magnetic transition remains.

The observation of the wobbling mode stimulated theo-
retical efforts to understand how the nuclear shell struc-
ture and the residual interaction generate such a type
of collective excitations. Matsuyanagi, Matsuzaki, Oht-
subo, Shimizu, and Shoji demonstrated that the quasi-
particle random phase approximation (QRPA) is an ad-
equate microscopic approach [10–14]. QRPA describes
wobbling bands in terms of correlated two-quasiparticle
excitations in a rotating triaxial potential. Relevant re-
sults of these studies can be summarized as follows.
- The QRPA calculations agree with the transverse wob-
bling geometry as discussed in Ref. [5]. The authors
refers to it as ”positive γ shape”, which uses the com-
mon terminology of principle axis cranking that assigns
the sector 0 ≤ γ ≤ 60◦ to rotation about the short axis.
The angular momentum of the odd i13/2 quasiparticle
aligns with this axis. The decrease of the wobbling fre-
quency is interpreted as the approach of the instability
of the cranking solution to a tilt of the rotational axis
into the short-medium plane, which is signaled by the
frequency of the lowest QRPA solution becoming zero
[12].
-The collective enhancement of the connecting E2 transi-
tions is born out. QRPA calculations underestimate the
ratios B(E2)out/B(E2)in by about a factor of two [10–
13].
-The B(M1)out values of the inter band transitions are
overestimated by a factor of 10 as for the QTR results
for transverse wobbling.

The QRPA calculations [10–13] used a residual interac-
tion of the isoscalar quadrupole-quadrupole (QQ) type.
Because such interaction generates the same coupling be-
tween the odd quasiparticle and the triaxial rotor core as
in the QTR calculations, it comes as no surprise that both
approaches overestimate B(M1)out values by the same
factor. The reason to revisit the QRPA in this paper
is to investigate how modifying the residual interaction
influences the resulting excitation energies and electro-
magnetic transition rates. In particular we are interested
whether the suppression of the inter band M1 transitions
can be obtained for transverse wobbling. We study the
i13/2 TSD bands in 163Lu which offer the most complete
set of data.

Our QRPA calculations are carried out in the uni-
formly rotating (UR) frame of reference. They are equiv-
alent with the QRPA in the system of body fixed axes
(PA), which was used in Refs. [10–12]. The QRPA
equations in the PA system become very similar to the
equations for the wobbling mode of the triaxial rotor
(TR) model when the phenomenological moment of in-
ertia are replaced by the appropriate microscopic ex-
pressions. This lends an intuitive interpretations of the
QRPA results and makes contact with the triaxial rotor
phenomenology. In particular, the geometry of transverse
wobbling appears as a decrease with spin of the moment
of inertia of the short axis (cf. Eq. (15) of Ref. [5]).
The transformation between the two versions of QRPA
is discussed in Ref. [13], which carries out the QRPA in
the uniformly rotating frame and interprets the results
in the the body-fixed frame. An alternative way of con-
necting the QRPA with the triaxial rotor has been taken
by Ref. [15], which uses the equivalence of QRPA and
small amplitude TDHF theory to separate the motion of
the quadrupole tensor with respect to the UR frame into
oscillations of its orientation, the wobbling mode, and
oscillations of the shape. (The more general case of chi-
ral vibrations is considered, which includes wobbling as
a special case.)

The paper is organized as follows. In Sec.II A a selfcon-
sistent treatment of the QRPA is performed by deriving
the shape parameters (ε, γ) from the QQ interaction. In
Sec.II B the shape parameters (ε, γ) are adopted from
a Nilsson-Strutinsky minimization and the strength of
residual QQ interaction is determined by restoring the
rotational invariance of the Hamiltonian. Sec.III studies
the consequences of additional interactions. Coupling to
the low-energy orbital M1 resonance (”scissors mode”) is
suggested as a mechanism that suppresses the strength
of the M1 inter band transitions. Sec. IV summarizes
the results and puts them into perspective.

II. QUASIPARTICLE RANDOM PHASE
APPROXIMATION (QRPA) FOR ISOSCALAR

QQ INTERACTION

A. Selfconsistent QRPA (sc QRPA) with standard
QQ interaction

The theoretical framework of our QRPA calculations
is similar to the one used in our recent study of chiral
vibrations [15]. The Hamiltonian Ĥ ′ is defined with re-
spect to a reference system uniformly rotating about the
1-axis,

Ĥ ′ = Ĥ − ωĴ1, (1)

where ω is the cranking frequency and Ĵ1 denotes the
1-component of the angular momentum operator. The
cranking term −ω Ĵ1 ensures that the states have an av-
erage angular momentum 〈J1〉 = I. The corresponding
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lab. Hamiltonian Ĥ in Eq.(1) is

Ĥ =
∑
τ=π,ν

[ ĥ◦τ −∆τ (P̂ †τ + P̂τ )− λτ N̂τ ]

−κ0

2

∑
m=−2,2

(−1)mQ̂mQ̂−m. (2)

