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I. INTRODUCTION

During the past 40 years, solar neutrino flux measurements

have been obtained through the use of a wide range of de-

tection techniques and neutrino interactions [1–8]. This re-

search tested the validity of the solar fusion model and pro-

vided compelling evidence for matter induced neutrino fla-

vor conversion within the solar interior, called the MSW ef-

fect [9, 10]. The observation of anti-neutrino flavor oscil-

lations by the KamLAND experiment [11], having mixing

parameters consistent with those needed to explain the solar

data, showed neutrino mixing to be responsible for what had

been known as the Solar Neutrino Problem.

The most recent solar neutrino experiments are liquid scin-

tillator based [12, 13]. The low energy threshold possible with

such detectors allows for real-time detection of the low energy
7Be solar neutrinos. Neutrinos from 7Be electron-capture in-

side the sun are mono-energetic (862 keV) and dominate the

solar neutrino spectrum above the energies of pp neutrinos

(< 420 keV). The flux of 7Be solar neutrinos has been pre-

viously measured by the Borexino experiment [12]. In this

article, we report a measurement of the 7Be solar neutrino

flux with KamLAND, thereby providing the first independent

cross-check of this important quantity.

As in Borexino, solar neutrinos are detected via neutrino-

electron elastic scattering, ν + e → ν + e (ES), which has

a well understood cross section. In the standard three-flavor

mixing scheme, electron neutrinos (νe) produced inside the

sun can transform into muon or tau neutrinos (νµ or ντ ) dur-

ing flight at a rate determined by the neutrino oscillation pa-

rameters and the electron density of the solar interior; the total

active neutrino flux (νe + νµ + ντ ) is conserved. At the energy

of 7Be solar neutrinos, the ES cross section of νe is about five

times larger than that of νµ or ντ .

The expected 7Be neutrino flux on the earth’s surface, given

by the GS98 solar model [14], is 5.00 × 109 cm−2s−1 [15].

The necessity of a large detector is evident considering the

small ES cross section, which gives, for the KamLAND scin-

tillator, an expected interaction rate of 500 (kton-days)−1 in-

cluding neutrino flavor conversion. The ES induced recoil

electrons have to be measured without the benefit of a con-

venient event tag. Here lies the main difficulty of these exper-

iments: the low-energy backgrounds of a kiloton-size detector

have to be sufficiently suppressed to allow the observation of

a signal composed of only few events, a non-trivial task. In

the current work this is achieved by comparing detector back-

ground models with and without a solar recoil signal to the

data. The presence of such a signal is then inferred from the

data by means of a chi-square statistical analysis.

II. DETECTOR AND CALIBRATION

The KamLAND detector (Figure 1) consists of 1 kton of

liquid scintillator (LS) contained in a thin plastic-film balloon

of 13 m diameter. The scintillation light is viewed by an array

of 1879 photomultiplier tubes (PMTs) mounted on the inner

surface of an 18 m diameter stainless steel sphere (SSS). The

space between the SSS and the balloon is filled with purified

FIG. 1: Schematic diagram of the KamLAND detector.

mineral oil which shields the LS from external radiation. The

SSS and its content, denoted the inner detector (ID), is con-

tained within a cylindrical, 3.2 kton water-Cherenkov outer

detector (OD). All detector materials and components were

selected to have low radioactivity content to maintain the op-

tion of a low background phase.

The KamLAND detector started collecting data for the re-

actor anti-neutrino phase in March 2002. Due to the de-

layed coincidence structure (a prompt positron followed by

a delayed neutron capture) with which anti-neutrinos can be

tagged the background was low enough for their detection.

However the analysis of low energy singles data (composed

of events not benefitting from a delayed coincidence) showed

that the liquid scintillator contained 883±20µBq/kg of 85Kr

and 58.4 ± 1.1µBq/kg of 210Pb, the latter inferred from the

decay rates of its unstable daughters 210Bi and 210Po. The re-

sulting total decay rate of 8.1 × 107 (kton-days)−1 made the

detection of about 500 (kton-days)−1 7Be solar neutrino in-

duced recoil electrons impossible.

