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We compute the QGP suppression of 7Y(1s),

T(2s), Y(3s), x»1, and xp2 states in

VSN~ = 2.76 TeV Pb-Pb collisions. Using the suppression of each of these states, we estimate
the inclusive Raa for the T(1s) and Y (2s) states as a function of Npart, y, and pr including the
effect of excited state feed down. We find that our model provides a reasonable description of
preliminary CMS results for the Npart-, y-, and pr-dependence of Raa for both the Y(1s) and
T(2s). Comparing to our previous model predictions, we find a flatter rapidity dependence, thereby
reducing some of the tension between our model and ALICE forward-rapidity results for Y (1s)

suppression.

PACS numbers: 11.15.Bt, 04.25.Nx, 11.10.Wx, 12.38.Mh

The relativistic heavy-ion collision experiments being
carried out at Brookhaven National Laboratory’s Rela-
tivistic Heavy Ion Collider (RHIC) and CERN’s Large
Hadron Collider (LHC) study the behavior of matter at
extreme temperatures and densities. The goal of these
experiments is to generate a deconfined state of nuclear
matter called a quark-gluon plasma (QGP) and to study
its properties in detail. Based on hydrodynamic fits
to particle production, LHC /syy = 2.76 TeV colli-
sions generate QGP initial temperatures on the order of
To ~ 500 — 600 MeV [1, 2]. At such high temperatures
light hadronic states are disassociated and the equation
of state of nuclear matter is well-described by a gas of
quark and gluon quasiparticles [3, 4]. In the transition
region between hadronic matter and a proper QGP, the
system is composed of liberated quarks and gluons plus
a small admixture of heavy bound states. Although light
hadronic states disassociate around the pseudo-critical
temperature for the quark-hadron transition, T, ~ 165
MeV, bottomonia, for example, may survive up to tem-
peratures on the order of T ~ 600 MeV ~ 47T, [5]. Due
to mass/binding-energy ordering of the quarkonium spec-
trum, one expects that there will be an approximate se-
quential disassociation, with lighter states “melting” be-
fore heavier states and excited states melting before their
respective ground states [6].

In this paper, we focus on the suppression of bottomo-
nia in /syny = 2.76 TeV Pb-Pb collisions. The bene-
fits of working with heavy quarks are that heavy quark
bound states are dominated by short distance physics,
their binding energies are much smaller than the quark
mass mqg > Aqcp (Q = ¢,b), and their sizes are much
larger than 1/mq. As a result, they can be treated using
effective field theory methods. In the heavy quark limit,
one finds that a potential-based non-relativistic effective
field theory, pNRQCD, can be used to calculate the mass
spectrum, decay rates, etc. of heavy quark bound states
[7-11]. In addition, pNRQCD allows for the systematic

inclusion of relativistic corrections. Using pNRQCD po-
tential models, the vacuum spectrum of all bottomonium
states can be reproduced to within less than one percent
using a Cornell potential plus spin-spin and spin-orbit
interactions [12, 13].

The use of potential models to describe quarkonium
suppression has a long history, starting with the seminal
works of Karsch, Matsui, Mehr, and Satz [14, 15] who
predicted that quarkonium production would be sup-
pressed in heavy-ion collisions due to Debye-screening in
a deconfined QGP. Using such non-relativistic potential
models, there have been studies of quarkonium spectral
functions and mesonic current correlators, see e.g. [16—
23]. There have also been lattice QCD calculations of the
quarkonium spectral function [24-33]. Compared to the
standard Debye-screened potential models used in early
calculations, systematic analysis of the heavy quark po-
tential in the QGP showed that the potential is complex-
valued, with the imaginary part of a state’s energy being
related to the thermal width of the state [34].

In the bottom sector, potential model calculations in-
dicate that the T(1s), T(2s), and T (3s) can survive up
to temperatures T ~ 593, 228, 172 MeV, respectively
[5]. At these temperatures, the in-medium width of the
state becomes on the order of the real part of its binding
energy, and the bound state quickly disappears from the
spectrum. However, even below this disassociation point,
quarkonia also decay due to in-medium interactions. For
the YT (1s), the in-medium width approaches 100 MeV at
3T, [35]. At this temperature, the T(1s) in-medium half-
life is on the order 2 fm/c. Since this is also the timescale
over which the QGP evolves hydrodynamically, one needs
accurate and reliable modeling of the background evolu-
tion in order to make reliable predictions for quarkonium
suppression in heavy-ion collisions.