The operator ĥ◦τ is the spherical part of the Nilsson
Hamiltonian where the isospin index τ = π, ν distin-
guishes the neutron and proton contributions, respec-
tively. The term ∆τ (P̂ †τ + P̂τ ) accounts for the pair field

where P̂ †τ and P̂τ are the familiar monopole pair opera-
tors. Aiming at the high-spin πi13/2 band in 163Lu, the
gap parameters ∆τ are assumed to be reduced: below
the cranking frequency ω=0.45 MeV we take ∆π=0.45
MeV for the proton gap and ∆ν=0.35 MeV for the neu-
tron gap, and we use ∆τ=π,ν=0 above. As usual, the

terms λτ N̂τ , containing the particle number operators
N̂τ , are introduced to attain the average particle num-
bers 〈N̂π〉 = Z and 〈N̂ν〉 = N , respectively, by an ap-
propriate choice of the Fermi energy λτ . The following
term in Eq. (2) is the isoscalar quadrupole-quadrupole
(ISQQ) interaction. It is constructed from the mass

quadrupole operators Q̂m = Q̂m(π)+ Q̂m(ν), where

Q̂m(τ) ≡
√

4π/5 (r/b◦)
2Y2m(τ), and b◦ = 1.01A1/3 is

the oscillator length. The model space is restricted to
the oscillator shells N = 4, 5, 6, and the matrix elements
between different N are discarded. It should be under-
lined that the letter assumptions are an essential part
defining our model. They imply the use of polarization
charges, for which we adopted the values ep=(1+Z/A)e
and en=Z/A e for the proton and neutron parts of the
electric quadrupole operator.

In this section we follow the standard scheme requiring
selfconsistency between the ISQQ interaction and the de-
formed nuclear shape, which is defined by the parameters
(ε, γ). More precisely, it is the deformed mean field po-
tential v of the ISQQ interaction which, for a predefined
interaction strength κ

0
, has to obey the condition

v = v(ε, γ) = −κ
0
[〈Q̂

0
〉Q̂

0
+ 〈Q̂

2
〉(Q̂

2
+ Q̂−2

)], (3)

where |〉 = | ε, γ〉 is the quasiparticle reference state of
the πi13/2 TSD band as specified below. Denoting the c-

numbers 〈Q̂
0,2
〉 as q

0,2
(ε, γ) the selfconsistency conditions

demand searching for deformation parameters which at
a given cranking frequency ω satisfy the relations

κ
0
〈Q̂

0
〉 ≡ κ

0
q
0
(ε, γ) = 2/3 ~ω

0
ε cos γ,

κ0〈Q̂2〉 ≡ κ0q2(ε, γ) = −2/3 ~ω0 ε sin γ/
√

2. (4)

The mean field calculations are done by using the tilted
axis cranking (TAC) code described in Ref. [16]. It
should be noted that the above conditions lead to a stable
equilibrium shape only if one renders the volume conser-
vation by taking the scale factor ~ω

0
= 41A−1/3 MeV

as constant. Combining the spherical mean field part

TABLE I: Equilibrium values of the deformation parameters
(ε, γ) in the frequency region ω = 0.15-0.50 MeV/~. The
strength parameter of the ISQQ interaction is κ0= 0.01960
MeV

ω(MeV/~) ε γ(deg)

0.15 0.398839 9.248

0.20 0.397926 9.362

0.25 0.396632 9.486

0.30 0.394788 9.631

0.35 0.392064 9.798

0.40 0.387658 9.977

0.45 0.381236 11.575

0.50 0.377065 11.619

from the Hamiltonian Ĥ ′, Eq.(1), with the selfconsis-
tency conditions (4), one obtains the mean field Hamil-
tonian of the standard Principle Axis Cranking (PAC)

model ĥ′ = ĥ− ωĴ1 [16], where ĥ is given by

ĥ = ĥ◦ −∆τ (P̂ † + P̂ )− λN̂ −

− ~ω
0

2

3
ε

(
cos γQ̂

0
− sin γ√

2
(Q̂

2
+ Q̂−2

)

)
. (5)

The diagonalization of the PAC Hamiltonian ĥ is done in

000	  0.001	  

FIG. 1: (Color online) Total routhian surface for the TSD
configuration in 163Lu at ω = 0.45 MeV/~.

an oscillator basis with the quantum numbers {n, l, j,m}
including the orbits of the three main shells N = 4 − 6.
The search for the equilibrium needs to be performed
with diabatic tracing (c.f. [16]) of the selected (πi13/2, ν
g) configuration of the TSD band. The strength of the
sc ISQQ interaction κ

0
= 0.01960 MeV is ω-independent

and chosen such that at ω = 0.15 MeV/~ the deformation
parameter comes close to the suggested value ε = 0.4 of
the experimental TSD band [17]. The selfconsistent de-
formation parameters for the frequency interval ω=0.15-
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FIG. 2: (Color online) Experimental and calculated kinematic
moments of inertia of the TSD band in 163Lu. The calculated
moment of inertia is J (1) = 〈J1〉/ω.

0.50 MeV/~ are presented in Table I. It is seen that for
the ISQQ interaction the selfconsistent triaxiality param-
eter γ ≈ 9 − 12◦ is lower than +20◦ found in Ref. [17]
by means of Nilsson-Strutinsky minimization. The rela-
tive change of the deformation (ε, γ) to higher rotational
frequencies is small. Nevertheless precise selfconsistency
is required in the subsequent QRPA calculation in or-
der to obtain reliable values for the excitation energies
and E2/M1 properties of the wobbling band. As already
noted in the previous QRPA papers [10–14], the abso-

lute minimum of 〈Ĥ ′〉 corresponds to rotation about the
short axis of the triaxial potential, along which the angu-
lar momentum of the i13/2 proton is aligned (the sector of
positive γ-values in standard PAC terminology). Above
the frequency ω=0.5 MeV/~ the PAC solution becomes
unstable, because the moment of inertia of the medium
axis is larger than the one of the short axis. The sta-
ble solution corresponds to rotation about a tilted axis
in the short-medium plane, which represents a ∆I = 1
band. The QRPA frequency goes to zero when approach-
ing the instability from below. Thus, the QRPA solution
studied in this paper is of the ”transverse wobbling” type
according to the classification scheme introduced by us in
Ref. [5], where the corresponding physics is discussed in
the semiclassical frame work of the HFA approximation.