In order to enable a low energy physics program with

KamLAND, the collaboration developed methods for the ef-

ficient removal of Kr and Pb from the liquid scintillator [16].

Based on extensive small-scale laboratory studies, large scin-

tillator distillation and nitrogen purge systems were con-

structed underground. Two purification campaigns were per-

formed in 2007 and 2008-2009. During the purification cam-

paigns the old LS was drained from the detector and simulta-

neously filled with recycled, purified LS such that the LS mass

supported by the balloon remained constant. To maximize

the efficiency of purification, the temperature and density of

the purified LS was carefully controlled in order to maintain

a boundary between the old and purified LS. By the end of

both campaigns more than five detector volume exchanges

were performed, resulting in a substantial reduction of the

background-creating impurities. The overall reduction fac-

tors for rates of 85Kr, 210Bi, and 210Po, were about 6× 10−6,

8×10−4, and 5×10−2, respectively. This dramatic reduction

allowed the primary trigger threshold to be lowered from 180

PMT hits to 70 PMT hits (the latter value corresponds to a

threshold of ∼0.4 MeV), and thus extended KamLAND’s sci-



3

203Hg 137Cs
7Be 68Ge
85Sr 60Co

Z-axis

Z-axis

off-axis

Fiducial Radius

4.5m

0 1 2 3 4 5
R(m)

0 1 2 3 4 5

-1

0

1
E
n
e
r
g
y

D
e
v
i
a
t
i
o
n
(
%
)

-1

0

1

-5

0

5

P
o
s
i
t
i
o
n

D
e
v
i
a
t
i
o
n
(
c
m
)

-5

0

5

-5

0

5

P
o
s
i
t
i
o
n

D
e
v
i
a
t
i
o
n
(
c
m
)

-5

0

5
AmBe7Be 60Co137Cs

FIG. 2: ”Color Online” Deviation of the reconstructed energy with

respect to z = 0 m and deviation of the reconstructed position with

respect to the true position for gamma calibration sources inside the

detector.

entific reach into the detection of low energy solar neutrinos.

To allow more detailed study of low energy backgrounds, the

threshold is lowered once per second to ∼0.2 MeV for a du-

ration of 1 ms. The data presented were collected in 616 days

between April 7, 2009 and June 21, 2011.

The event position and energy are reconstructed based on

the time and charge of photon-hits recorded by the PMTs. The

KamLAND coordinate system utilizes the horizontal equato-

rial plane as its xy-plane; the z-axis points up. The recon-

struction is calibrated using gamma sources deployed peri-

odically in the detector — namely 7Be (0.478 MeV), 60Co

(2.506 MeV), 68Ge (1.022 MeV), 85Sr (0.514 MeV), 137Cs

(0.661 MeV), and 203Hg (0.279 MeV). The effects of scintil-

lation quenching, Cherenkov light production, and PMT dark

hits on the energy scale non-linearity are determined from

this calibration data. They are corrected for in the spectral

analysis discussed later. The observed vertex resolution is

∼13 cm/
√

E(MeV), and the energy resolution (σE/E) is

(6.9 ± 0.1)%/
√

E(MeV). The deviation of the position de-

pendent energy from the center of the detector is evaluated

as +0.3% to −1.5% inside of the −4.5 < z < 4.5 m re-

gion shown in Figure 2. The majority of the calibrations were

performed by moving the sources to specific points along the

central vertical detector axis using the deployment system de-

scribed in Ref. [17]. In order to constrain deviations from

rotational symmetry after scintillator purification, a full 3D-

calibration was performed using an off-axis system described

in Ref. [18].

III. EVENT SELECTION

Candidate events are selected according to the following

requirements:

(i) The radial position of event vertices must be less than

4.5 m. An additional volume selection, defined in cylindrical

coordinates and motivated by the data classification described

in the next section, is also applied. The combined volume

selection defines the fiducial volume (FV) which corresponds

to 268.6 tons of liquid scintillator.

