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Renormalization group (RG) methods used to soften Hamiltonians for nuclear many-body calcu-
lations change the effective resolution of the interaction. For nucleon knock-out processes, these RG
transformations leave cross sections invariant, but initial-state wave functions, interaction currents,
and final-state interactions are individually altered. This has implications for the factorization of
nuclear structure and reactions. We use deuteron electrodisintegration as a controlled laboratory
for studying how structure and reaction components are modified under RG evolution, without the
complication of three-body forces or currents. The dependence of these changes on kinematics is
explored.

PACS numbers: 21.45.Bc,25.10.+s,25.30.Fj

I. INTRODUCTION

Softened or “low momentum” interactions are widely
used in contemporary nuclear structure calculations be-
cause they exhibit faster convergence for methods using
basis expansions (this includes coupled cluster, config-
uration interaction, in-medium similarity renormaliza-
tion group, and self-consistent Green’s function meth-
ods) [1, 2]. Such interactions are derived using unitary
transformations starting from chiral effective field theory
or phenomenological interactions that exhibit significant
coupling of high- and low-momentum physics. When
done in small steps, these unitary transformations are a
type of renormalization group (RG) transformation. The
RG decoupling scale can be associated with the resolu-
tion of the interaction [2].

But how do we handle observables involving external
probes when using such interactions? Nuclear structure
has conventionally been treated as largely separate from
nuclear reactions. However, this separation implies a
unique factorization of experimental cross sections into
the structure and reaction parts. The RG perspective in-
forms us that such a division is itself inevitably resolution
dependent [3]. In some circumstances the dependence is
small and one can define the separation with negligible
ambiguity. But the significant (and beneficial) changes
to wave functions from evolving to lower resolution with
RG methods imply significant changes to this separation.
That is, what is structure at one resolution becomes part
of the reaction mechanism at another resolution (and vice
versa). This separation is not only scale dependent, it is
scheme dependent as well; that is, it depends on how the
separation is carried out and on the details of the original
Hamiltonian.
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This observation raises questions of consistency and
uniqueness in analyzing and interpreting nuclear experi-
mental data. For example, it is clear from previous cal-
culations using the similarity RG (or SRG) [1, 4, 5] that
the high-momentum tail of the momentum distribution
in a nucleus is dramatically resolution dependent for the
range of decoupling scales used in present-day nuclear
structure calculations. How then can such a distribu-
tion be said to be extracted from experiment? Yet it is
common in the literature that high-momentum compo-
nents are treated as measurable, at least implicitly [6–9].
In fact, what can be extracted is the momentum dis-
tribution at some scale, and with the specification of a
scheme. This makes momentum distributions model de-
pendent [10, 11].

This is relevant for recent work to extract a “nuclear
contact” [12–14]. For some physical systems under cer-
tain conditions, such as the high-momentum 1/k4 tail
in cold atoms at unitarity [15], the scale and scheme de-
pendence is negligible, so it can be determined essentially
uniquely. But for nuclei this dependence may be substan-
tial and one needs to carefully define the short-distance
content of the nuclear contact. As illustrated in [16], the
nuclear shell structure is not a measurable. Its extrac-
tion from experimental data involves fixing a scale and a
scheme.

In general, to be consistent between structure and re-
actions one must calculate cross sections or decay rates
within a single framework. That is, one must use the
same Hamiltonian and consistent operators throughout
the calculation (which means the same scale and scheme).
Such consistent calculations have existed for some time
for few-body nuclei (e.g., see [17–20]) and are becom-
ing increasingly feasible for heavier nuclei because of ad-
vances in reaction technology, such as using complex ba-
sis states to handle continuum physics. Recent examples
in the literature include NCSM/RGM [21], coupled clus-
ter [22], and lattice EFT calculations [23]. But there
are many open questions about constructing consistent
currents and how to compare results from two such cal-
culations. Some work along this direction was done in
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[24, 25] where the mean values for eigenstates of renor-
malized Hamiltonians were calculated using evolved op-
erators. We seek to extend this to transition matrix el-
ements and explore the connection to high-momentum
physics in a nucleus in a controlled manner.

In particular, we will take the first steps in explor-
ing the interplay of structure and reaction as a function
of kinematic variables and SRG decoupling scale λ in a
controlled calculation of a knock-out process. There are
various complications for such processes. With RG evo-
lution, a Hamiltonian—even with only a two-body poten-
tial initially—will develop many-body components as the
decoupling scale decreases. Similarly, a one-body current
will develop two- and higher-body components.

Our strategy is to avoid dealing with all of these
complications simultaneously by considering the cleanest
knock-out process: deuteron electrodisintegration with
only an initial one-body current. With a two-body sys-
tem, there are no three-body forces or three-body cur-
rents to contend with. Yet it still includes several key in-
gredients to investigate: i) the wave function will evolve
with changes in resolution; ii) at the same time, the one-
body current develops two-body components, which are
simply managed; and iii) there are final-state interac-
tions (FSI). It is these ingredients that will mix under
the RG evolution. We can focus on different effects or
isolate parts of the wave function by choice of kinematics.
For example, we can examine when the impulse approx-
imation is best and to what extent that is a resolution-
dependent assessment.

We will vary the interaction resolution using SRG
transformations, which have proven to be technically fea-
sible for evolving three-body forces [26–29]. The SRG se-
ries of unitary transformations ensures that cross sections
are invariant under changes in resolution. As the SRG
λ is varied, the Hamiltonian H(λ) and the nuclear wave
function change, the current operator changes, and the
FSI change as well. The question we address is: How do
these combine to achieve the invariance of the observable
cross section?

The electron scattering knock-out process is partic-
ularly interesting because of the connection to past,
present, and planned experiments [30, 31]. The condi-
tions for clean factorization of structure and reactions
in this context is closely related to the impact of 3N
forces, two-body currents, and final-state interactions,
which have not been cleanly understood as yet [3]. All of
this becomes particularly relevant for high-momentum-
transfer electron scattering.1 This physics is conven-
tionally explained in terms of short-range correlation
(SRC) phenomenology [6, 32]. SRCs are two- or higher-
body components of the nuclear wave function with high

1 Note that high-momentum transfers imply high-resolution
probes, which is different from the resolution induced by the RG
transformation decoupling scale. How the latter should be chosen
to best accommodate the former is a key unanswered question.

relative momentum and low center-of-mass momentum.
These explanations would seem to present a puzzle for
descriptions of nuclei with low-momentum Hamiltonians,
for which SRCs are essentially absent from the wave func-
tions.

This puzzle is resolved by the unitary transformations
that mandate the invariance of cross section. The physics
that was described by SRCs in the wave functions must
shift to a different component, such as a two-body con-
tribution from the current. This may appear to com-
plicate the reaction problem just as we have simplified
the structure part, but past work and analogies to other
processes suggests that factorization may in fact become
cleaner [4, 33]. One of our goals is to elucidate this issue,
although we will only start to do so in the present work.

The underlying picture is analogous to that used in
deep inelastic scattering (DIS) [3, 5]. In the analysis of
DIS, one introduces both a renormalization and a fac-
torization scale. In the usual dimensional regulariza-
tion minimal subtraction scheme MS, the renormaliza-
tion scale µR sets the division between long- and short-
distance physics in the Hamiltonian. This is manifested
in the running coupling αs(µ) where the choice of µ = µR
is to optimize the efficacy of the QCD perturbation ex-
pansion. The factorization scale µF dictates the division
between what goes into the reaction part, namely the
purely hard process described in pQCD, and the struc-
ture part, which is subsumed into the soft parton distri-
bution functions. Changing µF changes the balance. In
many cases these two scales are chosen to be the same
and equal to the magnitude of the four-momentum trans-
fer Q, in order to minimize the contribution of logarithms
that can disturb the perturbative expansion.

