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We show a relationship between elastic electron scattering observables and the elastic neutrino
cross section that provides a straightforward determination of the latter from experimental data of
the former and relates their uncertainties. An illustration of this procedure is presented using a
Hartree-Fock mean field for the nuclear structure of a set of even-even nuclear targets, using the
spectra of the neutrinos produced in pion decay at rest. We also analyze the prospects to measure
the incoherent axial contribution to the neutrino elastic scattering in odd targets.

PACS numbers: 12.15.Mm, 24.80.+y, 25.30.Bf, 25.30.Pt

In lepton-nucleus elastic scattering the incident and the outgoing lepton is the same and its energy loss ω is
transformed entirely into kinetic energy of the recoiling nuclear target; we denote the process as (ν, ν) for neutrinos
(of any flavor) and (e, e) for charged leptons (again of any flavor, but electrons being of most experimental interest).
Coherent scattering is a particular case of elastic scattering where all of the nucleons in the target contribute to the
cross section through the vector Coulomb monopole isoscalar form factor of the nucleus, which is, unlike the rest of
incoherent elastic form factors, proportional to the number of nucleons. Coherence applies for momentum transfers
corresponding to nuclear-size wavelengths, q ∼ 160A−1/3 MeV, and below; for larger values the Coulomb form factor
decreases and the incoherent elastic form factors, when possible (see below), become comparable.

Elastically scattered charged leptons can be easily detected, but in the case of neutrinos the proposed observable is
the recoil energy of the nuclear target through the ionization induced in the detector. Elastic neutrino scattering off
nuclei can be exploited to determine electroweak parameters at very low momentum transfers, to test the universality
of the weak interaction for charged and neutral leptons, or to estimate the escape rate of neutrinos created in a variety
of stages of star evolution [1]. These motivations support recent experimental proposals to measure neutrino elastic
scattering, such as the neutrino program at SNS-ORNL [2, 3], including the design of specific detectors for this process
[4] or the analysis of sensitivities to it of several neutrino and dark matter detectors [5].

Parity-violating (PV) elastic electron scattering is another nuclear electroweak process that has drawn much atten-
tion recently. The usual observable is the parity-violating asymmetry, defined as the relative difference between the
cross sections of electrons with spin projection parallel (same direction, h = +1) and antiparallel (opposite direction,
h = −1) to their momentum:

A(e,e) =

(
dσ
dΩ

)h=+1 −
(
dσ
dΩ

)h=−1(
dσ
dΩ

)h=+1
+
(
dσ
dΩ

)h=−1
(1)

Measurements of parity-violating elastic electron scattering off nuclei can be used for precise tests of the Standard
Model (SM), including the evaluation of the weak mixing angle or of higher-order radiative corrections, as well as
to determine the neutron radii of nuclei [6], with implications to the neutron-rich matter equation of state and to
the structure of neutron stars. Recent or planned experimental efforts such us PREX I and II, using 208Pb [7], and
CREX, using 48Ca [8], have focused on the extraction of the neutron radii of the target nuclei with precisions as good
as 1.2% in the PV observable. There has also been recent interest in relatively low-energy electron beams for studies
of PV electron scattering, such as the MESA accelerator at Mainz [9] or an upgraded version of the FEL at Jefferson
Lab [10], aimed at tenths of percent precision in the PV measurements.

The dominant electron-nucleus scattering process is overwhelmingly an electromagnetic (EM) one and therefore
parity-conserving (PC). On the other hand, the weak neutral current (WNC) is responsible for the parity violation
in electron scattering, since it contains vector and axial components that behave differently under inversion of spatial
coordinates, and it is also responsible for neutrino-nucleus scattering. The probabilities of PC electron, PV electron and
neutrino scatterings follow approximately the ratio 1 : 3·10−4 q2 : 3·10−10 q4, with q the characteristic momentum
transfer of the process in GeV. In what follows we consider the exchange of a single gauge boson for each of the
interactions involved: one Z0, one photon, or one of each; we also neglect the distortion of the electron wave functions
due to the nuclear Coulomb field, although in practice it is usually taken into account. These two conditions are
known as plane wave Born approximation (PWBA).
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The elastic neutrino cross section differential with respect to the outgoing neutrino solid angle can be written as(
dσ

dΩ

)
(ν,ν)

=
1

2π2
G2
F ε
′2
ν cos2(θ/2) f−1

rec R̃ , (2)

where R̃ stands for the square of the WNC matrix element of the scattering process, namely the contraction of the
corresponding leptonic and hadronic tensors (see later for the normalization chosen).