(ii) Cosmic-ray muons (identified by a total PMT charge

of larger than 10,000 photo electrons (p.e.) or more than 5

PMT hits in the outer detector) and all events within 2 ms after

muons are rejected to reduce background events due to muon

spallation products and electronics noise. In addition, noise

events within 100µs after high energy events (a total PMT

charge of larger than 1,000 p.e.) are rejected.

(iii) Two successive events within 1µs are rejected to avoid

the possible cross talk effect between two events owing to the

finite time spread of scintillation photons.

(iv) Coincidence events occurring within 1.2 ms of each

other are eliminated in order to remove 214Bi-214Po and
212Bi-212Po sequential decays.

(v) Candidates must pass a vertex-time-charge (VTQ) fit

quality test to eliminate noise events mainly produced by two-

event pile-up in a one-event time window (∼200 ns). The

VTQ cut is tuned using calibration data. The reduction of the

neutrino event selection efficiency is found to be negligible in

the analysis energy range.

IV. DATA CLASSIFICATION

After the introduction of purified LS into KamLAND there

were time periods of thermal instability due to slight varia-

tions in the temperature gradient of the detector. It was fur-

ther found that the containment balloon acts as a 210Pb reser-

voir, slowly releasing 210Bi into the scintillator. The result

of these thermal gradients was convection in the LS fiducial

volume and a non-uniformly distributed 210Bi concentration,

thus some regions of the fiducial volume were much cleaner

than others. Choosing to only analyze regions of the fidu-

cial volume that contain low concentrations of 210Bi could

introduce a selection bias. Thus, a procedure for analyzing all

the data regardless of the local 210Bi concentration was devel-

oped. The procedure used in this analysis is as follows:

1. From the perspective of a ρ2 vs. z distribution in cylin-

drical coordinates, where ρ2 = x2 + y2, the fiducial

volume is divided into equal-volume partitions having

dimensions dρ2 = 2.0m2 and dz = 0.2m.

2. For events with an energy of 0.5−0.8 MeV (mainly
210Bi) an effective event rate is calculated for each par-

tition. Each partition is assigned a rank based on the

average rate of its spatial and temporal neighbors. An

average rate is calculated for up to eight partitions bor-

dering the cell to be ranked (a partition near the FV

boundary has fewer neighbors). The time dimension

is included in this by adding the rate of the ranked cell,
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FIG. 3: ”Color” Rank classification of partitions in the fiducial vol-

ume during a short data taking interval.

as determined in the previous and following data taking

runs (usually one day long), to the average rate of its

neighbors.

3. The effective event rate is then used to classify each par-

tition into one of seven different ranks which are de-

fined in Table I. As an example, the rank classification

for one data-taking run (∼ 24 hours long) is shown in

Figure 3. We find the rank assignment of each volume

generally varies slowly with time except after periods

of thermal instability when convection occurred in the

LS.

The procedure just outlined allows identification of low
210Bi regions within the detector without complex and ar-

bitrary fiducial volume cuts. However, each partition will

TABLE I: Listing of the ranks defined according to the estimated
210Bi rate in (0.5 < E < 0.8MeV) and the total exposure for each

rank.

Rank 210Bi Rate Exposure

# 10−6(m3 s)−1 (kton-days)

1 < 5 26.52

2 5− 10 34.42

3 10− 15 27.06

4 15− 20 17.81

5 20− 25 11.35

6 25− 30 7.63

7 > 30 40.63

Total 165.43
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FIG. 4: ”Color” Energy spectra of candidate events for each data-set

rank, exhibiting different 210Bi rates. All data sets are used for the

simultaneous fit of the 7Be solar neutrino spectrum, with a common

rate normalization. The location of the major background sources

are labeled and the theoretical electron recoil spectrum of 862 keV
7Be solar neutrinos, whose rate is based on the standard solar model

by Serenelli et al. [15], is shown for comparison.

have some volume bias due to vertex resolution and position-

dependent vertex reconstruction. This bias is corrected in the

spectral fit using the fact that the following event rates, pro-

duced from cosmogenic or astrophysical sources, must be dis-

tributed uniformly in the LS: 11C, 10C, 7Be and 7Be solar

neutrinos. Using the prescribed rank classification, a simul-

taneous spectral fit is performed over the data from every rank

to obtain one common 7Be solar neutrino rate.