The nuclear analogs to these two scales are tied to-
gether in the SRG evolution. In particular, the decou-
pling scale, roughly given by the value of the SRG flow
parameter λ, sets both these scales. For the Hamiltonian,
this scale clearly sets the division between low and high
momentum. For operators acting on wave functions, the
decoupling dictates the division between the two; e.g.,
the scale at which a one-body current is largely replaced
by a two-body current. In the present paper, we will
illustrate the combined interplay with quantitative cal-
culations. We build upon previous work by Anderson et
al. on SRG operator evolution for the deuteron [4], and
the work by Yang and Phillips [34] in applying chiral
EFT to deuteron electrodisintegration.

This paper is organized as follows. In Sec. II, we briefly
review the electrodisintegration formalism and develop
the machinery we need for the SRG evolution, which
we accomplish in practice by appropriate insertions of
unitary transformation matrices. In Sec. III, we present
proof-of-principle tests and illustrate the interplay of the
different components that enter in the calculation of the
disintegration process. We give representative results for
selected kinematics. In Sec. IV, we summarize our ob-
servations and plans to extend the calculations to other
kinematics, as well as beyond the deuteron system and
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one-body initial currents.

II. FORMALISM

A. Deuteron electrodisintegration: a primer

Deuteron electrodisintegration is the simplest nucleon-
knockout process and has been considered as a test
ground for various NN models for a long time (see, for
example, Refs. [9, 35]). It has also been well studied ex-
perimentally [36, 37]. As outlined in the introduction,
the absence of three-body currents and forces makes it
an ideal starting point for studying the interplay with
SRG evolution of the deuteron wave function, current,
and final-state interactions.

We follow the approach of Ref. [34], which we briefly
review. The kinematics for the process in the labora-
tory frame is shown in Fig. 1. The virtual photon from

Figure 1. (color online) The geometry of the electro-
disintegration process in the lab frame. The virtual photon
disassociates the deuteron into the proton and the neutron
(not shown in this figure).

electron scattering transfers enough energy and momen-
tum to break up the deuteron into a proton and neutron.
The differential cross section for deuteron electrodisin-
tegration for unpolarized scattering in the lab frame is
given by [38]

d3σ

dk′labdΩlab
e dΩlab

p

=
α

6π2

k′
lab

klab(Q2)2

[
vLfL + vT fT

+ vTT fTT cos 2φlabp + vLT fLT cosφlabp

]
. (1)

Here Ωlab
e and Ωlab

p are the solid angles of the electron

and the proton, klab and k′
lab

are the magnitude of in-
coming and outgoing electron 3-momenta, Q2

lab is the 4-
momentum-squared of the virtual photon, and α is the
fine structure constant. φlabp is the angle between the

scattering plane containing the electrons and the plane
spanned by outgoing nucleons. vL , vT , . . . are electron
kinematic factors, and fL, fT , . . . are the deuteron struc-
ture functions. These structure functions contain all the
dynamic information about the process. The four struc-
ture functions are independent and can be separated by
combining cross-section measurements carried out with
appropriate kinematic settings [39]. Structure functions
are thus cross sections up to kinematic factors and are
independent of the SRG scale λ. In this work we focus
on the longitudinal structure function fL, following the
approach of Ref. [34].

B. Calculating fL

As in Ref. [34], we carry out the calculations in
the center-of-mass frame of the outgoing proton-neutron
pair. In this frame the photon four-momentum is (ω,q),
which can be obtained from the initial electron energy
and θe, the electron scattering angle. We denote the
momentum of the outgoing proton by p′ and take q
to be along z-axis. The angles of p′ are denoted by
Ωp′ = (θ′, ϕ′).

The longitudinal structure function can be written as

fL =
∑

Sf ,msf
mJd

TSf ,msf
,µ=0,mJd

(θ′, ϕ′) T ∗Sf ,msf
,µ=0,mJd

(θ′, ϕ′) ,

(2)
where Sf and msf are the spin quantum numbers of the
final neutron-proton state, µ is the Lorentz index of the
current, and mJd is the angular momentum of the initial
deuteron state. The amplitude T is given by [40]

TS,msf
,µ,mJd

= −π
√

2α|p′|EpEd/Md 〈ψf | Jµ(q) |ψi〉 ,
(3)

where 〈ψf | is the final-state wavefunction of the outgoing
neutron-proton pair, |ψi〉 is the initial deuteron state, and
Jµ(q) is the current operator that describes the momen-
tum transferred by the photon. The variables in Eq. (3)
are:

• fine-structure constant α;

• outgoing proton (neutron) 3-momentum p′ (−p′);

• proton energy Ep =

√
M2 + p′2, where M is the

average of proton and neutron mass

• deuteron energy Ed =
√
M2
d + q2, where Md is the

mass of the deuteron.

As mentioned before, all of these quantities are in the
center-of-mass frame of the outgoing nucleons.

For fL, only the µ = 0 component of T and therefore
only the zeroth component of the current contributes.
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The one-body current matrix element is given by

〈k1 T1| J0(q) |k2 T = 0〉

=
1

2

(
GpE + (−1)T1GnE

)
δ(k1 − k2 − q/2)

+
1

2

(
(−1)T1GpE +GnE

)
δ(k1 − k2 + q/2) , (4)

where GpE and GnE are the electric form factors of the pro-
ton and the neutron, and the deuteron state has isospin
T = 0.

The final-state wave function of the outgoing proton-
neutron pair can be written as

|ψf 〉 = |φ〉+G0(E′) t(E′) |φ〉 , (5)

where |φ〉 denotes a relative plane wave, G0 and t are
the Green’s function and the t-matrix respectively, and

E′ = p′
2
/M is the energy of the outgoing nucleons. The

second term in Eq. (5) describes the interaction between
the outgoing nucleons.

In the impulse approximation (IA) as defined here, the
interaction between the outgoing nucleons is ignored and
|ψf 〉IA ≡ |φ〉. The plane wave |φ〉 will have both isospin 0
and 1 components. The current J0, G0, and the t-matrix
are diagonal in spin space. The deuteron has spin S = 1
and therefore the final state will also have S = 1. Hence,
we have

|φ〉 ≡ |p′ S = 1msfψT 〉

=
1

2

∑
T=0,1

(
|p′ S = 1msf 〉

+ (−1)T |−p′ S = 1msf 〉
)
|T 〉 .

(6)

Using Eqs. (4) and (6), the overlap matrix element in IA
becomes

〈ψf | J0 |ψi〉IA =

√
2

π

∑
Ld=0,2

〈LdmJd −msf S = 1msf |J = 1mJd〉

×
[
GpE ψLd

(|p′ − q/2|)YLd,mJd
−msf

(Ωp′−q/2) +GnE ψLd
(|p′ + q/2|)YLd,mJd

−msf
(Ωp′+q/2)

]
, (7)

where Ωp′±q/2 is the solid angle between the unit vector
ẑ and p′ ± q/2. ψLd

is the deuteron wave function in
momentum space defined as

〈k1 J1mJ1 L1 S1 T1|ψi〉 = ψL1(k1)

× δJ1,1δmJ1
,mJd

δL1,Ld
δS1,1δT1,0 . (8)

The S-wave (L = 0) and D-wave (L = 2) components
of the deuteron wave function satisfy the normalization
condition

2

π

∫
dp p2

(
ψ2
0(p) + ψ2

2(p)
)

= 1 . (9)

In deriving Eq. (7) we have used the property of the
spherical harmonics that

Ylm(π − θ, φ+ π) = (−1)l Ylm(θ, φ) . (10)

In our work we follow the conventions of Ref. [41]. Since
θ′ and ϕ′ are the angles of p′, Ωp′−q/2 ≡

(
α′(p′, θ′), ϕ′

)
and Ωp′+q/2 ≡

(
α′′(p′, θ′), ϕ′

)
, where

α′(p′, θ′) = cos−1

 p′ cos θ′ − q/2√
p′2 − p′q cos θ′ + q2/4

 (11)

and

α′′(p′, θ′) = cos−1

 p′ cos θ′ + q/2√
p′2 + p′q cos θ′ + q2/4

 . (12)

The overlap matrix element including the final-state
interactions (FSI) is given by

〈ψf | J0 |ψi〉 = 〈φ| J0 |ψi〉︸ ︷︷ ︸
IA

+ 〈φ|t†G†0 J0 |ψi〉︸ ︷︷ ︸
FSI

. (13)

The first term on the right side of Eq. (13) has already
been evaluated in Eq. (7). Therefore, the term we still

need to evaluate is 〈φ|t†G†0 J0 |ψi〉. The t-matrix is most
conveniently calculated in a partial-wave basis. Hence,
the FSI term is evaluated by inserting complete sets of
states in the form

1 =
2

π

∑
L,S
J,mJ

∑
T=0,1

∫
dp p2 |p J mJ LS T 〉 〈p J mJ LS T | .