In Fig. 1 we show the total routhian surface for ω=0.45
MeV/~ as obtained by diabatic tracing the TSD config-
uration with the TAC code. The ISQQ interaction gives
a relatively shallow minimum on the deformation sur-
face. In Fig. 2 the experimental and calculated moments
of inertia J (1) are compared. The experimental frequen-
cies of the TSD bands are derived by using the standard
definition ω(Ī) = (E(I) − E(I − 2))/2, where transition
spin Ī = I−1/2, and the experimental moment of inertia
J (1)(Ī) = Ī//ω(Ī). The calculation somewhat overesti-
mates the experimental values.

Fig. 3 presents the experimental B(E2)in values of the
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FIG. 3: (Color online) Experimental and calculated
B(E2)in=B(E2,I→I-2)in values of the TSD band.

I → I − 2 transitions within the TSD g-band [17] and
the ones calculated with the selfconsistent TAC model.
Starting from results of the selfconsistent TAC calcula-
tion the QRPA is performed following the general formal-
ism as outlined in the textbooks (e.g. [18]). We mention
only the important steps of the QRPA and refer for more
details to our recent paper [15]. Firstly, the Hamiltonian
(1) is rewritten in quasiparticle (qp) representation,

Ĥ ′ = ĥ′ + V̂4qp, (6)

where ĥ′ is the diagonalized TAC Hamiltonian

ĥ′ = E◦ +
∑
i

eiα̂
†
i α̂i. (7)

The set {α̂†i , α̂i} denotes the qp operators, ei are the

qp energies and V̂4qp contains the residual 4qp interac-
tion terms which give rise to the vibrational excitations.

Then, the quasi-boson approximation α̂†i α̂
†
j ⇒ b̂†ij is ap-

plied such that the Hamiltonian, Eq. (6), is expressed in

terms of bosons, Ĥ ′ ⇒ Ĥ ′RPA, keeping only boson terms
up to second order [18]. This Hamiltonian is diagonal-
ized by using the QRPA equation[

Ĥ ′QRPA, Ô
†
λ

]
= Eλ

QRPA
Ô†λ, (8)

which yields the phonon excitation energies Eλ
QRPA

and

the phonon excitation operators Ô†λ defined by

Ô†λ =
∑
µ=i<j

(Xλ
µ b̂
†
µ − Y λµ b̂µ). (9)

The amplitudesXλ
µ and Y λµ are found by solving the stan-

dard set of linear equations following from Eq.(8). The

quasiparticle Hamiltonian ĥ′ and the full Hamiltonian Ĥ ′

commute with the signature operator R1 = exp(−iπÎ1),
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which generates a 180 deg rotation about the cranking
axis. Therefore, the quasiparticle states and the phonon
excitations have good signature quantum numbers. The
energetically lowest phonon state with negative signature
r = −1 embodies the wobbling excitation which is char-
acterized also by giving the largest cross-over transition
strength B(E2, I → I − 1)=B(E2)out. Accordingly, only
two quaisprticle components with the combined signa-
ture r = rirj = −1 contribute to the wobbling operator

Ô† in Eq.(9). One has to make sure that the spurious ro-
tational solution with the energy E

QRPA
= ~ω does not

mix with the wobbling solution. Selfconsistency of the
mean field ensures this requirement.

The E2/M1 transition amplitudes from the TSD wob-
bling band to the TSD g-band are obtained by evaluating
the matrix elements

〈w|M̂m(E2/M1)|0〉 = 〈0|ÔwM̂m(E2/M1)|0〉, (10)

where |w〉 means the wobbling phonon state and |0〉 de-
notes the QRPA vacuum state at the cranking frequency
ω. The transition operators are

M̂m(E2) = epr
2
pY2m(p) + enr

2
nYm(n), (11)

M̂m(M1) =
3

4π
g(l)p l̂1m(p) + g(s)p ŝ1m(p) + g(s)n ŝ1m(n).

The component m is assigned to the transition
I → I −m. Further, the orbital g-factor for M1 is

g
(l)
p = 1 µN for protons and 0 for neutrons. The spin g-

factors g
(s)
p and g

(s)
n are 0.7 times the values for the free

proton or neutron. The reduced transition probabilities
are

B(E2/M1, I → I ∓ 1) =
∣∣∣〈w ∣∣∣M̂±1(E2/M1)

∣∣∣ 0〉∣∣∣2 . (12)

In the selfconsistent version of QRPA, the ISQQ term in
the Hamiltonian (1) generates both the deformed mean
field and the residual interaction. As discussed above,
its strength is fixed to the value κ◦ = 0.01960 for the
whole frequency range ω =0.15-0.5 MeV/~. The factor-
ized form of the ISQQ term reduces the solution of the
QRPA equation to searching the zeros of the dispersion
determinant, which are located at the QRPA energies
E

QRPA
.

In Figs. (4 - 6) we present the QRPA results for the
wobbling energies and the inter band Bout(E2, I → I−1)
and Bout(M1, I → I − 1) values. The reduced transition
probabilities of the upward transitions I → I + 1 are
at least one order smaller and not displayed. The cal-
culated wobbling energies E

QRPA
(ω) follow the decreas-

ing tendency of the measured ones, which is character-
istic for transverse wobbling. However, they are sub-
stantially below the experiment. At ω=0.45 MeV the
frequency becomes zero, which signalizes the change to
a permanent tilt of the rotational axis away from the
short axis. The experimental wobbling energies decrease
linearly up to ω=0.60 MeV. The calculated ratios be-
tween the inter and and intra band transition proba-
bilities B(E2)out/B(E2)in =B(E2, I → I − 1)/ B(E2,

E w
ob
(M

eV
)	  

FIG. 4: (Color online) Excitation energy of the wobbling band
in 163Lu as a function of the rotational frequency. Experimen-
tal values (blue diamonds) are from [17]. QRPA calculation
(solid line) with selfconsistent ISQQ interaction.
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FIG. 5: (Color online) The ratios B(E2)out/B(E2)in of the
inter and and intra band reduced transition probabilities for
the transitions between the TSD wobbling band and the TSD
ground band in 163Lu. Notations as in Fig. 4.