V. BACKGROUND ESTIMATION

Accurate modeling of the energy distributions of back-

ground sources inside and outside the detector is necessary to

determine the 7Be solar neutrino flux with KamLAND. These

energy distributions are based on a phenomenological detec-

tor response function. They derive their validity from the fact

that they describe the data well (a) before purification when

radio-impurity concentrations were high, and (b) in areas of

high rate after purification. For some sub-dominant compo-

nents, that cannot be verified in this way, Monte Carlo gener-

ated spectra are used instead. The contributions of the vari-

ous background components are summed with freely-varying

normalizations, although some normalizations are constrained

by other independent KamLAND data. A fit to the candidate

event spectrum then determines the partial contributions.

This section describes how the background model is con-

structed and what is known about its constituents. Back-

ground sources are classified into three categories: radioactive

impurities in the LS, spallation products, and radioactivity in

the surrounding materials.
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A. Radioactive Impurities in the Liquid Scintillator

The abundance of 232Th and 238U and their daughters in the

LS is constrained by KamLAND data. The decay rates of the
222Rn-210Pb subchain of the 238U series and the 228Th-208Pb

subchain of the 232Th series can be measured, almost back-

ground free, using 214Bi-214Po and 212Bi-212Po beta-alpha

delayed coincidences, with 94.8% and 31.9% selection effi-

ciencies, respectively. The inferred 238U and 232Th concentra-

tions assuming secular equilibrium are (5.0±0.2)×10−18 g/g

(93±4 nBq/m3) and (1.3±0.1)×10−17 g/g (59±4 nBq/m3),

respectively. Some radioactive decay chains are found to be

out of secular equilibrium. A fit to the prominent 210Po α-

peak, quenched to about 0.3 MeV visible energy in Figure 4,

yields spatially varying activities ranging from 2.4 mBq/m3 to

4.8 mBq/m3, depending on the rank of the analyzed volume.

However, as discussed in the following subsection, this back-

ground component is not considered in the fit since it falls

below the analysis threshold. The higher-mass members of

the decay chains above 228Th and 222Rn are determined by a

spectral fit and are found to be unimportant.

Below 1 MeV, the background is dominated by daughters

of 210Pb, namely 210Bi and 210Po. 210Bi, the most important

background contributor, is found to be spatially non-uniform,

in addition, its decay rate in the FV fluctuates in time. This

is attributed to 210Bi supplied from the balloon surface by ir-

regular LS convection currents, followed by its decay with

T1/2 = 5.01 days. This interpretation is supported by the

observation that around the balloon surface, the spectrum is

dominated by electrons from 210Bi decays, and α-particles

from 210Po decays, consistent with the hypothesis that the

balloon film is contaminated with ∼200 Bq of 210Pb, a 222Rn

daughter introduced during detector construction. The scin-

tillator sub-volume ranking technique, described before, was

devised to cope with this variability in an unbiased way. De-

pending on the rank, the specific 210Bi activity varies between

35.7µBq/m3 and 681.1µBq/m3 within the FV. 210Bi under-

goes a first forbidden beta decay. The parametrization of the

resulting beta spectrum will be discussed in the analysis sec-

tion.

The concentration of 40K is measured to be (7.3 ± 1.2) ×
10−17 g/g from the energy spectrum fit. Due to the fluid circu-

lation during LS purification, 238U, 232Th, and 40K may have

non-uniform spatial distributions. The long-lived radioactive

noble gas, 85Kr, was the major source of low-energy back-

ground prior to scintillator purification. The present back-

ground model includes this component to deal with any left-

over activity. 39Ar is included as a potential source in the

background model, its abundance constrained by the ratio of
85Kr and 39Ar found in the atmosphere. From the spectral fit

we find its contribution to the background is negligible. This

is consistent with the pre-purification spectral analysis results.