(14)
The outgoing plane-wave state in the partial-wave basis
is given by

〈φ| k1 J1mJ1 L1 S = 1T1〉 =
1

2

√
2

π

π

2

δ(p′ − k1)

k21
× 〈L1mJ1 −msf S = 1msf |J1mJ1〉

×
(
1 + (−1)T1(−1)L1

)
YL1,mJ1

−msf
(θ′, ϕ′) . (15)

The Green’s function is diagonal in J , mJ , L, S, and T ,
so we have

〈k1|G†0 |k2〉 =
π

2

δ(k1 − k2)

k21

M

p′2 − k21 − iε
. (16)
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We also need to express the current in Eq. (4) in the
partial-wave basis. To begin with, let us just work with

first term in Eq. (4), which we denote by J−0 . In the
partial-wave basis, it is written as

〈k1 J1mJd L1 S = 1T1|J−0 | k2 J = 1mJd L2 S = 1T = 0〉 =
π2

2

(
GpE + (−1)T1 GnE

)
×

1∑
m̃s=−1

∫
dcos θ 〈J1mJd |L1mJd − m̃s S = 1 m̃s〉PmJd

−m̃s

L1
(cos θ)P

mJd
−m̃s

L2

(
cosα′(k1, θ)

)

×
δ
(
k2 −

√
k21 − k1q cos θ + q2/4

)
k22

〈L2mJd − m̃s S = 1 m̃s|J = 1mJd〉 . (17)

Here mJd is the deuteron quantum number, which is preserved throughout. We have used the deuteron quantum
numbers in the ket in anticipation that we will always evaluate the matrix element of J0 with the deuteron wave
function on the right. α′ is as defined in Eq. (11). In deriving Eq. (17) we have also made use of the relation [42]∫

Y ∗lm(θ, ϕ)Yl′m′(θ
′, ϕ) dcos θ dϕ = 2πδmm′

∫
dcos θPml (cos θ)Pml′ (cos θ′) . (18)

Equations (15), (16), and (17) can be combined to obtain

〈φ|t†G†0 J−0 |ψi〉 =

√
2

π

M

~c
∑

T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
YL1,mJd

−msf
(θ′, ϕ′)

×
L+1∑

J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
Lmax∑
L2=0

∫
dk2 k

2
2 t
∗(k2, p

′, L2, L1, J1, S = 1, T1)

×
1∑

m̃s=−1

〈J1mJd |L2mJd − m̃s S = 1 m̃s〉
∑

Ld=0,2

〈LdmJd − m̃s S = 1 m̃s|J = 1mJd〉

×
∫

dcos θ
1

p′2 − k22 − iε
P
mJd
−m̃s

L2
(cos θ)P

mJd
−m̃s

Ld

(
cosα′(k2, θ)

)
ψLd

(√
k2

2 − k2 q cos θ + q2/4
)
. (19)

We denote the second term in the one-body current

Eq. (4) by J+
0 . The expression for 〈φ|t†G†0 J+

0 |ψi〉 is
analogous to Eq. (19), the only differences being that the
form-factor coefficient is (−1)T1GpE + GnE and the input
arguments for the second associated Legendre polyno-
mial and the deuteron wave function are different. The
two factors respectively become P

mJd
−m̃s

Ld

(
cosα′′(k2, θ)

)
and ψLd

(√
k2

2 + k2 q cos θ + q2/4
)
, where α′′ is defined

in Eq. (12). It can be shown that 〈φ|t†G†0 J+
0 |ψi〉 =

〈φ|t†G†0 J−0 |ψi〉. Thus,

〈φ|t†G†0 J0|ψi〉 = 2 〈φ|t†G†0 J−0 |ψi〉 . (20)

Using this we can evaluate the overlap matrix element in
Eq. (13). As outlined in Eqs. (2) and (3), this matrix ele-
ment is related to the longitudinal structure function fL.
Recall that the deuteron spin is conserved throughout
and therefore Sf = 1 in Eq. (2).

In Sec. III C we present results for fL both in the
IA and including the FSI. These results match those of

Ref. [34, 40], verifying the accuracy of the calculations
presented above.

C. Evolution setup

As outlined in the introduction, we want to investigate
the effect of unitary transformations on calculations of
fL. Let us start by looking at the IA matrix element:

〈φ|J0|ψi〉 = 〈φ|U† U J0 U† U |ψi〉
= 〈φ|Ũ†Jλ0 |ψλi 〉︸ ︷︷ ︸

A

+ 〈φ| Jλ0 |ψλi 〉︸ ︷︷ ︸
B

, (21)

where we decompose the unitary matrix U into the iden-

tity and a residual Ũ ,

U = I + Ũ . (22)

The matrix Ũ is smooth and therefore amenable to in-
terpolation. The U matrix is calculated following the
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approach in [4]. The terms in Eq. (21) can be further
split into

〈φ| Jλ0 |ψλi 〉 = 〈φ|Ũ J0 Ũ†|ψλi 〉︸ ︷︷ ︸
B1

+ 〈φ|Ũ J0 |ψλi 〉︸ ︷︷ ︸
B2

+ 〈φ| J0 Ũ†|ψλi 〉︸ ︷︷ ︸
B3

+ 〈φ| J0 |ψλi 〉︸ ︷︷ ︸
B4

(23)

and

〈φ|Ũ† Jλ0 |ψλi 〉

= 〈φ|Ũ† Ũ J0 Ũ†|ψλi 〉︸ ︷︷ ︸
A1

+ 〈φ|Ũ† Ũ J0|ψλi 〉︸ ︷︷ ︸
A2

+ 〈φ|Ũ†J0 Ũ†|ψλi 〉︸ ︷︷ ︸
A3

+ 〈φ|Ũ†J0|ψλi 〉︸ ︷︷ ︸
A4

. (24)

The B4 term is the same as in Eq. (7), but with the
deuteron wave function replaced by the evolved version
ψλLd

. Inserting complete sets of partial-wave basis states
as in Eq. (14) and using Eqs. (15) and (17), we can obtain
the expressions for B1, B2, B3 and A1, . . . , A4. These
expressions are given in Appendix A.

Using the expressions for A1, . . . , A4 and B1, . . . , B4,
we can obtain results for fL in the IA with one or
more components of the overlap matrix element 〈φ|J0|ψ〉
evolved. When calculated in IA, fL with all components
evolved matches its unevolved counterpart, as shown
later in Sec. III C. The robust agreement between the
evolved and unevolved answers indicates that the expres-
sions derived for A1, . . . , B4 are correct and that there is
no error in generating the U -matrices. In Sec. II D we
provide some details about the numerical implementa-
tion of the equations presented here.