It is also useful to express the cross section in a form that is differential with respect to the target recoil energy
(equal to the energy transfer), related to the previous expression through a Jacobian,(

dσ

dω

)
(ν,ν)

= J(Ω, ω)

(
dσ

dΩ

)
(ν,ν)

, (3)

which is given by

J(Ω, ω) =
dΩ

dω
=

2π (MA + ω) frec
kν k′ν (1 + ω/MA)

. (4)

In these expressions εν and ε′ν are the initial and final neutrino energies, respectively (kν and k′ν the corresponding
momenta), θ is the neutrino scattering angle, MA is the target mass and frec is a kinematic recoil factor.

The differential neutrino cross sections imply the detection of the recoiling energy or momentum (magnitude or
direction) of the target with reasonable precision; if, on the contrary, the detectors have a large energy acceptance
from a minimum value (ωm, given by the detector threshold), up to a maximum value (ωM , given by the specific
kinematic conditions), what is actually measured is

σ(ν,ν)(ωm) =

∫ ωM

ωm

(
dσ

dω

)
(ν,ν)

dω. (5)

The matrix element squared in Eq. (2) particularized to coherent neutrino scattering is R̃ = R̃coh, with

R̃coh = VL (F̃V V, T=0
CC, J=0 )2 , (6)

where F̃V V, T=0
CC, J=0 is the WNC Coulomb monopole vector isoscalar form factor, normalized so that in the long wavelength

limit (LWL), i.e., as the momentum transfer goes to zero, it becomes

F̃V V, T=0
CC, J=0 (q → 0)→ A sin2 θW , (7)

where A is the target mass number and θW is the weak mixing angle, sin2 θW ≈ 0.23. The same normalization for
the full Coulomb form factor (isoscalar plus isovector) in LWL yields the nuclear weak charge,

QW = Z βpV +N βnV , (8)

where βpV = 0.5 − 2 sin2 θW ≈ 0.04 and βnV = −0.5 are the proton and neutron WNC vector coupling constants,
respectively [32]. The Rosenbluth factor VL in the extreme relativistic limit (ERL) is VL = αν (1 − ω2/q2)2 where
αν =

[
(aνA)2 + (aνV )2)

]
/2 is a combination of neutrino WNC coupling constants, with (aνA)2 = (aνV )2 = 1 in the SM.

I. RELATIONSHIP BETWEEN ELECTRON AND NEUTRINO COHERENT CROSS SECTIONS

The elastic electron cross section, the parity-violating asymmetry in elastic electron scattering and the elastic
neutrino cross section for even-even nuclear targets fulfill the following relationship:(

dσ

dΩ

)
(ν,ν)

= A2
(e,e)

(
dσ

dΩ

)
(e,e)

, (9)

where the ERL for the leptons has been assumed and the electron and neutrino cross sections and the PV asymmetry
are evaluated at just one set of kinematic conditions, namely incident momentum and scattering angle, the same for
the three observables. An additional factor of WNC leptonic couplings, namely αν/(aeA)2, has been particularized to
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its SM value of 1; we note in passing that the neutrino scattering on which we are focused is insensitive to the values
of aνV and aνA independently, and therefore to the possible Majorana nature (aνV = 0) of the neutrinos.

The relationship in Eq. (9) is valid for any neutrino flavor and for any charged lepton flavor (as long as the ERL still
holds), and for leptons as well as for antileptons in any combination, always within PWBA. For non even-even, J 6= 0
targets the relationship is only an approximation, since other contributions to the elastic scattering arise beyond the
vector Coulomb monopole M0; they are, however, smaller than the coherent contribution by factors ∼ Z2 (EM case)
or ∼ N2 (WNC case), and only two of them, the axial longitudinal dipole LA1 and the axial electric dipole T el. A1

survive in the limit q → 0 (see discussion below) [11].
For even-even N = Z nuclei and neglecting nucleon strangeness content (see [12] for its current experimental status),

or at low enough momentum transfers, Eq. (9) takes on an even simpler form [13]:(
dσ

dΩ

)N=Z

(ν,ν)

= κ Q4

(
dσ

dΩ

)N=Z

(e,e)

(10)

with κ = 6.84·10−9 GeV−4 and Q2 the four-momentum transfer squared. Under these conditions the neutrino cross
section is purely coherent except for a small contribution from isospin-breaking effects (mainly of Coulomb origin).
As before, it has to be corrected for other incoherent contributions in J 6= 0 nuclei (2H, 6Li, 10B, 14N), but in the
q → 0 limit the approximation is much better than in the general case: the axial contributions that would survive in
this limit do not actually take part because the isoscalar WNC axial coupling constant is zero at tree level in the SM;
only isospin-breaking effects, known to be very small, introduce isovector contributions.