I → I − 2) reach only one half of the measured values,
whereas the calculated B(M1, I → I − 1)=B(M1)out ex-
ceed the experimental ones by a factor ten. Our results
are similar to the ones of Ref. [11], who used the QRPA
version for ISQQ interaction in the body fixed frame.
The deviations from experiment are about the same.

B. QRPA for Nilsson-Strutinsky deformations

The wobbling mode is sensitive to the ratios between
the three moments of inertia, which strongly change with
the triaxality parameter γ. The ISQQ coupling constant
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FIG. 6: (Color online) The reduced transition probabilities
B(M1)out=B(M1, (I → I − 1))out for the transitions between
the TSD wobbling band to the TSD ground band in 163Lu.
Notations as in Fig. 4.

κ◦ = 0.01960 used in the preceding section was adjusted
to obtain a mean field deformation of ε = 0.4.

The selfconsistent values of γ ≈ 10◦ obtained with
the coupling constant fixed this way are substantially
smaller than the values γpot calculated by minimizing the
Nilsson-Strutinsky energy functional, which are given in
Tab. II. Following Refs. [13, 14], we introduce the sub-
script ”pot” to indicate that it is the triaxiality of the
nuclear potential, which generally does not agree with
the triaxiality of the density distribution γden (see be-
low). Refs. [13, 14] demonstrated that larger values of
γpot increase the ratio B(E2)out/B(E2)in between the
inter and intra band transitions. Their QPPR version in
the body fixed frame does not use the selfconsistency in
an explicit way, allowing them to freely choose the de-
formation of the mean field potential. In order to inves-
tigate this possibility in our framework we give up the
selfconsistency requirement, Eq. (4), between the shape
parameters of the potential and the expectation values
of quadrupole moments, which are implied by QQ inter-
action in Eq. (2) with the common strength parameter

κ
0
. This means we use the same Nilsson Hamiltonian ĥ,

Eq. (5) as before but the deformation parameters (ε, γpot)
shall be at our disposal. As pointed out by Refs. [13, 14],
one must distinguish between the triaxiality parameter
γpot of the potential and the triaxiality parameter γden
(see below) of the density distribution generated by the
deformed potential, because the selfconsistency require-
ment Eq. (4) has been given up.

Selfconsistency is only locally restored by constructing
the residual interaction from the requirement that the

resulting Hamiltonian Ĥ = ĥ + V4qp becomes rotational

invariant. Such ”symmetry-restoring interaction” [19, 20]

V4qp = −1

2

3∑
m=1

κmF
2
m (13)

is built from the squares of the commutators of the quasi-

particle Hamiltonian ĥ and the angular momentum com-
ponents Jm=1,2,3:

Fm = [ĥ, iJm]. (14)

The strength constants κm are determined by demanding
rotational invariance via the commutator

[Ĥ, iJm] = [h− 1

2

3∑
n=1

κnF
2
n , iJm] = 0 (15)

which can be satisfied on average 〈[Ĥ, iJm]〉 = 0 by fixing
the strength constants according to

κ−1m = 〈[[ĥ, iJm], iJm]〉 (16)

where |〉 is the reference quasiparticle configuration.
This method can be applied to any mean field Hamilto-

nian ĥ, as for instance in Ref. [13] to a deformed Woods-
Saxon potential. In our case the commutator (14) with
a quadrupole deformed field generates again quadrupole
operators. We evaluate the commutators relations (14,
16) explicitly. The results are written in terms of the
combined quadrupole operators Q

1± and Q
2± defined by

Q
1+

=
Q1 +Q−1

i
√

2
, Q

1− =
Q1 −Q−1√

2
,

Q
2+

=
Q

2
+Q−2√

2
, Q

2− =
Q

2
−Q−2

i
√

2
. (17)

We introduce the constantsQ and γden, which specify the
shape of the density distribution for given deformation
parameters (ε, γpot) of the potential,

Q =
√
〈Q0〉2 + 〈Q2+〉2 ,

sin γden = −〈Q2+〉
Q

, cos γden =
〈Q0〉
Q

. (18)

The Hamiltonian (1) with the interaction (13) takes the
form

Ĥ = ĥ+
1

3

~ω◦ε
Q

[
sin γpot
sin γden

Q 2
2−

+
sin (γpot + 2π/3)

sin (γden + 2π/3)
Q 2

1+
+

+
sin (γpot − 2π/3)

sin (γden − 2π/3)
Q 2

1−
], ,(19)

where the constants κm are expressed in terms of Q and
γden. Hence, the residual interaction of the Hamiltonian
Ĥ, needed for the QRPA, is fully determined by the single

particle Hamiltonian ĥ, in our case by the deformation
parameters (ε, γpot) of its potential.
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TABLE II: Deformation parameters (ε, γpot) of 163Lu in the
frequency region ω = 0.15-0.55 MeV/~ obtained from a
Nilsson-Strutinsky (NS) minimization [17]

ω(MeV/~) ε γpot(deg)

0.15 0.3815 18.75

0.2 0.3892 19.2

0.25 0.3968 19.64

0.3 0.4044 20.12

0.35 0.408 20.41

0.4 0.3991 20.72

0.45 0.3908 21.3

0.5 0.3852 21.78

0.55 0.3812 22.34

The ”symmetry-restoring interaction” includes the
selfconsistent treatment of the ISQQ Hamiltonian (2) as
a special case. Using the notation (17), expression (2)
becomes