Let us now take into account the FSI and study the
effects of evolution. The overlap matrix element should
again be unchanged under evolution,

〈ψf |J0|ψi〉 = 〈ψλf |Jλ0 |ψλi 〉 , (25)

where ψf is given by Eq. (5). Furthermore,

|ψλf 〉 = |φ〉+G0 tλ|φ〉 , (26)

where tλ is the evolved t-matrix, i.e., the t-matrix ob-
tained by solving the Lippmann–Schwinger equation us-
ing the evolved potential, as discussed in Appendix B.
Thus

〈ψλf |Jλ0 |ψλi 〉 = 〈φ|Jλ0 |ψλi 〉︸ ︷︷ ︸
B

+ 〈φ|t†λG
†
0 J

λ
0 |ψλi 〉︸ ︷︷ ︸

F

. (27)

The term B is the same that we already encountered in

Eq. (21). The term F can also be split up into four terms:

〈φ|t†λG
†
0 J

λ
0 |ψλi 〉

= 〈φ|t†λG
†
0 Ũ J0 Ũ

†|ψλi 〉︸ ︷︷ ︸
F1

+ 〈φ|t†λG
†
0 Ũ J0|ψλi 〉︸ ︷︷ ︸
F2

+ 〈φ|t†λG
†
0 J0 Ũ

†|ψλi 〉︸ ︷︷ ︸
F3

+ 〈φ|t†λG
†
0 J0|ψλi 〉︸ ︷︷ ︸
F4

. (28)

The expression for F4 can easily be obtained from
Eqs. (19) and (20) by replacing the deuteron wave func-
tion and the t-matrix by their evolved counterparts.
As before, we insert complete sets of partial-wave ba-
sis states using Eq. (14) and evaluate F3, F2, and F1; see
Eqs. (A6), (A7), and (A8). Figures in Sec. III C compare
fL calculated from the matrix element with all compo-
nents evolved to the unevolved fL. We find an excellent
agreement, validating the expressions for F1, . . . , F4.

D. Numerical implementation

There are various practical issues in the calculation of
evolved matrix elements that are worth detailing. We
use C++11 for our numerical implementation of the ex-
pressions discussed in the previous section. Matrix ele-
ments with a significant number of components evolved
are computationally quite expensive due to a large num-
ber of nested sums and integrals (see in particular Ap-
pendix A).

The deuteron wave function and NN t-matrix are ob-
tained by discretizing the Schrödinger and Lippmann–
Schwinger equations, respectively; these equations are
also used to interpolate the t-matrix and wave function
to points not on the discretized mesh. For example, if
we write the momentum-space Schrödinger equation—
neglecting channel coupling here for simplicity—as

ψ(p) =

∫
dq q2G0(−EB , q)V (p, q)ψ(q)

→
∑
i

wi q
2
i G0(−EB , qi)V (p, qi)ψ(qi) , (29)

it can be solved numerically as a simple matrix equation
by setting p ∈ {qi}. For any p = p0 not on this mesh,
the sum in Eq. (29) can then be evaluated to get ψ(p0).
This technique is based on what has been introduced in
connection with contour-deformation methods in break-
up scattering calculations [43, 44].

To interpolate the potential, which is stored on a
momentum-space grid, we use the two-dimensional cubic
spline algorithm from ALGLIB [45]. In order to avoid un-
necessary recalculation of expensive quantities—in par-
ticular of the off-shell t-matrix—while still maintaining
an implementation very close to the expressions given
in this paper, we make use of transparent caching tech-
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niques.2 For most integrations, in particular those in-
volving a principal value, we use straightforward nested
Gaussian quadrature rules; only in a few cases did we
find it more efficient to use adaptive routines for multi-
dimensional integrals.

With these optimizations, the calculations can in prin-
ciple still be run on a typical laptop computer. In prac-
tice, we find it more convenient to use a small clus-
ter, with parallelization implemented using the TBB li-
brary [46]. On a node with 48 cores, generating data for
a meaningful plot (like those shown in Sec. III) can then
be done in less than an hour. For higher resolution and
accuracy, we used longer runs with a larger number of
data and integration mesh points.

III. EFFECTS OF UNITARY EVOLUTION

A. First order analytical calculation

Recall that from Eqs. (2) and (3) we have

fL ∝
∑

msf
,mJd

|〈ψf |J0|ψi〉|2 . (30)

When all three components—the final state, the current,
and the initial state—are evolved consistently, then fL is
unchanged. However, if we miss evolving a component,
then we obtain a different result. It is instructive to il-
lustrate this through a first-order analytical calculation.3

Let us look at the effects due to the evolution of
individual components for a general matrix element

〈ψf |Ô|ψi〉. The evolved initial state is given by

|ψλi 〉 ≡ U |ψi〉 = |ψi〉+ Ũ |ψi〉 , (31)

where Ũ is the smooth part of the U -matrix defined in
Eq. (22). Similarly, we can write down the expressions
for the evolved final state and the evolved operator as

〈ψλf | ≡ 〈ψf |U† = 〈ψf | − 〈ψf | Ũ (32)

and

Ôλ ≡ U Ô U† = Ô + Ũ Ô − Ô Ũ +O(Ũ2) . (33)

We assume here that Ũ is small compared to I (which can
always be ensured by choosing the SRG λ large enough)

2 This means that the expensive calculation is only carried out
once, the first time the corresponding function is called for a
given set of arguments, while subsequent calls with the same
arguments return the result directly, using a fast lookup. All
this is done without the calling code being aware of the caching
details.

3 An analogous calculation based on field redefinitions appears in
Ref. [47].

and therefore keep terms only up to linear order in Ũ .
Using Eqs. (31), (32), and (33), we get an expression for
the evolved matrix element in terms of the unevolved one
and changes to individual components due to evolution:

〈ψλf |Ôλ|ψλi 〉 = 〈ψf |Ô|ψi〉 − 〈ψf |Ũ Ô|ψi〉︸ ︷︷ ︸
δ〈ψf |

+ 〈ψf |Ũ Ô|ψi〉 − 〈ψf |Ô Ũ |ψi〉︸ ︷︷ ︸
δÔ

+ 〈ψf |Ô Ũ |ψi〉︸ ︷︷ ︸
δ|ψi〉

(34)

=⇒ 〈ψλf |Ôλ|ψλi 〉 = 〈ψf |Ô|ψi〉+O(Ũ2) . (35)

We see that the change due to evolution in the operator
is equal and opposite to the sum of changes due to the
evolution of the initial and final states. We also find
that changes in each of the components are of the same
order, and that they mix; this feature persists to higher
order. Therefore, if one misses evolving an individual
component, one will not reproduce the unevolved answer.

B. Overview of numerical results

For our analysis, we studied the effect of evolution of
individual components on fL for selected kinematics in
the ranges E′ = 10–100 MeV and q2 = 0.25–25 fm−2,
where E′ is the energy of outgoing nucleons and q2 is the
three-momentum transferred by the virtual photon; both
are taken in the center-of-mass frame of the outgoing
nucleons. This range was chosen to cover a variety of
kinematics and motivated by the set covered in Ref. [34].
We use the Argonne v18 potential (AV18) [48] for our
calculations. It is one of the widely used potentials for
nuclear few-body reaction calculations, particularly those
involving large momentum transfers [19, 49].

How strong the evolution of individual components (or
a subset thereof) affects the result for fL depends on the
kinematics. One kinematic configuration of particular
interest is the so-called quasi-free ridge. As discussed in
Sec. II A, the four-momentum transferred by the virtual
photon in the center-of-mass frame is (ω,q). The crite-
rion for a configuration to lie on the quasi-free ridge is
ω = 0. Physically, this means that the nucleons in the
deuteron are on their mass shell. As shown in Ref. [34],
at the quasi-free ridge the energy of the outgoing nucle-
ons (E′) and the photon momentum transfer are related
by

E′ =
√
M2
d + q2 − 2M , (36)

which reduces to

E′ (in MeV) ≈ 10q2 (in fm−2) . (37)

The quasi-free condition in the center-of-mass frame is
the same as the quasi-elastic condition in the lab frame.
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There, the quasi-elastic ridge is defined by W 2 = m2
p ⇒

Q2 = 2ωlabmp, where W is the invariant mass. On
the quasi-elastic ridge, the so-called missing momentum4

vanishes, pmiss = 0.
In Fig. 2 we plot fL along the quasi-free ridge both

in the impulse approximation (IA) and with the final-
state interactions (FSI) included as a function of energy

of the outgoing nucleons for a fixed angle, θ′ = 15
◦

of
the outgoing proton. E′ and q2 in Fig. 2 are related by
Eq. (36). Comparing the solid curve labeled 〈ψf |J0|ψi〉
in the legend to the dashed curve (labeled 〈φ|J0|ψi〉) we
find that FSI effects are minimal for configurations on
the quasi-free ridge especially at large energies.
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E ′ [MeV]
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f L
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m
]

λ = 1.5 fm−1 θ′ = 15◦

〈φ|J0|ψi〉
〈ψf |J0|ψi〉
〈ψf |J0|ψλi 〉
〈ψf |Jλ0 |ψi〉
〈ψλf |Jλ0 |ψλi 〉

Figure 2. (color online) fL calculated at various points on the
quasi-free ridge for θ′ = 15◦ for the AV18 potential. Legends
indicate which component of the matrix element in Eq. (30)
used to calculate fL is evolved. There are no appreciable
effects due to the evolution all along the quasi-free ridge. The
effect due to evolution of the final state is small as well and is
not shown here to avoid clutter. fL calculated in the impulse
approximation is also shown for comparison.