In this paper, we provide an update to the model used
in Refs. [36, 37] to: (1) extend the background evolu-
tion to full (341)D anisotropic hydrodynamics (aHydro)



with a rapidity profile consistent with experimentally-
observed particle multiplicity distributions; (2) update
the mixing fractions to recent updated values determined
via fits to ATLAS, CMS, and LHCb results for T and ¥
production in p-p collisions [38]; (3) correct the proba-
bility weight-function used for centrality averaging in or-
der to match the experimental procedure. We compare
the updated model predictions with recently reported re-
sults on T suppression in Pb-Pb collisions from both the
CMS [39] and ALICE [40] collaborations. We find that,
with the improvements listed above, the original model of
Refs. [36, 37] gives a reasonable description of the Npayi-,
y-, and pr-dependence of Y(1s) and Y(2s) suppression.

Methodology. For both the potential and dynamical
equations used below, we assume that the effective local
rest frame (LRF) one-particle distribution function for
the particles comprising the QGP is of the form f(p,z) =

Jea( VPEH L+ E@IIRE /A(@)), where 1 < €(x) < oo
is the local spheroidal momentum-space anisotropy pa-
rameter and A(xz) is the local transverse temperature.
This form takes into account the difference between the
transverse and longitudinal pressures, which is the most
important viscous correction generated in heavy-ion col-
lisions.

As mentioned above, it is now understood that the
heavy quark potential in the QGP has both real and
imaginary parts, V = R[V]+iS[V]. We use the internal-
energy-based potential specified originally in Ref. [37].
In the model, the real part of the potential is obtained
from the internal energy of the heavy quark/anti-quark
system [56]. The resulting real part of the potential is
given by [37]

2
R[V] = —%(Hm)e—ﬂwf[l—e—#r]
0.8
—ore M — 20, (1)
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where my, = 4.7 GeV, a = 0.385, o = 0.223 GeV? [41],
and the last term is a temperature- and spin-independent
finite-quark-mass correction taken from Ref. [42]. In this
expression, u = G(&,0)mp [37, 43, 44] is the anisotropic
Debye mass, where G is a function which depends on
the degree of plasma momentum-space anisotropy &, the
angle of the line connecting the quark-antiquark pair
with respect to the beamline direction 0, and mp =
1.4y/1+ Ny /6 g,T is the isotropic leading-order Debye
mass adjusted by a factor of 1.4 in order to take into
account higher-order corrections determined via lattice
calculations [45]. Note that, in the limit £ — 0, one has
G = 1 and the real part of the potential above reduces
to the internal energy derived from the original Karsch-
Mehr-Satz potential [15].

The imaginary part of the potential I[V] is obtained
from a leading-order perturbative calculation performed

in the small-¢ limit [34, 46, 47]

&

V] = —asCeT {6(r/mp)
€ [Y1(r/mp,0) + Ya(r/mp,0)] } , (2)

where ¢, 11, and 19 are special functions which can be
expressed in terms of the Meijer G-function. We solve
the 3D Schrodinger equation with the potential above
to obtain the real and imaginary parts of the binding
energy as a function of £ and A [35]. The imaginary
part of the binding energy is then used to obtain the
width of each state using I'(7,x1,¢) for R[Epina] > 0
and D(7,x1,¢) = ~ais for R[Epina] < 0, with ~gis be-
ing the effective decay rate for unbound states, which
we take to be 10 GeV [57]. It is implicitly understood
that Fping, and hence I', are local quantities that depend
on 7 =12 =22, x,, and ¢ = tanh™'(z/t) through the
(34+1)D evolution of the transverse temperature A, lo-
cal momentum-space anisotropy &, and associated flow
velocities. For this purpose, we use (3+1)D anisotropic
hydrodynamics (aHydro) [48-50].