For volume ranks 1 through 6 the 85Kr specific activity varies

between 4.1µBq/m3 and 19.2µBq/m3. For the highest back-

ground partitions — those with rank 7 — the fit only yields

an upper limit for the activity. After LS purification, we col-

lected samples from a location within the fiducial volume at

z = +1.5 m. These samples were analyzed for their Kr con-

tent using a helium purge, a cold trap to retain the Kr, and a

residual gas analyzer to measure its partial pressure. Based

on these measurements, the 85Kr decay rate was estimated at

8.3±4.2µBq/m3, assuming a recent isotopic ratio of 85Kr in

air [19]. As a third cross check for the 85Kr content of the LS,

a 85Kr-85mRb delayed coincidence analysis was performed,

utilizing the beta decay into the metastable, 514 keV excited

state of 85Rb. This analysis yielded 17.3 ± 5.9µBq/m3, av-

eraged over the entire FV. 85Kr undergoes a unique first for-

bidden beta decay. The beta spectrum contained in the back-

ground model was calculated using a relativistic Fermi func-

tion plus a shape correction accounting for the forbiddenness

following the procedure outlined in Ref. [20]. This spectral

parametrization was found to fit well the high statistics beta

spectrum collected before LS purification.

B. Spallation Products

The 2700 m.w.e. of rock overburden of the Kamioka Under-

ground Laboratory suppresses the rate of cosmic ray muons

traversing the KamLAND LS to 0.198± 0.014 s−1 [21]. The

surviving muons can produce unstable light nuclei by spalla-

tion of carbon, whose decays result in background. The dom-

inant cosmogenic background between 1-2 MeV is due to de-

cays of 11C (β+, τ = 29.4min, Q = 1.98MeV). Due to its

relatively long half life these decays cannot be tagged without

incurring large deadtime. Its decay rate has earlier been esti-

mated to be 1106± 178 (kton-days)−1 [21]. The background

contribution of 11C is constrained by this value.

Another spallation source of interest is 7Be (EC decay,

τ = 76.8 days, Q = 0.862 MeV). While its production rate

by muon spallation in the LS is estimated to be small [21, 22],

there is the possibility of higher than steady state production

yield due to the introduction of fresh, surface-exposed LS dur-

ing the scintillator purification. Therefore, in order to be con-

servative, the rate of 7Be decays is unconstrained.

C. Radioactivity in the Surrounding Material

The background from external gamma-rays is mainly

caused by 40K, 232Th, and 238U contained in the surrounding

rock, stainless steel, PMT glass, balloon film, and Kevlar sus-

pension ropes. The energy distributions resulting from these

radiation sources were modeled by means of a Monte Carlo

simulation. The simulation was tuned with source calibration

data to reproduce the vertex distribution as well. The gamma-

ray attenuation in the radial direction in the simulation is con-

sistent with that in the real data. External backgrounds dom-

inate the energy distribution for radial positions larger than

4.5 m. These data were used to fit the relative background

contributions. The Monte Carlo simulation was then used to

extrapolate the background forR < 4.5m. Based on this fit, it

was concluded that external gamma-rays do not significantly

impact the fiducial volume background below 1 MeV.

As discussed before, the balloon surface is a source of elec-

trons from 210Bi decays, and α-particles from 210Po decays.
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While the fiducial volume cut effectively suppresses these

backgrounds, accidental pile-up of two external events can

lead to a vertex and energy displacement, moving external

events into the analysis volume. Due to the high 210Po de-

cay rate, resulting in a pronounced peak at ∼0.3 MeV in the

energy spectrum (see Figure 4), most of the pile-up events are

concentrated in the high energy tail of this peak. Although

the absolute rate of tail events is not small, the fraction of

pile-up events to observed events above 0.5 MeV is <1%. To

eliminate this background and the systematic bias it would in-

troduce into the measurement of the 7Be solar neutrinos, the

energy threshold was set to 0.5 MeV in the present analysis.