In an intuitive picture, this is because after the initial
photon is absorbed, both the nucleons in the deuteron
are on their mass shell at the quasi-free ridge, and there-
fore no FSI are needed to make the final-state particles
real. As we move away from the ridge, FSI become more
important, as additional energy-momentum transfer is
required to put the neutron and the proton on shell in
the final state. The difference between full fL and fL
in IA at small energies is also seen to hold for few-body
nuclei [50].

Figure 2 also shows fL calculated from evolving only
one of the components of the matrix element in Eq. (30).
We note that the effects of SRG evolution of the indi-
vidual components are minimal at the quasi-free ridge

4 The missing momentum is defined as the difference of the mea-
sured proton momentum and the momentum transfer, pmiss ≡
pproton
lab − qlab.

as well. The kinematics at the quasi-free ridge are such
that only the long-range (low-momentum) part of the
deuteron wave function is probed, the FSI remains small
under evolution, and then unitarity implies minimal evo-
lution of the current. As one moves away from the
quasi-free ridge, the effects of evolution of individual
components become prominent. Note that 〈ψf |J0|ψi〉 =
〈ψλf |Jλ0 |ψλi 〉 and therefore the unevolved vs. all-evolved
fL overlap in Fig. 2.

Figure 3. (color online) ‘Phase space’ of kinematics for λ =
1.5 fm−1. The effects of evolution get progressively prominent
as one moves further away from the quasi-free ridge. The
kinematics of the labeled points are considered in Sec. III C.

Figure 3 shows the ‘phase space’ of kinematics for SRG
λ = 1.5 fm−1. The quasi-free ridge is along the solid
line in Fig. 3. In the shaded region the effects due to
evolution of individual components are weak (only a few
percent relative difference). As one moves away from
the quasi-free ridge, these differences get progressively
more prominent. The terms ‘small’ and ‘weak’ in Fig. 3
are used in a qualitative sense. In the shaded region
denoted by ‘weak effects’, the effects of evolution are not
easily discernible on a typical fL versus θ′ plot, as seen in
Fig. 4, whereas in the region labeled by ‘strong effects’,
the differences due to evolution are evident on a plot
(e.g., see Fig. 6). The size of the shaded region in Fig. 3
depends on the SRG λ. It is large for high λ’s and gets
smaller as the λ is decreased (note that smaller SRG λ
means greater evolution). In the next subsection we look
in detail at a few representative kinematics, indicated by
points in Fig. 3.

C. Illustrative examples

1. At the quasi-free ridge

As a representative of quasi-free kinematics, we choose
E′ = 100 MeV and q2 = 10 fm−2 and plot fL as a
function of angle in Fig. 4. The effect of including FSI
is small for this configuration for all angles. Also, the
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effects due to evolution of the individual components are
too small to be discernible. All this is consistent with the
discussion in the previous section.
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〈ψf |Jλ0 |ψi〉
〈ψλf |Jλ0 |ψλi 〉

Figure 4. (color online) fL calculated for E′ = 100 MeV and
q2 = 10 fm−2 (point “1” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. θ′ is the angle of
the outgoing proton in the center-of-mass frame. There are
no discernible effects due to the evolution for all angles. The
effect due to evolution of the final state is small as well and
is not shown here to avoid clutter. fL calculated in the IA,
〈φ|J0|ψi〉, is also shown for comparison.

2. Near the quasi-free ridge

Next we look at the kinematics E′ = 10 MeV and
q2 = 4 fm−2, which is near the quasi-free ridge. This is
the point “2” in Fig. 3. As seen in Fig. 5, the different
curves for fL obtained from evolving different compo-
nents start to diverge. Figure 5 also shows fL calculated
in IA. Comparing this to the full fL including FSI, we see
that the effects due to evolution are small compared to
the FSI contributions. This smallness prevents us from
making any systematic observations about the effects due
to evolution at this kinematics. We thus move on to kine-
matics which show more prominent effects.

3. Below the quasi-free ridge

We next look in the region where E′ (in MeV) �
10q2 (in fm−2), i.e., below the quasi-free ridge in Fig. 3.
We look at two momentum transfers q2 = 16 fm−2 and
q2 = 25 fm−2 for E′ = 30 MeV, which are points “3”
and “3′” in Fig. 3. Figures 6 and 7 indicate the effects
on fL from evolving individual components of the matrix
elements. It is noteworthy that in both cases evolution
of the current gives a prominent enhancement, whereas
evolution of the initial and final state gives a suppression.
When all the components are evolved consistently, these
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λ = 1.5 fm−1 E ′ = 10 MeV q2 = 4 fm−2
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〈ψf |J0|ψi〉
〈ψf |J0|ψλi 〉
〈ψf |Jλ0 |ψi〉
〈ψλf |Jλ0 |ψλi 〉

Figure 5. (color online) fL calculated for E′ = 10 MeV and
q2 = 4 fm−2 (point “2” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. fL calculated in the
IA, 〈φ|J0|ψi〉, is also shown for comparison. The effects due
to evolution of individual components on fL are discernible,
but still small (compared to the FSI contribution). The effect
due to evolution of the final state is small as well and is not
shown here to avoid clutter.

changes combine and we recover the unevolved answer
for fL. This verifies the accurate implementation of the
equations derived in Sec. II C.
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Figure 6. (color online) fL calculated for E′ = 30 MeV and
q2 = 16 fm−2 (point “3” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Prominent enhance-
ment with evolution of the current only and suppression with
evolution of the initial state and the final state only, respec-
tively.

It is possible to qualitatively explain the behavior seen
in Figs. 6 and 7. As noted in Eq. (13), the overlap matrix
element is given by the sum of the IA part and the FSI
part. Below the quasi-free ridge these two terms add
constructively. In this region, fL calculated in impulse
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Figure 7. (color online) fL calculated for E′ = 30 MeV and
q2 = 25 fm−2 (point “3′” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Prominent enhance-
ment with evolution of the current only and suppression with
evolution of the initial state and the final state only, respec-
tively.

approximation is smaller than fL calculated by including
the final-state interactions.

a. Evolving the initial state Let us first consider the
effect of evolving the initial state only. We have

〈ψf |J0|ψλi 〉 = 〈φ|J0|ψλi 〉+ 〈φ|t†G†0 J0|ψλi 〉 . (38)

As seen in Eq. (7), in the term 〈φ|J0|ψλi 〉 the deuteron
wave function is probed between |p′ − q/2| and p′ + q/2.
These numbers are (1.2, 2.9) fm−1 and (1.7, 3.4) fm−1

for E′ = 30 MeV, q2 = 16 fm−2 and E′ = 30 MeV,
q2 = 25 fm−2, respectively. The evolved deuteron wave
function is significantly suppressed at these high mo-
menta. This behavior is reflected in the deuteron mo-
mentum distribution plotted in Fig. 8. The deuteron
momentum distribution n(k) is proportional to the sum
of the squares of S- andD- state deuteron wave functions.
Thus, the first (IA) term in Eq. (38) is much smaller than
its unevolved counterpart in Eq. (13), for all angles. We
note that even though we only use the AV18 potential
to study changes due to evolution, these changes will be
significant for other potentials as well.