Ĥ = ĥ− κ◦
2

∑
µ=0,1±,2±

Q2
µ. (20)

In comparison with Eq.(19) it contains the additionally
terms Q 2

0
and Q 2

2+
which drive the beta-gamma vibra-

tions. In this case one has to search for deformations
(ε, γ)sc which comply with the selfconsistent conditions
(cf. Eq. (4))

κ◦
2

=
1

3

~ω◦ε
Q

, sin γpot = −〈Q2+〉
Q

= sin γden.(21)

For the selfconsistent deformation (ε, γ)sc the common
prefactor in the Hamiltonian (19) becomes equal to κ◦/2
and the three ratios of the Sin terms become one. Thus,
for the selfconsistent deformations the Hamiltonian Ĥ,
Eq. (2), is fully rotational invariant, and ithe commutator
relations (15) are exactly satisfied.

At variance with the standard QQ-Hamiltonian (2),
the coupling strengths of the three interaction terms Q2

k±
in Eq. (19) are not equal for arbitrary choice of the de-
formation parameters (ε, γpot). With the values of κ1,2,3
obtained from Eq.(16) rotational symmetry is achieved
locally because the commutator relations (15) are satis-
fied on average. This is in accordance with fact that the
QRPA treats the wobbling motion as a small angle vibra-
tion. Local rotational invariance ensure that the spurious
rotational excitations can be removed as the ones with
the energies E

QRPA
= 0 and ~ω (as in the selfconsistent

case).
Below we present the results of a QRPA calculation

with the Hamiltonian Ĥ of Eq.(19) using the deformation
parameters (ε, γpot) of Tab. II, which were found by a
Nilsson-Strutinsky minimization [17]. The γpot values are
about 10◦ larger than the corresponding ISQQ values.

The NS deformations give nearly constant intra band
reduced transition probabilities of B(E2)in=3 (eb)2,

0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.1

0.2

0.3

0.4
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FIG. 7: (Color online) Wobbling frequencies in 163Lu as a
function of the rotational frequency. Experimental values
(blue diamonds) are from [17]. The calculated values (solid
line) are obtained with the Nilsson-Strutinsky (NS) deforma-
tions in table II. The single value (red triangle) is found for
the deformation point (ε = 0.4, γ = 30◦ ).

which agree with the experimental values for ω=0.3 MeV,
but do not reproduce the downward trend toward 2 (eb)2

at ω=0.45.
Fig. 7 shows the calculated wobbling frequencies to-

gether with the experimental values. Compared to the
wobbling frequencies of the sc ISQQ model (cf. Fig. 4)
the calculation with the Nilsson-Strutinsky deformations
gives a flatter ω dependence, and the break down of the
QRPA is slightly retarded. As seen in Fig. 15 of our
study [5], the QRPA wobbling frequency curve resembles
the one obtained by applying the HFA approximation
to the Quasiparticle Triaxial Rotor QTR)description of
transverse wobbling in 163Lu using microscopic moments
of inertia calculated by means of the TAC model. The
HFA is a small-amplitude approximation like QRPA. The
full quantal solution of the QTR shows a gradual decrease
of the wobbling frequency with frequency, which is closer
to experiment (cf. Fig. 15 of [5]).

Comparing Fig. 5 with Fig. 8. shows that the larger
γpot values lead to a 20 % increase of the ratio
B(E2)out/B(E2)in. No reduction is obtained for the mag-
netic inter band transition strength as seen comparing
Fig. 6 and Fig. 9. Hence with the larger γpot values pre-
dicted by the Nilsson-Strutinsky calculation and the sym-
metry restoring QRPA we only accomplish a marginally
better description of the TSD band properties.

We tried the case of maximal triaxiality γpot = 30◦

and ε = 0.4 for ~ω=0.3 MeV. The results are in-
cluded in Figs.(7-9). The wobbling frequency is enlarged,
somewhat exceeding the experimental value. The ratio
B(E2)out/B(E2)in is about right, such that it could be re-
produced by choosing an appropriate γpot value between
25◦ and 30◦. However, the small B(M1)out values remain
unexplained.
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FIG. 8: (Color online) The ratios B(E2)out/ B(E2)in between
the inter and and intra band reduced transition probabilities
for the transitions between the TSD wobbling band and the
TSD ground band in 163Lu. Notations as in Fig. 7.
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FIG. 9: (Color online) The reduced transition probabilities
B(M1)out for the transitions between the TSD wobbling band
to the TSD ground band in 163Lu. Notations as in Fig. 7.

The result is consistent with the detailed analysis in
Refs. [13, 14] in the framework of QRPA based on the
Nilsson and Woods-Saxon potentials and the pertinent
symmetry restoring interaction. Using a triaxiality pa-
rameter of γpot ≈ 20◦ of the potential, which corre-
sponds to the minimum of the deformation energy cal-
culated by means of the Shell Correction method, gives
B(E2)out/B(E2)in ratios that underestimate the experi-
mental ones by factors of 0.8 at ω = 0.2 MeV and 0.5 at
ω = 0.4 MeV. The B(M1)out values are a factor of 10 too
large. Increasing by hand γpot from 20◦ at ω=0.3 MeV
to 30◦ at ω=0.5 MeV reproduces the experimental values

of both B(E2)out and B(E2)in.