To clarify the discussion on coherent and incoherent contributions to WNC elastic neutrino scattering, we list in
Table I the multipole operators and responses involved in the process with their characteristic factors and typical
sizes; as mentioned above, the coherent contribution carries an extra factor proportional to the mass number. In the
cross-section each response enters squared and multiplied by the corresponding generalized Rosenbluth factor, that
can further reduce the relative weight of each contribution with respect to the coherent one; these considerations will
be important for the next section on the determination of the axial form factor.

TABLE I: Elastic vector and axial multipole operators (MJ for Coulomb, LJ for longitudinal, T el.J for transverse electric
and Tmag.J for transverse magnetic) and WNC responses (purely vector, purely axial and vector-axial interference) when no
tensor second-class currents are present, ordered according to the size of their characteristic factor at leading order for small
momentum transfers, q ≈ 50 MeV, and using a typical nuclear (Fermi) momentum scale qN ≈ 250 MeV and nucleon mass
mN ≈ 1 GeV. [11]

Characteristic Typical Multipole operators WNC responses

factor size Vector Axial † Vector Axial † Interference

1 1 M ‡
0 LA1 , T

el.A
1 F̃V V ‡CC F̃AALL , F̃

AA
T

q/mN 1/20 Tmag.1 F̃V VT X̃V A
T ′

(q/qN )2 1/25 M2 LA3 , T
el.A
3

† Only isovector in the SM.

‡ Additional coherence factor (∝ A) for the isoscalar part. CVC assumed, L0 = (ω/q)M0.

The relationships in Eq. (9) or (10) can also relate neutrino and electron cross sections for different kinematic
conditions but with the same energy transfer ω = ωe = ων by introducing the following factor, valid in ERL:

K =
k2
e (kν − ω)2 [2 k2

ν − ω (2 kν +MA)]

k2
ν (ke − ω)2 [2 k2

e − ω (2 ke +MA)]
. (11)

The main practical application of Eq. (9) is to extract the elastic neutrino-nucleus cross section at one given value
of the transfer variables using electron-nucleus scattering experimental data (both PC and PV) evaluated at the same
particular value of the transfer variables. It is important to stress that in the latter observables the experimental data
can be easily reverted to the PWBA results assumed in Eq. (9) using theoretical models that distort the electron wave
function within the nuclear Coulomb field [14]; the same applies to higher-order corrections to the interactions [15].
Nevertheless, it is worth discussing the experimental conditions under which Eq. (9) is best fulfilled. First, Coulomb
distortion effects are smaller for more energetic (charged) leptons. Second, as the mass of the target increases, the
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probability of coherent scattering increases roughly quadratically, and the relative weight of incoherent contributions
decreases accordingly; however, nuclear recoil is harder to detect in heavy nuclei, and Coulomb distortion effects
are larger (proportional to Z2). Third, low momentum transfers drastically reduce some of the incoherent elastic
contributions and reduce the effect of the strangeness content of the nucleon (only applicable to the use of Eq. (10)).

Since the aim of Eq. (9) is primarily to obtain neutrino elastic cross sections from electron scattering measurements,
it is in order to relate their relative uncertainties:

E( dσdΩ )
(ν,ν)

≈ 2 EA(e,e)
, (12)

where the uncertainty in the electron cross section, usually very small, has been neglected. Using this relationship,
the relative uncertainty of the neutrino cross section derived from the statistical uncertainty of the PV asymmetry
measurement is given by

Estat.( dσdΩ )
(ν,ν)

≈ 2 X−
1
2

PV F
− 1

2

PV , (13)

where XPV accounts for the experimental conditions of the PV measurement: total solid angle of the detector,
luminosity of the polarized electron beam and running time of the experiment: XPV = Ω L T . The figure-of-merit
FPV for a fixed incident electron energy can be expressed in this case as

FPV =

(
dσ

dΩ

)
(ν,ν)

. (14)

Thus, by knowing the experimental conditions available and the actual measurements of the PV asymmetry and the
PC cross section, one can estimate the precision of the elastic neutrino scattering cross section that can be extracted
from Eq. (9).