The (3+1)D aHydro code used provides the spatiotem-
poral evolution of £ and A. The widths obtained from
solution of the 3D Schrédinger equation are then inte-
grated and exponentiated to compute the relative num-
ber of states remaining at a given proper time. Integrat-
ing the instantaneous local decay rate I' over proper-time,
one obtains

Raa(pr,y,x1,b) = e~ S(pr.y:x1,b)

(= @(Tf - Tform)/ f dTF(Tv X1,8= y)» (3)

max(Ttorm,70)

where b is the impact parameter, Tiorm = va%rm =
Ertd /M where M is the mass of the state, and 70
is the formation time of the state at rest. For the rest
frame formation times, we assume that they are roughly
proportional to the inverse vacuum binding energy [51].
For the Y(1s), Y(2s), T(3s), x»1, and xp2 states, we use
7 om = 0.2, 0.4, 0.6, 0.4, and 0.6 fm/c, respectively [58].

We take the initial proper time 7y for hydrody-
namic evolution to be 7 = 0.3 fm/c and the ini-
tial central temperature for central collisions to be
Ty € {552,546,544} MeV for shear viscosity to entropy
density ratios 47n/s € {1,2,3}, with the values tuned
in order to keep the final charged particle multiplicity
fixed. The final time 7; appearing in Eq. (3) is self-
consistently determined from the aHydro simulation as
the proper time when local effective temperature be-
comes less than the transition temperature. At this
effective temperature, plasma screening effects are as-
sumed to decrease rapidly due to the transition to the
hadronic phase with the widths of the states becom-
ing approximately equal to their vacuum widths [59].
For the aHydro initial conditions, we use a smooth lin-
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FIG. 1: (Color online) Raw Raa as a function of Npart. For
this figure we assumed 47n/s = 1. These curves do not in-
clude the effect of excited state feed down.

ear combination (Kpinary = 0.145) of Glauber wounded-
nucleon and binary collision scaling to set the initial
energy density profile in the transverse plane. The in-
elastic cross-section is taken to be oyny = 62 mb. In
the spatial rapidity direction, we use a boost-invariant
plateau at central rapidities with Gaussian-tails consis-
tent with limited fragmentation at large rapidity [52],
f(o) = exp [— (C_Q?;)Q@(M — Ag)} , with A¢ = 2.5 and
o, = 1.4 fitted to ;eproduce the experimental pseudora-
pidity distribution of charged particles.

In order to compare to the experimental results, we
then (a) perform a weighted average over the transverse
plane and (b) implement any cuts on centrality, pr, and
rapidity necessary. For the spatial average, the proba-
bility distribution function for bottomonium production
is taken to be proportional to the local number den-
sity of plasma partons n(x,s), i.e. Raa(pr,y,b) =
([, n(x1,9)Rana(pr,y,x1))/ [, n(x1,5). For imple-
menting py cuts, we assume that the pp probability dis-
tribution function is proportional to E;l. For imple-
menting cuts in rapidity, we use a flat distribution func-
tion. After implementing the appropriate cuts on py and
y, we obtain Raa(b). We then convert b to centrality C
using the Glauber formalism and integrate over the ap-
propriate centrality cuts using a probability distribution
function proportional to e~¢/29 where 0 < C < 100.
This probability distribution function takes into account
the increased particle production that occurs in central
collisions and its form is taken from fits to experimentally
observed centrality distributions [53].

The procedure outlined above gives the “raw” suppres-
sion factors for each state. In order to account for post-
QGP feed down of excited states for the T(1s), we use
pr-averaged feed down fractions obtained recently from a
compilation of p-p data available from ATLAS, CMS, and
LHCb which gives f1* = {0.618,0.105,0.02,0.207,0.05}
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FIG. 2: (Color online) Inclusive Raa for the T(1s) and Y (2s)
as a function of Npare.
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FIG. 3: (Color online) Inclusive Raa for the T(1s) and T (2s)
as a function of y.

for the Y(1s), T(2s), T(3s), xp1, and xp2 to T(1s) feed
down fractions, respectively [38]. For the Y (2s), we as-
sume that f?* = {0.5,0.5} for the Y(2s), T(3s) to Y(2s)
feed down fractions, respectively [54]. Note that, there
is also the possibility of “feed up” due to in-medium ex-
citation, e.g. T(1s) to T(2s). In perturbation theory,
transitions between color singlet T(1s) and T(2s) must
occur via two gluon exchanges due to selection rules and
therefore are suppressed. Such effects are not included in
this calculation.