The authors trace back the small values of the ratio
B(E2)out/B(E2)in to a small value of γden calculated by
means of Eqs. (18). It is important to note that the
quadrupole moments derived from the microscopic den-
sity distribution appear in the transition probabilities.
For the equilibrium deformations γpot = 20◦, 18◦ (Nils-
son, Woods-Saxon, respectively), they find γden = 12◦.
We obtain a similar small value of γden = 14◦ from the
expectation values of the quadrupole operator (11) with
the quasiparticle reference state |ε = 0.4, γpot = 20◦〉.
The small increase of γden compared to the self consis-
tent ISQQ value of γ = 10◦ explains the only marginal
increase of the B(E2)out/B(E2)in ratios The study of
transverse wobbling in the frame work of the QTR model
demonstrated that a value of γden ≈ 20◦ is needed to re-
produce the experimental B(E2)out/B(E2)in ratios [5].
Such value is achieved by choosing γpot ≈ 30◦.

The selfconsistency equations (4) ensure that γpot =
γden in the case of ISQQ. Therefore, the difference be-
tween γpot and γden reflects to a certain extend the miss-
ing selfconsistency for arbitrarily adjusted values of γpot.
Selfconsistency is incomplete for the Shell Correction
method, which is used to calculate the equilibrium shapes
of the Nilsson or Woods-Saxon potentials. The difference
γpot between γden may be smaller for a mean field basis
that is derived from an effective interaction or density
functional. This question has not been addressed so far.
Calculations for 158Er in the framework of the Cranked
Relativistic Mean Field (CRMF) and Cranked Skyrme
Hartree Fock (CSHF) approaches gave small values of
|γden| = 10◦ − 13◦ for various configurations in 158Er
[21, 22] and 160Yb [23]. For the yrast configuration in
158Er in the relevant spin range, CSHF gave γden = 12◦

and the Cranked Nilsson-Strutinsky approach γpot = 22◦,
which corresponds to γden ≈ 12◦ in good agreement with
the CSHF value [21]. It seems that all cranked mean field
approaches provide a shape with γden ≈ 12◦ in the TSD
region.

The small triaxiaity causes the too small
B(E2)out/B(E2)in ratios in the present QRPA cal-
culations and the ones of Refs. [10–14]. The problem
may be rooted either in the QRPA or in the mean
field approaches, which would have farther-reaching
consequences. To clarify the issue, QRPA calcula-
tions based on the CRMF or CSHF mean fields and
a consistent residual interaction would be needed.
Based on our QTR study in Ref. [5] we note the
following. The small-amplitude approximation of
QRPA is unlikely to be responsible for the under-
estimation of the B(E2)out/B(E2)in ratios, the full
large-amplitude solution gives a smaller ratios than
the small-amplitude approximation (HFA) (see Fig. 17
there). The B(E2)out/B(E2)in ratios depend on the
wobbling amplitudes, which are determined by the ratios
between the three moments of inertia. We carried out
QTR calculation using the ratios between the moments
of inertia calculated by means of the cranking model
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FIG. 10: (Color online) B(M1) distribution of 162Yb ob-
tained by QRPA with the LL interaction, Eq. (23) choosing
the strength constant κLL = 0.5 MeV/~2. The fragmented
B(M1) strength adds up from 0 to 4 MeV to a sum strength
of 1.5 µ2

N that can be interpreted as scissors strength.

at the Nilsson-Strutinsky equilibrium deformation. The
wobbling frequency is about 0.25 MeV (see Fig. 15
there) close to the value in Fig. 7 in the same frequency
range, which may indicate that the wobbling amplitudes
are similar. The QTR calculations, which used a ratio
of Q2/Q0 = tan (γden = 20◦), give B(E2)out/B(E2)in
ratios close to the experimental ones (see Fig. 17
there). In view of this, we consider the small ratio of
B(E2)out/B(E2)in obtained in our and the previous
QRPA calculations as an open problem, possibly rooted
in the mean field basis, and refrain from adjusting γpot.

III. ADDITIONAL RESIDUAL INTERACTION
TERMS

The experimental fact that the inter band M1 transi-
tions of the wobbling mode are strongly suppressed in
comparison to the inter band E2 transitions is a ma-
jor motivation to study further interaction terms aside
the QQ interaction considered so far. It is the question,
what makes that the magnetic de-excitation so small. It
is known that the scissors mode collects the low-lying M1
strength which is concentrated higher up in the energy
region of 3-4 MeV [24, 25]. A possible mechanism for sup-
pressing the M1 strength of low-energy states is shifting
it to the scissors mode, like the electric dipole strength
of low energy states is shifted to the Giant Dipole Reso-
nance.

Before presenting the results of our QRPA calculations
with additional interaction terms a note about the re-
moval the spurious rotational modes is in order. When
adding interaction terms the strength constants of which
are not fixed by selfconsistency or rotational invariance
the rotational modes shift away from their true energies
E

QRPA
= 0, ~ω and mix with the wobbling mode, such

that the results are distorted by spurious effects. There-
fore we apply the method proposed in Ref. [27] to elim-
inate the spurious modes. The QRPA Hamiltonian is
complemented by the IS term κjJ · J which acts like a
spring force for the unwanted angle vibrations of the total
angular momentum J in the rotating system. Choosing
the stiffness parameter large, as κj ≥ 102, the excitation
energies for the rotational spurious states are shifted far
outside the considered energy range, which prevents them
from mixing with the physical modes.

Our first modification was motivated by the purely col-
lective picture of the scissors mode being an angle vi-
bration of the proton system against the neutron sys-
tem with an IV QQ restoring force [26]. Accordingly, we
added to the ISQQ Hamiltonian (2) an IV QQ interac-

tion term built from the operators Q̂ivm = Q̂m(π) - Q̂m(ν).
Knowing the selfconsistent strength κ◦ from table I we
set the isovector strength κiv◦ = r κ◦ where the value of
the ratio r was varied in the range -1.5 to - 3.5 [1]. This
addition lead to only a minor change of the B(E2/M1)
transition probabilities. However, it increased the wob-
bling frequency, such that the experimental wobbling fre-
quencies could be fitted by choosing an appropriate value
of r.