To illustrate these ideas we have chosen a set of even-even nuclei that have attracted recent interest in elastic PV
electron or neutrino scattering experiments: 12C, 20Ne, 28Si, 40Ar, 48Ca, 76Ge, 114Cd, 130Te, 132Xe, and 208Pb. For
each nuclear target we compute in PWBA the electron (PC) elastic scattering differential cross section and the PV
asymmetry in elastic electron scattering using an axially symmetric Skyrme-Hartree-Fock mean field with BCS pairing
for the nuclear ground state [16]. The microscopic calculations used here, although proven successful for a wide variety
of processes and in particular for electron scattering off nuclei, are not the main goal of this work; they serve us as
substitutes for expected experimental results on PC and PV electron scattering once the Coulomb distortion of the
electron has been extracted, and they are subsequently used to predict the elastic neutrino cross section as in Eq.
(9). Results for the electron scattering (PC or PV) off some of these targets including distortion of the electron wave
function can be seen in [13, 17].

We show our results (solid curves) in Fig. 1 for 100 MeV incident lepton energy as a function of a kinematic variable
that we consider experimentally suitable in each case: electron elastic scattering differential cross section as a function
of the scattering angle (left column), PV asymmetry in elastic electron scattering as a function of the momentum
transfer, which is its only kinematic dependence (middle column), and neutrino elastic scattering differential cross
section as a function of the recoil energy of the target (right column). The latter are for light active neutrinos of any
flavor with αν = 1 (SM value); as per Eq. (14), these curves are also the figures-of-merit at fixed energy of the neutrino
cross sections, as well as of the PV asymmetries in the previous column. In the right column for completeness we
also show the integrated neutrino cross sections (dashed curve) as a function of the minimum recoil energy detected
(ωmin); the abscissa has thus two meanings: running recoil energy for the differential cross sections and minimum
recoil energy detected for the integrated cross sections.

In what follows we will show results using neutrinos from the pion decay at rest: π+ → µ+ +νµ (prompt neutrinos),
and the subsequent muon decay: µ+ → e+ + νe + ν̄µ (neutrinos delayed at the scale of the muon decay lifetime, 2.2
µs). The spectra of these three types of neutrinos (Michel spectrum) as a function of their energy ε, are given by:

Sν̄µ(ε) =
16

m4
µ

ε2 (3mµ − 4 ε) (15)

Sνe(ε) =
96

m4
µ

ε2 (mµ − 2 ε) (16)

Sνµ(ε) = δ(ε− επ), with επ =
m2
π −m2

µ

2mπ
, (17)

where mµ and mπ are the muon and the pion masses.
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FIG. 1: For a set of even-even nuclear targets and 100 MeV incident lepton energy, PWBA Skyrme-Hartree-Fock-BCS calcu-
lations of electron elastic differential cross sections (left), PV asymmetries in elastic electron scattering (middle), and neutrino
elastic differential cross sections (right); in the latter case, dashed curves are cross sections integrated from a minimum detected
recoil energy.

In Fig. 2 we show, for the same set of even-even nuclear targets of Fig. 1, the elastic neutrino differential cross
sections using the three spectra from the pion decay at rest in Eqs. (15)-(17). Other calculations of neutrino-nucleus
coherent cross-sections in literature, with or without Michel spectrum folding [3, 5, 18, 19] show similar results, since
the nuclear and nucleon structure details of the target are not very relevant at the low momentum transfers of this
process.

In summary, we have provided a relationship, Eq. (9), to obtain neutrino cross sections from experimental electron
scattering data that automatically incorporates the effects of nuclear and nucleon structure details, such as the exact
distribution of nucleons or the electric strangeness content of the nucleon (see [20] for a detailed analysis of these).
Significant deviations of future neutrino data from the results predicted using Eq. (9) would impact our knowledge
of specific properties of neutrinos (not shared by the charged leptons) such as different WNC couplings (in the
combination αν), magnetic moments or the existence of sterile species [21] . Elastic neutrino scattering has also been
proposed to probe the neutron density distribution [22–24] as a complement to the use of PV electron scattering, and
it has important implications on stellar core collapse processes, on the detection of supernova neutrinos [19, 25], and
for background estimations in dark matter detection experiments [26, 27]. In the next section we propose the study
of the axial structure of odd nuclei using elastic neutrino scattering, which offers a unique sensitivity to that aspect.