Evaluation of the second (FSI) term in Eq. (38)
involves an integral over all momenta, as indicated

in Eq. (19). We find that |〈φ|t†G†0 J0|ψλi 〉| <

|〈φ|t†G†0 J0|ψi〉|. As mentioned before, because the terms

〈φ|J0|ψi〉 and 〈φ|t†G†0 J0|ψi〉 add constructively below
the quasi-free ridge and because the magnitude of both
these terms decreases upon evolving the wave function,
we have

|〈ψf |J0|ψλi 〉| < |〈ψf |J0|ψi〉| . (39)

The above relation holds for most combinations of mJd

and msf . For those mJd and msf for which Eq. (39) does
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Figure 8. (color online) Momentum distribution for the
deuteron for the AV18 [48], CD-Bonn [51], and the Entem-
Machleidt N3LO chiral EFT [52] potentials, and for the AV18
potential evolved to two SRG λ’s.

not hold, the absolute value of the matrix element is much
smaller than for those for which the Eq. (39) does hold,
and therefore we have fL calculated from 〈ψf |J0|ψλi 〉
smaller than the fL calculated from 〈ψf |J0|ψi〉, as seen
in Figs. 6 and 7.

b. Evolving the final state As indicated in Eq. (26),
evolving the final state entails the evolution of the t-
matrix. The overlap matrix element therefore is

〈ψλf |J0|ψi〉 = 〈φ|J0|ψi〉+ 〈φ|t†λG
†
0 J0|ψi〉 . (40)

The IA term is the same as in the unevolved case. The
SRG evolution leaves the on-shell part of the t-matrix—
which is directly related to observables—invariant. The
magnitude of the relevant off-shell t-matrix elements de-
creases on evolution, though. As a result we have

|〈ψλf |J0|ψi〉| < |〈ψf |J0|ψi〉| . (41)

This is reflected in fL as calculated from the evolved final
state, and seen in Figs. 6 and 7.

The effect of evolution of the initial state and the final
state is to suppress fL. When all the three components
are evolved, we reproduce the unevolved answer as indi-
cated in Fig. 6 and 7. It is therefore required that we find
a huge enhancement when just the current is evolved.

The kinematics E′ = 30 MeV, q2 = 25 fm−2 is fur-
ther away from the quasi-free ridge than E′ = 30 MeV,
q2 = 16 fm−2. The effects due to evolution discussed
above get progressively more prominent the further away
one is from the quasi-free ridge. This can be verified by
comparing the effects due to evolution of individual com-
ponents in Figs. 6 and 7.

As remarked earlier, away from the quasi-free ridge the
FSI become important. Nonetheless, it is still instructive
to look at fL calculated in the IA at these kinematics.
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Figure 9. (color online) fL in IA (〈ψf | ≡ 〈φ|) calculated for
E′ = 30 MeV and q2 = 16 fm−2 for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL are evolved.
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Figure 10. (color online) fL in IA (〈ψf | ≡ 〈φ|) calculated
for E′ = 30 MeV and q2 = 25 fm−2 for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL are evolved.

Note that the (unevolved) fL calculated in the IA, shown
in Figs. 9 and 10, is smaller than the full fL that takes
into account the final state interactions (cf. the corre-
sponding curves in Figs. 6 and 7). This is consistent with
the claim made earlier that below the quasi-free ridge the
two terms in Eq. (13) add constructively.

The results in Figs. 9 and 10 can again be qualitatively
explained based on our discussion above. The evolution
of the deuteron wave function leads to suppression as
the evolved wave function does not have strength at high
momentum. The evolved current thus leads to enhance-
ment. Evolution of both the current and the initial state
decreases fL from just the evolved current value, but it
is not until we evolve all three components—final state,
current, and the initial state—that we recover the un-
evolved answer.
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Figure 11. (color online) fL in IA calculated at θ′ = 15◦

for E′ = 30 MeV and q2 = 25 fm−2 for the AV18 potential
when the current operator in Eq. (30) used to calculate fL is
evolved to various SRG λ’s. The horizontal dotted line is the
unevolved answer.

As expected, the effect due to evolution increases with
further evolution. This is illustrated in Fig. 11, where we
investigate the effects of the current-operator evolution
on fL as a function of the SRG λ. To isolate the effect of
operator evolution, we only look at fL calculated in IA
at a specific angle in Fig. 11.

4. Above the quasi-free ridge

Finally, we look at an example from above the quasi-
free ridge. Figure 12 shows the effect of evolution of
individual components on fL for E′ = 100 MeV and
q2 = 0.5 fm−2, which is point “4” in Fig. 3. The ef-
fects of evolution in this case are qualitatively different
from those found below the quasi-free ridge. For instance,
we see a peculiar suppression in fL calculated from the
evolved deuteron wave function at small angles, but an
enhancement at large angles. An opposite behavior is
observed for the final state. It is again possible to quali-
tatively explain these findings.

a. Evolving the initial state Above the quasi-free
ridge, the IA and FSI terms in Eq. (13) add destruc-
tively. This can be seen by comparing the unevolved fL
curves in Figs. 12 and 13. Including the FSI brings down
the value of fL when one is above the quasi-free ridge.

At small angles, the magnitude of the IA term in
Eq. (13) is larger than that of the FSI term. The deuteron
wave function for this kinematics is probed between 1.2
and 1.9 fm−1. With the wave-function evolution, the
magnitude of the IA term in Eq. (38) decreases, whereas
the magnitude of the FSI term in that equation slightly
increases compared to its unevolved counterpart. Still,

at small angles, we have |〈φ|J0|ψλi 〉| > |〈φ|t†G†0 J0|ψλi 〉|,
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Figure 12. (color online) fL calculated for E′ = 100 MeV and
q2 = 0.5 fm−2 (point “4” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Opposite effects from
the evolution of the initial state and the final state.

which leads to

|〈ψf |J0|ψλi 〉| < |〈ψf |J0|ψi〉| , (42)

and thus to the suppression of fL at small angles observed
in Fig. 12.

At large angles, the magnitude of the IA term in
Eq. (13) is smaller than that of the FSI term. With
the wave-function evolution, the magnitude of IA term
decreases substantially (large momenta in the deuteron
wave function are probed at large angles, cf. Eq. (7)),
whereas the FSI term in Eq. (13) remains almost the
same. This results in increasing the difference between
the two terms in Eq. (13) as the SRG λ is decreased. As
mentioned before, above the quasi-free ridge, the IA and
FSI terms in Eq. (13) add destructively and we therefore
end up with |〈ψf |J0|ψλi 〉| > |〈ψf |J0|ψi〉|, leading to the
observed enhancement at large angles upon evolution of
the wave function (see Fig. 12).

b. Evolving the final state The expression to con-
sider is Eq. (40). With the evolution of the t-matrix, the

magnitude of the term 〈φ|t†λG
†
0 J0|ψi〉 decreases, and be-

cause of the opposite relative signs of the two terms in
Eq. (40)—and due to the fact that at small angles the
magnitude of the IA term is larger than the FSI term—
the net effect is |〈ψλf |J0|ψi〉| > |〈ψf |J0|ψi〉|. This leads to
an enhancement of fL with evolved final state at small
angles, as seen in Fig. 12.

At large angles the magnitude of the IA term in
Eq. (40) is smaller than that of the FSI term. With the
evolution of the t-matrix, the magnitude of the FSI term
decreases and the difference between the IA and the FSI
terms decreases as well. This leads to the observed over-
all suppression in fL at large angles due to the evolution
of the final state seen in Fig. 12. For those few (msf ,
mJd) combinations for which the above general observa-

tions do not hold, the value of individual components is
too small to make any qualitative difference.
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〈φλ|Jλ0 |ψλi 〉

Figure 13. (color online) fL in IA (〈ψf | ≡ 〈φ|) calculated for
E′ = 100 MeV and q2 = 0.5 fm−2 for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL are evolved.

Figure 13 shows the effect of evolution of individual
components on fL calculated in the IA for the kinematics
under consideration. Again the evolved deuteron wave
function does not have strength at high momenta and
therefore fL calculated from 〈φ|J0|ψλi 〉 has a lower value
than its unevolved counterpart.