Results. In Fig. 1, we show the raw Raa for the five
states considered as a function of Ny for the case that
47n/s = 1. As can be seen from this figure, there is a
sequential suppression of the states, however, there are
no thresholds visible as originally predicted by sequen-
tial suppression [6]. The lack of thresholds is due to (1)
averaging over the full temperature distribution in the
transverse plane where the QGP is hotter in the center
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FIG. 4: (Color online) Inclusive Raa for the T(1s) and Y (2s)
as a function of pr.

and colder as one moves towards the edges and (2) the
continuous decays of the various states prior to their dis-
association point. Although, we only show results as a
function of Npart, the model provides the full Npar-, pr-,
and y-dependence of Rapa for each of the states.

By constructing a linear combination of the raw Raa
for each state, we obtain the inclusive Raa for the states.
The result of performing this procedure for the T(1s) and
T(2s) is plotted in Figs. 2-4. In these three figures, each
set of three lines corresponds to 4mn/s € {1,2,3}. In
Fig. 2, we compare our results to recently reported pre-
liminary data from the CMS collaboration [39]. As can
be seen from this figure, our model does a good job for
both the T(1s) and Y(2s) states. There is, however, some
tension with the lowest Ny, point for szs). Based on
the comparison of the model predictions with CMS pre-

T(1s)
A

liminary data for R, ", the data seem to prefer small

shear viscosities in the range 1 < 47n/s < 2. The Rgffs)
data does not seem to provide a tight constraint on 7/s

at this point in time.

In Fig. 3, we show our results as a function of rapidity
and, once again, we compare with the new CMS prelimi-
nary data. We also include the RKSS) result obtained by
the ALICE collaboration at forward rapidities as open
circles [40]. Although our model does a reasonable job
in reproducing the trends seen in the CMS preliminary
data, there is still some lingering tension with the AL-
ICE forward results. We note, however, that compared
with earlier predictions made in Ref. [54], our model re-
sults are now much closer to the ALICE data. This is
due solely to the change in the way we perform the cen-
trality averaging. In the past, we used a flat probability
distribution as a function of centrality, which does not
conform to the procedure used to compute the centrality-
averaged results by the experiments, where they simply
average over the particles detected in each centrality bin.

With the updated probability distribution function, the
centrality-averaged results are much closer to those ob-
tained in central collisions.

Finally, in Fig. 4 we show our results as a function of
pr compared to CMS preliminary data. The flatness of
Raa as a function of pyr was a prediction contained in
the original model [36, 37] and is due to the fact that, in
the model, the bottomonia spectra are assumed to be un-
affected due to the lack of thermalization of these states
because of their large masses. The slow increase in Raa
as a function of pr stems solely from the effect of time-
dilation of the formation times of the states. Comparing
to the CMS preliminary results for Rzgs), we see that the
data seem to, once again, prefer small values of 7/s. For
the szs), the model seems to under predict the amount
of suppression seen in the CMS preliminary data, how-
ever the overall magnitude and weak dependence on pr
predicted by the model seems to be in reasonable agree-

ment with the data.

Conclusions. In this paper we presented an update to
our model predictions for the QGP-induced suppression
of bottomonia states at LHC energies [36, 37]. The po-
tential model itself is exactly the same as used in previ-
ously published results, however, we have (1) upgraded
the aHydro code to (34+1)D in order to have a more real-
istic model of the background evolution (2) updated the
mixing fractions determined from recent ATLAS, CMS,
and LHCb measurements, and (3) corrected our method
for performing centrality averaging.

As can be seen from the results presented herein, the
original internal-energy-based model of Refs. [36, 37]
seems to do a reasonable job describing the Npart-, y-,

and pr-dependence of CMS preliminary results for RL(;S)

and szs). At forward rapidities, there is still some ten-

sion with the ALICE Rzgs) data, however, with the fix
to the centrality-averaging procedure, the discrepancy is
no longer as dramatic. Because of this, there is now some
hope that the additional suppression at forward rapidi-
ties could be explained by cold-nuclear matter effects.
On the positive side, it seems that for central rapidi-
ties (y < 2) the data are consistent with bottomonia
suppression due to the creation of a deconfined QGP
with a shear viscosity to entropy density ratio roughly
between 1/(47) and 2/(4w). These values are consistent
with those obtained via analysis of the collective flow
coefficients, thereby providing further evidence that the
QGP created in relativistic heavy ion collisions behaves
like a nearly perfect fluid.
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