II. AXIAL STRUCTURE STUDIES WITH ELASTIC NEUTRINO SCATTERING

The elastic neutrino cross section is sensitive to the axial structure of the target nucleus through incoherent con-
tributions, whose relative weight is larger under experimental conditions opposite to the ones leading to the validity
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FIG. 2: For the same set of even-even nuclear targets of Fig. 1, spectrum-folded elastic differential cross sections of the three
neutrino types from pion decay at rest: ν̄µ (solid curves), νe (dashed curves), and νµ (dotted curves).

of Eq. (9). First, targets must have spin and isospin different from zero, J 6= 0, T 6= 0, for the axial responses to
play a role in the scattering process; even-even nuclei and N = Z nuclei are therefore ruled out. Second, for the
axial incoherent contributions not to be overwhelmingly hidden by the coherent part, the latter must be as small as
possible; light nuclei are therefore preferred, with the additional advantage of their recoil being larger and therefore
easier to detect.

The full WNC matrix element squared of an elastic neutrino-nucleus scattering, as in the cross section of Eq. (2),
can be decomposed for convenience as follows

R̃ = R̃coh + R̃axial + R̃other , (18)

where the coherent term, that has been the main subject of the first part of this paper, is the Coulomb vector
isoscalar contribution of Eq. (6). The axial term has purely-axial longitudinal and transverse contributions as well as
a vector-axial interference contribution:

R̃axial = VLL (F̃AALL )2 + VT (F̃AAT )2 + VT ′ X̃V A
T ′ . (19)

Finally, an additional incoherent non-axial contribution contains the remaining Coulomb vector contribution and a
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purely vector transverse contribution:

R̃other = VL (F̃V VCC )2 − VL (F̃V V, T=0
CC, J=0 )2 + VT (F̃V VT )2 (20)

We note that the generalized Rosenbluth factors in the previous expressions contain both purely vector and purely
axial terms, VX = V V VX + V AAX (except for the VA interference factor VT ′), independently of the nature of the
accompanying form factor [28].

A convenient observable is the ratio of the part of the differential cross section that is sensitive to the axial current
over the full differential cross section:

R(q) =

(
dσ
dω

)
axial(

dσ
dω

) =
R̃axial
R̃

. (21)

When the coherent contribution is dominant, and by keeping only the most important contributions in LWL, this
ratio can be approximated by

RLWL ≈
R̃axial
R̃coh

≈ VT
VL

(F̃AAT )2

(F̃V V, T=0
CC, J=0 )2

. (22)

At q = 0 it can be estimated as

R(0) ≈

(
β

(1)
A G

(1)
A (0)

)2

8 sin4 θW

K2
h.o.

(2J + 1)A2
, (23)

where β
(1)
A is the isovector axial WNC coupling (β

(1)
A = 1 in SM), G

(1)
A (0) is the value of the isovector axial neutral

form factor at q = 0, J is the nuclear spin, and K2
h.o. is a factor related to the purely axial transverse form factor

F̃AAT (0) computed with the odd-nucleon harmonic oscillator wave function within an extreme nuclear shell-model. We
also define a ratio of integrated cross sections,

Rint(q) =
σaxial
σ

, (24)

which can be used with partially integrated cross sections over the energy acceptance of the recoil energy detector, as
in Eq. (5).

By inspecting the ratio in Eq. (23), we can establish the main specific goal of this proposal as the determination of
the axial WNC interaction of neutrinos with hadrons through the combination of the neutrino axial WNC coupling βA
and the axial WNC form factor GA (specified in Eq. (23) at q = 0, but also applicable when the q-dependence of the
form factor is considered), with particular emphasis on potential, beyond-SM deviations from the WNC axial behavior
of electrons. The currently accepted value of the axial WNC form factor at q = 0 from electron-proton scattering

is G
(1)
A (0) = -1.04 ± 0.44 [29]. Beyond tree-level there are indications that radiative corrections are different for

charged and neutral axial currents, and that they are actually larger for the latter. Even the knowledge of the former
suffers from important uncertainties concerning the shape of the q-dependence (dipole or monopole) or the value of
the axial mass parameter MA [12]. The standard value of this parameter for a dipole q-dependence is MA = 1.032 ±
0.036 GeV [30]; recent MiniBooNE measurements of quasielastic neutrino - carbon 12 cross sections seem to require
a considerably larger value of this parameter, MA ≈ 1.35 GeV [31], although other experiments at larger momentum
transfer (MINERνA, NOMAD) do not.