Unitary evolution means that the effect of the evolved
current is always such that it compensates the effect due
to the evolution of the initial and final states. In future
work we will examine more directly the behavior of the
current as it evolves to better understand how to carry
over the results observed here to other reactions.

IV. SUMMARY AND OUTLOOK

Nuclear properties such as momentum distributions
are extracted from experiment by invoking the factor-
ization of structure, which includes descriptions of ini-
tial and final states, and reaction, which includes the
description of the probe components. The factorization
between reaction and structure depends on the scale and
scheme chosen for doing calculations. Unlike in high-
energy QCD, this scale and scheme dependence of fac-
torization is often not taken into account in low-energy
nuclear physics calculations, but is potentially critical
for interpreting experiment. In our work we investigated
this issue by looking at the simplest knockout reaction:
deuteron electrodisintegration. We used SRG transfor-
mations to test the sensitivity of the longitudinal struc-
ture function fL to evolution of its individual compo-
nents: initial state, final state, and the current.

We find that the effects of evolution depend on kine-
matics, but in a systematic way. Evolution effects are
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negligible at the quasi-free ridge, indicating that the scale
dependence of individual components is minimal there.
This is consistent with the quasi-free ridge mainly prob-
ing the long-range part of the wave function, which is
largely invariant under SRG evolution. This is also the
region where contributions from FSI to fL are minimal.
The effects due to evolution get progressively more pro-
nounced the further one moves away from the quasi-free
ridge. The nature of changes due to evolution depends
on whether one is above or below the quasi-free ridge in
the ‘phase-space’ plot (Fig. 3). As indicated in Sec. III C,
these changes can also be explained qualitatively by look-
ing at the overlap matrix elements. This allows us to pre-
dict the effect due to evolution depending on kinematics.

Our results demonstrate that scale dependence needs
to be taken into account for low-energy nuclear calcu-
lations. While we showed this explicitly only for the
case of the longitudinal structure function in deuteron
disintegration, we expect the results should qualitatively
carry over for other knock-out reactions as well. An area
of active investigation is the extension of the formalism
presented here to hard scattering processes.

SRG transformations are routinely used in nuclear
structure calculations because they lead to accelerated
convergence for observables like binding energies. We
demonstrated that SRG transformations can be used for
nuclear knock-out reactions as well as long as the oper-
ator involved is also consistently evolved. The evolved
operator appears to be complicated compared to the un-
evolved one, but the factorization might be cleaner with
the evolved operator if one can exploit an operator prod-
uct expansion [4, 33]. We plan to explore this in our
future work.

We also plan to use pionless EFT as a framework to
quantitatively study the effects of operator evolution. It
should be a good starting point to understand in de-
tail how a one-body operator develops strength in two-
and higher-body sectors upon evolution. This can give
insight on the issue of power counting of operator evo-

lution. Pionless EFT has been employed previously to
study deuteron electrodisintegration in Ref. [53], where
it was used to resolve a discrepancy between theory and
experiment.

Extending our work to many-body nuclei requires in-
clusion of 3N forces and 3N currents. Consistent evolu-
tion in that case would entail evolution in both two and
three-body sectors. However, SRG transformations have
proven to be technically feasible for evolving three-body
forces [26–29]. Thus, extending our calculations to many-
body nuclei would be computationally intensive, but is
feasible in the existing framework. Including the effects
of FSI is challenging for many-body systems and has been
possible only recently for light nuclei [50, 54]. It would be
interesting to investigate if the scale and scheme depen-
dence of factorization allows us to choose a scale where
the FSI effects are minimal.
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Appendix A: Expressions from evolution

Here we document the expressions used in Sec. II C. As
seen in Eq. (23), in order to evaluate the term 〈φ| Jλ0 |ψλi 〉
we split it into four terms: B1, B2, B3, and B4. B4 is
obtained from Eq. (7) by using the evolved deuteron wave
function instead of the unevolved one. The expressions
for the terms B3, B2, and B1 are as follows:

B3 ≡ 〈φ| J0 Ũ†|ψλi 〉 = 2

√
2

π

∑
T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
YL1,mJd

−msf
(θ′, ϕ′)

×
L+1∑

J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
1∑

m̃s=−1

〈J1mJd |L1mJd − m̃s S = 1 m̃s〉

×
Lmax∑
L2=0

〈L2mJd − m̃s S = 1 m̃s|J = 1mJd〉
∑

Ld=0,2

∫
dk3 ψ

λ
Ld

(k3) k23

∫
dcos θ P

mJd
−m̃s

L1
(cos θ)

× PmJd
−m̃s

L2

(
cosα′(p′, θ)

)
Ũ

(
k3,

√
p′2 − p′q cos θ + q2/4, Ld, L2, J = 1, S = 1, T = 0

)
, (A1)
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B2 ≡ 〈φ| Ũ J0 |ψλi 〉 = 2

√
2

π

∑
T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
YL1,mJd

−msf
(θ′, ϕ′)

×
L+1∑

J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
∑
L2,m̃s

〈J1mJd |L2mJd − m̃s S = 1 m̃s〉

×
∑

Ld=0,2

〈LdmJd − m̃s S = 1 m̃s|J = 1mJd〉
∫

dk2 k
2
2 Ũ(p′, k2, L1, L2, J1, S = 1, T1)

×
∫

dcos θ P
mJd
−m̃s

L2
(cos θ)P

mJd
−m̃s

Ld

(
cosα′(k2, θ)

)
ψλLd

(√
k2

2 − k2q cos θ + q2/4

)
, (A2)

B1 ≡ 〈φ| Ũ J0 Ũ† |ψλi 〉 =
4

π

√
2

π

∑
T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
YL1,mJd

−msf
(θ′, ϕ′)

×
L+1∑

J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
∑
L2,m̃s

〈J1mJd |L2mJd − m̃s S = 1 m̃s〉

×
Lmax∑
L3=0

〈L3mJd − m̃s S = 1 m̃s|J = 1mJd〉
∫

dk2 k
2
2 Ũ(p′, k2, L1, L2, J1, S = 1, T1)

∑
Ld=0,2

∫
dk4 k

2
4 ψ

λ
Ld

(k4)

×
∫

dcos θ P
mJd
−m̃s

L2
(cos θ)P

mJd
−m̃s

L3

(
cosα′(k2, θ)

)
Ũ

(
k4,

√
k2

2 − k2q cos θ + q2/4, Ld, L3, J = 1, S = 1, T = 0

)
.

(A3)

In deriving the equations for B1, B2, and B3 we have made use of the fact that the matrix elements with J0 are twice

the matrix elements with J−0 , i.e., 〈φ|J0 Ũ†|ψλi 〉 = 2 〈φ|J−0 Ũ†|ψλi 〉, and similarly for B2 and B1 (cf. Sec. II B).

Evaluating Eq. (24) involves calculating the individual terms A1, A2, A3, and A4. The expressions for A4 and

A3 can be obtained from expressions for B2 and B1, respectively, by replacing Ũ with Ũ†. The U -matrices are real.