VI. SYSTEMATIC UNCERTAINTY

The leading contributions to the systematic uncertainty of

the 7Be solar neutrino flux measurement are listed in Table II.

The measured neutrino-electron scattering rate is converted

into a solar neutrino flux, the accuracy of this conversion

is given by the uncertainty of the interaction cross section.

Based on the evaluation of Ref. [23], a value of 1% is assigned

to this error. The determination of the flux further requires

knowledge of the number of electrons contained in the FV.

The LS density is measured to be 0.780 g/cm3 with an un-

certainty of 0.025% at 11.5◦C. The uncertainty of the depen-

dence of the number of electrons on the temperature within the

FV is estimated at 0.1%. We estimate that 9.21 × 1031 elec-

trons are contained in the 344.3m3 FV. Data collected with

the full volume calibration system showed vertex reconstruc-

tion deviations of less than 5 cm. This corresponds to a FV

uncertainty of 3.4%. The FV event selection inefficiency due

to vertex misreconstruction was established with source cali-

brations and is less than 0.5% in the analysis energy region,

confirmed by the source calibrations.

Other systematic uncertainties, related to the modeling of

the detector response, are determined through the spectral fit

TABLE II: Uncertainties on the measurement of the 7Be solar neu-

trino flux.

Source Uncertainty (%)

Cross section 1.0

Number of target 0.10

Fiducial volume 3.4

Vertex misreconstruction 0.5

Energy scale 7.9

Rank-dependent energy scale 2.9

Energy resolution 3.4

BG from 238U-series (222Rn-210Pb) 1.7

BG from 232Th-series (228Th-208Pb) 1.8

BG from other solar neutrinos 1.9

Systematic total 10.2

Statistics 12.4

Total 16.1

procedure, which is presented in the following section. The

correction for the non-linearity of the energy scale for each

particle type (γ, e− and e+) is performed by varying the en-

ergy response parameters in the χ2-fit. The fit model, on

which the solar neutrino analysis is based, uses free-floating

energy scales with constraints from calibration data in the

form of penalty terms. As such, the fit uncertainty already

includes the energy scale uncertainty. In order to quantify

the contribution of the energy scale uncertainty as a sepa-

rate item in the error budget, we repeat the fit with the en-

ergy scale parameters fixed. The energy scale error is stated

as the quadratic difference between the errors obtained from

free-floating and fixed parameter fits. This method implies a

7.9% uncertainty on the best-fit 7Be rate due to the uncertainty

of the energy scale. To check the possibility of the energy

scale varying with the rank we compared the fit result for two

extreme cases, namely fully correlated and fully independent

energy scale between ranks. We adopt the deviation of the

best-fit 7Be as an estimate of the associated systematic uncer-

tainty. To propagate the 0.1%/
√

E(MeV) uncertainty of the

energy resolution we repeat the analysis varying the detector

resolution within this uncertainty. We find that this causes the

best-fit 7Be rate to vary by 3.4%.

The definition of rank boundaries (Table I) and their effect

on the best-fit 7Be rate was also studied. It is important to note

that the fit sensitivity to the solar signal comes from ranks 1

and 2 where the signal-to-background is largest, hence chang-

ing the boundary definitions of the other ranks has negligible

effect. The fitting procedure was repeated while varying the

boundary between ranks 1 and 2 from 3 × 10−6 to 7 × 10−6

events/(m3 s). The choice of 5 × 10−6 events/(m3 s) as the

boundary was found to have the highest fit probability, quan-

tified by χ2/n.d.f, and is used in the final analysis presented

here. Furthermore, we find the best-fit rate for all rank bound-

aries considered were consistent with each other to within 5%
and conclude that the choice of boundary does not bias the

result.

The largest background contribution, 210Bi first forbidden

beta decay, has an additional uncertainty related to its shape

correction. Using our data, mainly rank 7 where the back-

ground rate is highest, we derived a phenomenological fourth-

order polynomial correction to the shape factor published

in [24] to better model the 210Bi shape. The parameters of

this correction polynomial (an) are: a0 = 1, a1 = 41.4± 0.8,

a2 = −101.2± 1.4, a3 = 102.9± 3.5, and a4 = −37.9± 2.0
in units of MeV−n. Within the analysis energy window, devi-

ations of the spectral shape from that of Ref. [24] were small.