Some a priori suitable target candidates for axial studies whose coherent contribution is dominant are shown in Table
II with their ground-state spins and isospins, their odd-nucleon harmonic oscillator factor squared K2

h.o., and the ratio
R (in percentage) at q → 0 as in Eq. (23). The relative weight of the axial contribution to the cross-section is larger
for 7Li (8.6%), 9Be (5.2%) and 11B (3.5%); the expected experimental uncertainties in elastic neutrino scattering,
currently around 5%, could be enough to perform axial studies with these targets. As mentioned, the ratios in Table
II are estimations at q → 0 based on a simple harmonic oscillator shell-model structure; more realistic odd-nucleon
wave functions can be built as combinations of different harmonic oscillator states, several of them represented in the
table.

Figure 3 shows the ratio R of axial contributions to the full cross section, as in Eq. (21), for some of the nuclei in
Table II, using the ν̄µ (upper plot), νe (middle plot) and νµ (lower plot) spectra from pion decay at rest. Incoherent
axial contributions used in these ratios have been estimated using the odd-nucleon harmonic oscillator wave function
of an extreme shell model.
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TABLE II: Selection of even-odd nuclear targets for axial studies with their ground state spin and isospin, odd-nucleon harmonic
oscillator factor K2

h.o. and ratio R(0) in percentage approximated as in Eq. (23).

Isotope Jπ T K2
h.o. R(0) [%]

7Li 3/2− 1/2 4.4 8.6
9Be 3/2− 1/2 4.4 5.2
11B 3/2− 1/2 4.4 3.5
13C 1/2− 1/2 0.4 0.3
15N 1/2− 1/2 0.4 0.3
17O 5/2+ 1/2 5.6 1.2
19F 1/2+ 1/2 4.0 2.1
21Ne 3/2+ 1/2 1.6 0.3
23Na 3/2+ 1/2 1.6 0.3
25Mg 5/2+ 1/2 5.6 0.6
27Al 5/2+ 1/2 5.6 0.5

This comparison shows how the lighter nuclei, 7Li, 9Be and 11B, have the largest ratios in the region of low recoil
energy. For larger recoil energies the full cross section decreases, which considerably reduces the statistics of the
measurement. To show this effect we plot in Figs. 4 and 5, for the most favorable cases 7Li and 9Be, the spectrum-
folded differential dσ/dω and integrated σ cross sections (upper panel) together with the axial vs. full ratio for each
case, R and Rint respectively (lower panel) as a function of the energy transfer ω, again for the three neutrino spectra
from pion decay at rest. The integrated cross sections and the corresponding ratios are obtained upon integration
over the acceptance window of recoil energy from a given minimum value, the detector threshold, to the maximum
value kinematically allowed (Eq. (5)); those curves are shown separately for delayed neutrinos (ν̄µ and νe) and for
prompt neutrinos (νµ).

For very light odd targets with non-dominant coherent contribution, 1H (proton) and 3He, we show cross sections
and axial-over-total ratios in Figs. 6 and 7. The ratios are much larger than in the cases analyzed above, showing a
clear dominance of the axial contribution due to the smallness of the coherent one. The cross sections are, however,
smaller than in the cases above, due again to the small coherent enhancement; this fact reduces the statistics and
therefore the suitability of these nuclei for precision studies.

The number of counts per ton per year, N , for a neutrino flux F given in s−1cm−2 and a cross section σ given in
cm−2 is

N = 1.9 · 1037 F σ

A
, (25)

where perfect detection efficiency and zero background have been assumed. For instance, for prompt neutrinos and
7Li target the integrated cross section for zero recoil energy threshold is σ ≈ 6·10−41 cm−2 (see Fig. 4, upper panel,
at ωmin = 0); using the neutrino flux of the SNS, F ≈ 2·107 s−1cm−2 [2], Eq. (25) gives 3250 counts per ton per year.

It is also useful to note that the ratio of counts per ton of two targets X1 and X2 is approximately given by

ρ ≈
(
QW (X1)

QW (X2)

)2
A(X2)

A(X1)
≈ A(X1)

A(X2)
, (26)

where QW is the weak charge defined in Eq. (8) and A the mass number. The approximations are better for even-
even and/or heavier targets (particularly the latter step). For instance, the counts per ton for a 7Li target (X1) are
estimated to be ρ ≈ 0.5 times those for a 20Ne target (X2). This factor effectively increases when the detector in use
has a non-zero recoil energy threshold, since the cross section of lighter nuclei is shifted toward larger recoil energies.
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