Second, we considered the spin-spin (SS) interaction,
because it has been successfully applied in connection
with the scissors mode to explain the systematic accu-
mulation of 1+ states between 3-5 MeV with considerable
M1 decay strength [20]. We included both the IS and the
isovector (IV) SS interactions defined by

V
(is,iv)
LL =

∑
m=−1,1

(−1)m Ŝ(is,iv)
m

Ŝ(is,iv)
−m

,

Ŝ(is,iv)
m

= Ŝm(τ = +1)± Ŝm(τ = −1). (22)

We determined the SS strength parameters by extrap-
olating the A-dependent strength parameters given in
the work of De Coster and Heyde [29] used there for
QRPA calculations of the 1+. The SS interactions are
then added to the selfconsistent ISQQ Hamiltonian (2)
described in Sec. II A. The results of the QRPA calcu-
lation for the frequency ~ω = 0.3 MeV/~ can be sum-
marized as follows: The IS and IV SS terms have only
negligible effects on both the wobbling energy and the
B(E2/M1) transition probabilities. The lowering of the
B(M1)out value is small, i.e. there is not much shift the
M1 strength into the scissor region.

Our third modification was motivated by the interpre-
tation suggested in Ref. [26] that the scissors mode rep-
resents an angle vibration of the total orbital angular
momentum vector Lπ of the protons versus the orbital
angular momentum vector Lν of the neutrons. Accord-
ingly, we complemented the ISQQ Hamiltonian (2) by an
interaction term that is composed of the isovector orbital
angular momenta:

V
LL

= κ
LL

(Lπ − Lν)2. (23)

Ref. [30] successfully used an interaction of the type
VJJ = κ

JJ
(Jπ − Jν)2 to describe the M1 strength in
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the scissors region of the Mo isotopes. We checked that
such IV JJ interaction gives nearly the same results as
the LL interaction when the coupling constant is appro-
priately chosen. This is not surprising, because it differs
from the LL interaction by the spin operator. As dis-
cussed above, the inclusion of the IV SS interaction does
not induce any substantial modification of the wobbling
mode, which indicates that the spin degrees of freedom
are not important for it.
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FIG. 11: (Color online) Wobbling frequencies in 163Lu as a
function of the rotational frequency. Experimental values
(blue diamonds) are from [17]. Calculated values are ob-
tained with QRPA using (solid line) selfconsistent ISQQ in-
teraction and (green dotted line) additionally LL interaction
(see Eq. (23))

The effects of adding the LL interaction are shown in
Figs.(11- 13). The calculated wobbling energy increases
due to the repulsive LL term. We find a good match
to the experimental curve when choosing the strength
constant κLL = 0.5 MeV/~2. The inter band E2 tran-
sitions stay almost unchanged, which is expected from a
current-current interaction. The same value of κLL gives
the desired suppression of the B(M1) transition strength,
which comes close to the measured values.

Hence, the QRPA with additional LL interaction is ca-
pable of providing a satisfactory description of the wob-
bling frequencies and of the magnetic properties. This
raises the question whether the adjusted coupling pa-
rameter κLL is consistent with the experimental informa-
tion about the scissors mode built on the ground states
of the even-even neighbors. We calculated the distribu-
tion of B(M1, 0→ 1+) from the ground state of 162Yb us-
ing the same QRPA approach as for the wobbling mode
in 163Lu. The deformation β = 0.225 from was taken
Ref. [28], and the value κ

LL
= 0.5 MeV/~2 used for the

LL interaction. The resulting distribution is shown in
Fig. 10 for the interval E=2-4 MeV, which is the sug-
gested region of the scissors mode. There is no exper-
imental information for the unstable nuclid 162Yb about
the distribution of 1+ states to compare with. However,

the systematics of the summed B(M1) strength presented
in Refs. [24, 25] provides a clue concerning the coupling
constant. Our value κ

LL
= 0.5 MeV/~2 gives a summed

strength ΣB(M1)≈ 1.5µ2
N for the 1+ excitations be-

tween 0-4 MeV, which agrees with the value from the
systematics for the deformation β = 0.225 of 162Yb. The
agreement indicates that the coupling of the transverse
wobbling to the scissors mode at high spin and the M1
strength of the low-spin scissors mode can be accounted
for by one and the same value of κLL.

In the other case of a well studied example of trans-
verse wobbling, 135Pr, the QTR calculations in Ref. [6],
which do not take into account the coupling to the scis-
sors mode, overestimate the B(M1)out values by a factor
of three. One expects a weaker coupling to the scissors
mode, because 135Pr is much less deformed than 163Lu,
and it is known that the M1 strength collected by the
scissors mode increases quadratically with the deforma-
tion parameter [24, 25].

The improvements achieved by including the IV LL
interaction term can be taken as an indication that the
wobbling motion is not a pure orientation vibration of
the quadrupole mass tensor with respect to the angular
momentum vector. It implies a coupling to vibrations
of the proton and neutron currents against each other
(see the interpretation of the scissors mode in Ref. [31]).
The microscopical origin of such schematic interaction of
the current-current type remains obscure at this point.
As discussed above, taking into account oscillations of
the neutron quadrupole tensor against the proton one
also increases the wobbling frequency, but does not influ-
ence the magnetic properties. Regarding both, it would
be interesting to see how QRPA based modern density
functionals and a consistent residual interaction describes
transverse wobbling.

As discussed section II B, increasing the triaxiality of
the potential to γpot ≈ 30◦ by hand allows one to shift
the B(E2)out and B(E2)in values to the experimental
ones. Simultaneously, the wobbling frequency is shifted
to somewhat above the experimental value. Taking into
account the LL interaction in addition would result in a
too high wobbling frequency. This is a good reason to
refrain from adjusting γpot.