Position dependent biases in vertex reconstruction could in-

troduce an artificial non-uniformity in the distribution of 7Be

solar neutrinos within the FV, resulting in a systematic er-

ror on the simultaneous fit to different rank data. The ef-

fects of the non-uniformity are parameterized, and constrained

for each rank spectrum to obtain uniformly distributed 11C

events.

The systematic uncertainties due to the 238U and 232Th se-

ries and other solar neutrinos are evaluated by the deviation of

the 7Be solar neutrino rate on varying their rates within ±1σ.
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TABLE III: Summary of signal and background in the fiducial vol-

ume. The best-fit signal and background rates in the whole energy

range and the 7Be solar neutrino energy range (0.5MeV < E <

0.8MeV) are shown.

Isotope Event rate w/o E-cut Event rate in 0.5-0.8 MeV

all ranks rank-1 all ranks rank-1

(kton-days)−1 (kton-days)−1

Solar neutrinos
7Be ν 582± 94 117± 19

Other ν 1443 14.9

Radioactive impurities in the LS
210Bi 23974 ± 883 3955 ± 238 4557 ± 168 578± 35
85Kr 858± 59 453± 102 57± 4 30± 7
39Ar 3± 3 2± 3 0.04 ± 0.04 0.02 ± 0.04
40K 181± 29 3± 38 48± 8 1± 10

Spallation products
7Be 167 ± 173 2± 2
11C 973± 10 3.55 ± 0.04

Other 173 8.0

Others

external-γ — — 2.4± 0.4 2± 1

pile-up — — 10± 1 8± 2

VII. RESULT

The 7Be solar neutrino rate is estimated by a likelihood fit

to the binned energy spectra of candidate events with visible

energy between 0.5 and 1.4 MeV. The background contribu-

tions from 210Bi, 85Kr, 40K, and 7Be EC are free parameters

and their normalizations are left unconstrained in the fit. The

contributions from the 222Rn-210Pb and 228Th-208Pb chains,

and 11C are allowed to vary but their normalizations are con-

strained by independent KamLAND measurements, as out-

lined in Section V. Distributions with different background

rank are fitted simultaneously. The background rates, derived

from the fit normalizations, are summarized in Table III. The

backgrounds from external gamma-rays, and pile-up events

are constrained by the MC study. The model parameters of

the detector response are also constrained, as discussed in Sec-

tion VI.

Figure 5 shows the result of this procedure: the best-fit

spectrum for the rank-1 data-set which is lowest in back-

ground, and therefore, most sensitive to the solar neutrino sig-

nal. The inset shows the background subtracted energy distri-

bution, which exhibits the shape of the best-fit 7Be neutrino

signal extracted from the analysis. The backscattering edge is

visible and located at the correct energy. The χ2/d.o.f. com-

paring the binned data and the best-fit model is found to be

635.3/589 using data of all ranks. The χ2/d.o.f. of the lowest

background rank-1 data is 80.1/90. As can be seen from the

data in Table III the solar-signal to background ratio is esti-

mated to be 1:5.5 for rank 1 data (0.5 < E < 0.8MeV). This

relatively low signal to background ratio naturally invites the

question whether a statistically significant 7Be solar neutrino

signal is really present in the data. The fit to the data was

also performed assuming the absence of a solar neutrino sig-

nal, but minimizing all other background components within

their constraints as before. The observed increase in the fit χ2

leads us to reject the no-solar signal hypothesis at 8.2σ CL.