Therefore, Ũ† is obtained from Ũ by interchanging momentum and angular momentum indices. The expressions for
A2 and A1 are

A2 ≡ 〈φ|Ũ† Ũ J0|ψλi 〉 =
4

π

√
2

π

∑
T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
YL1,mJd

−msf
(θ′, ϕ′)

×
L+1∑

J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
∑
L3,m̃s

〈J1mJd |L3mJd − m̃s S = 1 m̃s〉

×
Lmax∑
L2=0

∫
dk2 k

2
2 Ũ(k2, p

′, L2, L1, J1, S = 1, T1)
∑

Ld=0,2

〈LdmJd − m̃s S = 1 m̃s|J = 1mJd〉

×
∫

dk3 k
2
3 Ũ(k2, k3, L2, L3, J1, S = 1, T1)

∫
dcos θ P

mJd
−m̃s

L3
(cos θ)

× PmJd
−m̃s

Ld

(
cosα′(k3, θ)

)
ψλLd

(√
k3

2 − k3q cos θ + q2/4

)
(A4)



15

and

A1 ≡ 〈φ|Ũ† Ũ J0|ψλi 〉 =
8

π2

√
2

π

∑
T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
YL1,mJd

−msf
(θ′, ϕ′)

×
L+1∑

J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
∑
L3,m̃s

〈J1mJd |L3mJd − m̃s S = 1 m̃s〉

×
Lmax∑
L4=0

〈L4mJd − m̃s S = 1 m̃s|J = 1mJd〉
Lmax∑
L2=0

∫
dk2 k

2
2 Ũ(k2, p

′, L2, L1, J1, S = 1, T1)

×
∫

dk3 k
2
3 Ũ(k2, k3, L2, L3, J1, S = 1, T1)

∑
Ld=0,2

∫
dk5 k

2
5 ψ

λ
Ld

(k5)

∫
dcos θ P

mJd
−m̃s

L3
(cos θ)

× PmJd
−m̃s

L4

(
cosα′(k3, θ)

)
Ũ

(
k5,

√
k3

2 − k3q cos θ + q2/4, Ld, L4, J = 1, S = 1, T = 0

)
. (A5)

Evaluating the evolved current while including the final-state interactions involves computing the terms F1, F2, F3,
and F4, as indicated in Eq. (28). F4 is obtained from Eqs. (19) and (20) by replacing the deuteron wave function and
the t-matrix by their evolved counterparts. The expressions for the terms F3, F2, and F1 are then as follows:

F3 ≡ 〈φ|t†λG
†
0 J0 Ũ

†|ψλi 〉 =
4

π

√
2

π

M

~c

∫
dk2 k

2
2

(p′ + k2)(p′ − k2 − iε)
∑

T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
× YL1,mJd

−msf
(θ′, ϕ′)

L+1∑
J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
Lmax∑
L2=0

t∗λ(k2, p
′, L2, L1, J1, S = 1, T1)

×
1∑

m̃s=−1

〈J1mJd |L2mJd − m̃s S = 1 m̃s〉
Lmax∑
L3=0

〈L3mJd − m̃s S = 1 m̃s|J = 1mJd〉
∫

dcos θ P
mJd
−m̃s

L2
(cos θ)

× PmJd
−m̃s

L3

(
cosα′(k2, θ)

) ∫
dk5 k

2
5

∑
Ld=0,2

Ũ

(
k5,

√
k2

2 − k2q cos θ + q2/4, Ld, L3, J = 1, S = 1, T = 0

)
ψλLd

(k5) ,

(A6)

F2 ≡ 〈φ|t†λG
†
0 Ũ J0|ψλi 〉 =

4

π

√
2

π

M

~c

∫
dk2 k

2
2

(p′ + k2)(p′ − k2 − iε)
∑

T1=0,1

(
GpE + (−1)T1 GnE

) Lmax∑
L1=0

(
1 + (−1)T1(−1)L1

)
× YL1,mJd

−msf
(θ′, ϕ′)

L+1∑
J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
Lmax∑
L2=0

t∗λ(k2, p
′, L2, L1, J1, S = 1, T1)

×
Lmax∑
L3=0

∫
dk4 k

2
4 Ũ(k2, k4, L2, L3, J1, S = 1, T1)

1∑
m̃s=−1

〈J1mJd |L3mJd − m̃s S = 1 m̃s〉

×
∑

Ld=0,2

〈LdmJd − m̃s S = 1 m̃s|J = 1mJd〉
∫

dcos θ P
mJd
−m̃s

L3
(cos θ)

× PmJd
−m̃s

Ld

(
cosα′(k4, θ)

)
ψλLd

(√
k4

2 − k4q cos θ + q2/4

)
, (A7)
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F1 ≡ 〈φ|t†λG
†
0 Ũ J0 Ũ

†|ψλi 〉 =
8

π2

√
2

π

M

~c

∫
dk2 k

2
2

(p′ + k2)(p′ − k2 − iε)
∑

T1=0,1

(
GpE +(−1)T1 GnE

) Lmax∑
L1=0

(
1+(−1)T1(−1)L1

)
× YL1,mJd

−msf
(θ′, ϕ′)

L+1∑
J1=|L1−1|

〈L1mJd −msf S = 1msf |J1mJd〉
Lmax∑
L2=0

t∗λ(k2, p
′, L2, L1, J1, S = 1, T1)

×
Lmax∑
L3=0

1∑
m̃s=−1

〈J1mJd |L3mJd − m̃s S = 1 m̃s〉
Lmax∑
L4=0

〈L4mJd − m̃s S = 1 m̃s|J = 1mJd〉

×
∫

dk4 k
2
4 Ũ(k2, k4, L2, L3, J1, S = 1, T1)

∫
dcos θ P

mJd
−m̃s

L3
(cos θ)P

mJd
−m̃s

L4

(
cosα′(k4, θ)

)
×
∫

dk6 k
2
6

∑
Ld=0,2

Ũ

(
k6,

√
k4

2 − k4q cos θ + q2/4, Ld, L4, J = 1, S = 1, T = 0

)
ψλLd

(k6) . (A8)

Appendix B: Evolved final state

The interacting final neutron-proton state |ψf 〉 as de-
fined in Eq. (5) is the formal solution of the Lippmann–
Schwinger (LS) equation for the scattering wave function,

|ψf 〉 = |φ〉+G0(E′)V |ψf 〉
= |φ〉+G0(E′) t(E′)|φ〉 . (B1)

The t-matrix, in turn, is defined by the LS equation

t(E′) = V + V G0(E′) t(E′) . (B2)

The subsitution E′ → E′ + iε and the limit ε → 0 are
implied to select outgoing boundary conditions. We want
to show now that the SRG-evolved final state can be
obtained directly by using the solution tλ of Eq. (B2)
with V → Vλ in the second line of Eq. (B1), which is the
same as Eq. (5) in Sec. II, i.e.,

Uλ|ψf 〉 = |ψλf 〉 , (B3)

where

|ψλf 〉 = G0(E′) tλ(E′)|φ〉 . (B4)

In this section, we suppress all spin and isospin degrees
of freedom, and only denote the (arbitrary) energy pa-
rameter as E′ for consistency with Sec. II.

First, it is important to recall that by definition the free
Hamiltonian H0 does not evolve, so that for H = H0 +V
we have

Hλ = UλH U†λ ≡ H0 + Vλ . (B5)

In other words, the evolved potential Vλ is defined such
that it absorbs the evolution of the initial free Hamilto-
nian (kinetic energy) as well.

In order to prove Eq. (B3), it is convenient to consider
the evolved and unevolved full Green’s functions Gλ(E′)
and G(E′), defined via

Gλ(z)−1 = z −Hλ = G−10 (z)−1 − Vλ , (B6a)

G(z)−1 = z −H = G−10 (z)−1 − V . (B6b)

Here, G−10 (z)−1 = z − H0 is the free Green’s function
(which does not change under the SRG evolution because
H0 does not), and z is an arbitrary complex energy pa-
rameter that is set to E′ + iε to recover the physically
relevant case. The Green’s functions can be expressed in
terms of the t-matrix as

G(z) = G0(z) +G0(z) t(z)G0(z) , (B7)

and analogously for the evolved version. Furthermore,
the Green’s functions can be written in their spectral
representations

Gλ(z)−1 '
∫

d3k
|ψλf (k)〉〈ψλf (k)|
z − k2/M + bound states ,

(B8a)

Gλ(z)−1 '
∫

d3k
|ψf (k)〉〈ψf (k)|
z − k2/M + bound states .

(B8b)

Here, |ψ(λ)
f (k)〉 denotes the (evolved) continuum states

with momentum k, and we have |ψ(λ)
f 〉 = |ψ(λ)

f (
√
ME′)〉

From Eqs. (B5) and (B6) it now follows that

Gλ(z)−1 = z −Hλ = z − UλH U†λ

= Uλ(z −H)U†λ = UλG(z)−1 U†λ . (B9)

Combining this with Eqs. (B8) and matching residues at
z = E′+ iε, we find that indeed |ψλf 〉 = Uλ|ψf 〉, as stated

in Eq. (B3).
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