Ref. [32] reported a suppression of the B(M1)out be-
tween rotational bands built on different members of the
quasineutron j15/2 multiplet in 235U by a factor of 20-
50 compared to estimates in the framework of the QTR
model. In addition, the authors tabulated examples of
B(M1)out values between bands of high-j multiplet mem-
bers, which all appear strongly suppressed. This system-
atic quenching of M1 strength suggests that the scissors
mode draws M1 strength from the low-energy transitions
in analogy to the quenching of the low-energy E1 transi-
tions by coupling to the GDR (screening), which is the
mechanism suggested for the wobbling mode here.
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FIG. 12: (Color online) The reduced transition probabilities
B(E2)out=B(E2, I → I − 1)out for the transitions between
the TSD wobbling band and the TSD ground band in 163Lu.
Calculated values are obtained with QRPA using (solid line)
selfconsistent ISQQ interaction and (green dotted line) addi-
tionally LL interaction (see Eq. (23)).
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FIG. 13: (Color online) The reduced transition probabilities
B(M1)out for the transitions between the TSD wobbling band
to the TSD ground band in 163Lu. Calculated values are
obtained with QRPA using (blue line) selfconsistent ISQQ
interaction and (green dotted line) additionally LL interaction
(see Eq. (23)).

IV. SUMMARY AND CONCLUSIONS

The transverse wobbling mode in 163Lu has been rein-
vestigated in the frame work of Quasiparticle Random
Phase Approximation. The QRPA calculations were
based on the rotating mean field that consisted of a de-
formed Nilsson potential and an attenuated monopole
pair field. Various versions of the residual interaction
were investigated. For all variants, the QRPA wobbling
frequencies decreased with the rotational frequency, so

confirming the transverse character of the solution.

First we studied an isoscalar Quadrupole-Quadrupole
interaction and selfconsistent deformation parameters.
The results in essence agree with previous QRPA calcu-
lations [11], which used the same mean field Hamiltonian
but another way of finding the solutions. The calculated
wobbling frequencies show the right descent with the ro-
tational frequency but are only 60% of the experimen-
tal excitation energy. The B(E2)out/B(E2)in ratios for
the inter band transitions connecting the wobbling with
the ground band and the intra band transitions show
the characteristic collective enhancement, but are low by
about a factor two. The B(M1)out values of these inter
band transitions are a factor 10 too large compared with
experiment.

Second, we determined the deformation parameters of
the Nilsson potential by means of Strutinsky method,
which gives a triaxialty parameter of γpot ≈ 20◦. The
factorized residual interaction was derived from the mean
field by requiring local rotational invariance. The results
slightly moved toward the experimental values, however
the discrepancies remained as substantial as before. We
agree with the explanation of this insensitivity suggested
in Refs. [13, 14]. The increase of the triaxility of the
potential from γpot = 10◦ to 20◦ induces only a marginal
increase of the triaxiality of the density distribution from
γden = 10◦ to 12◦ − 13◦, which is reflected by the small
B(E2)out/B(E2)in ratios. At this point we have to con-
clude that the reason for the low B(E2)out/B(E2)in ratios
remains unclear. Note that cranking calculations based
on modern energy density functionals [21–23] find simi-
lar small triaxiality of the density in neighboring nuclides
158Er and 160Yb. QRPA calculations based on such self-
consistent mean fields and an effective interaction derived
from the density functional are needed to clarify the issue.
In case they would also give too small B(E2)out/B(E2)in
ratios as found in this paper, this would reveal a seri-
ous problem of the mean field calculations for the TSD
region. Configuration assignments based on the compari-
son with measured transition quadrupole moments for in
band transitions, as for example in Refs. [21, 22], needed
to be reconsidered, because they rely on the assumption
that the calculations give the correct triaxiality of the
density distribution.

Third, we included a repulsive isovector current-
current interaction of the schematic form κ

LL
(Lπ−Lν)2,

where L is the total orbital angular momentum. This
LL interaction couples the wobbling mode to the scissors
mode, which represents a concentration of orbital M1
strength in the region E=3-4 MeV above the yrast line.
The B(M1)out values are reduced, because M1 strength
is shifted into the scissors region, and the wobbling fre-
quencies increase because the LL interaction is repulsive.
The same interaction strength κ

LL
generates the right

upshift of the wobbling frequencies and the right sup-
pression of the B(M1)out values toward the experimental
values. Moreover, using the same κ

LL
value, QRPA on

the ground state of the neighbor 162Yb reproduces the
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cumulative M1 strength below 4 MeV, known from ex-
perimental systematics.

Altogether, QRPA based on the combination of the
isoscalar QQ and isovector LL interactions well repro-
duces the experimental frequencies on transverse wob-
bling of the triaxial strongly deformed nuclide 163Lu. It
accounts for the strong suppression of the intra band M1
transitions. However it underestimates the collectivity
of the inter band E2 transitions. The mode represents
mainly an oscillation of the triaxial charge distribution
relative to the angular momentum vector, which is mani-
fest by strong E2 transitions from the one-phonon to the

zero-phonon wobbling bands. Additionally, it contains a
substantial admixture of scissors-like oscillations of the
proton currents against the neutron currents, which in-
crease the wobbling frequency and reduce the M1 transi-
tion strength between the wobbling bands by a factor of
10.

Support by the US Department of Energy Grant No.
DE-FG02-95ER40934 is acknowledged. Unfortunately
Fritz Dönau passed away before completion of this work.
Our community lost a great scientist, an enthusiastic re-
searcher, and a friend whom many of us will miss.
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