To understand whether the solar recoil signal, preferred by the

data and shown in the inset of Figure 5, is a unique solution or

whether other continuous distributions yield equally good fits,

the neutrino energy (assuming a mono-energetic source) and

interaction rates were floated and the fit χ2-profile determined

under their variation. The result of this procedure is shown in

Figure 6. The KamLAND data clearly prefer the presence of

an edge at an energy that coincides with that expected for so-

lar 7Be neutrino induced electron recoils. Assuming that the

edge is indeed solar neutrino induced, we determine the solar

neutrino energy to be Eν = 862 ± 16 keV. This is the first

direct spectroscopic determination of the solar 7Be neutrino

energy.

The fit to the KamLAND data gives a solar neutrino in-

teraction rate of RKL = 582± 94 (kton-days)−1. The quoted

error corresponds to the quadratic sum of the statistical and

systematic errors, listed in Table II. This result is in agree-

ment with the latest interaction rate reported by the Borexino

experiment: RB = 460+21
−22 (kton-days)−1 [12]. The rate dif-

ference (RKL − RB) deviates by 1.3σ from zero. Differences

in the chemical composition of the liquid scintillators used

in both experiments result in a 3.6% difference of the rates.

Assuming that the ES interactions detected by KamLAND

are due to a pure electron flavor flux, KamLAND’s interac-

tion rate corresponds to a 862 keV 7Be solar neutrino flux

of (3.26 ± 0.52) × 109 cm−2s−1. The standard solar model

(SSM) by Serenelli et al. [15] gives two 7Be solar neutrino

flux values, depending whether the older Grevesse and Sauval

(GS98) [14] or the Asplund (AGSS09) [25] solar abundances

are utilized. When the GS98 solar abundances are assumed,

the SSM flux value is (5.00± 0.35)× 109 cm−2s−1. The flux

reduces to (4.56±0.32)×109 cm−2s−1 under the assumption

of the AGSS09 solar abundances. Assuming that the νe mix

with νµ and ντ the KamLAND flux measurement corresponds

to a survival probability, Pee = 0.66 ± 0.15. This value was

obtained taking into account the cross section difference for

these neutrino flavors.

Using KamLAND’s 2013 best-fit neutrino oscillation pa-

rameters [11], based on a global oscillation analysis under

the assumption of CPT -invariance, the survival probability

is better constrained. In this case, we obtain a total 7Be neu-

trino flux of (5.82 ± 1.02) × 109 cm−2s−1. This result is

consistent with the flux determination provided by Borexino:

(4.75+0.26
−0.22) × 109 cm−2s−1 [12], and while it somewhat fa-

vors the GS98 model flux, the KamLAND data are not precise

enough to discriminate between the two solar model fluxes.
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FIG. 5: ”Color” Energy spectrum of selected 7Be solar neutrino

candidates for the rank-1 data-set together with the best-fit curves

from the simultaneous fit to all rank’s spectra. The fit range is

0.5MeV < E < 1.4MeV. The background-subtracted spectrum

is shown in the inset, where a Compton-like shoulder characteristic

for the 7Be solar neutrino contribution is evident. The error bars are

statistical only and do not include correlated systematic uncertainties

in the background rate estimates.

VIII. CONCLUSION

The KamLAND collaboration reports a new measure-

ment of the 7Be solar neutrino interaction rate in a liq-

uid scintillator. Performing this difficult measurement re-

quired an extensive purification campaign, reducing the scin-

tillator’s radio-impurity content by several orders of magni-

tude The measured 7Be solar neutrino rate in KamLAND is

RKL = 582± 94 (kton-days)−1, which corresponds to a flux

of (5.82 ± 1.02) × 109 cm−2s−1 under the assumption of

KamLAND’s 2013 best-fit oscillation parameters.
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FIG. 6: ”Color Online” ∆χ2-profile from the fit to the energy of

mono-energetic neutrinos discussed in the text. The vertical line in-

dicates the neutrino energy predicted from the 7Be electron-capture

reaction at 862 keV.

The statistical significance of this signal is estimated to

be 8.2σ and provides the first independent verification of the

only prior measurement of this quantity, performed by Borex-

ino. The solar neutrino flux derived from the KamLAND data

agrees with the solar model values, but is not accurate enough

to shed light on the question of solar metallicity.
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