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Based on recent Lattice QCD (LQCD) results obtained at finite temperature, we discuss modeling of the
hadronic phase of QCD in the framework of Hadron Resonance Gas (HRG) with discrete and continuous mass
spectra. We focus on fluctuations of conserved charges, and show how a common limiting temperature can
be used to constrain the Hagedorn exponential mass spectrum in different sectors of quantum number, through
a matching of HRG and LQCD. For strange baryons, the extracted spectra are found to be consistent with
all known and expected states listed by the Particle Data Group (PDG). The strange-mesonic sector, however,
requires additional states in the intermediate mass range beyond that embodied in the database.
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I. INTRODUCTION

The thermodynamics of the confined phase of QCD is com-
monly modeled with the Hadron Resonance Gas (HRG) [1–
8]. The equation of state for strongly interacting matter at
finite temperature is well described by this model, formu-
lated with a discrete mass spectrum of the experimentally con-
firmed particles and resonances. This finding was verified
by recent results of Lattice QCD (LQCD) [9–12]. However,
LQCD also reveals that, when considering fluctuations and
correlations of conserved charges, there are clear limitations
in the HRG description [11]. This is particularly evident in
the strange sector, where the second order correlations with
the net-baryon number χBS or strangeness fluctuations χSS

are larger in LQCD than those in the HRG model [10, 11].
Such deviations were attributed to the missing resonances in
the Particle Data Group (PDG) database [11].

Different extensions of the HRG model have been proposed
to quantify the LQCD equation of state. They account for
a possible repulsive interaction among constituents and/or a
continuously growing exponential mass spectrum [5, 8, 13,
14]. The latter was first introduced by Rolf Hagedorn [15]
within the Statistical Bootstrap model (SBM) [16–18], and
was then studied in dual string and bag models [19–21]. For
large masses, the Hagedorn spectrum ρ(m) is parametrized as
ρ(m) ' maem/TH , where TH is the Hagedorn limiting tem-
perature and a is a model parameter.

The main objective of this paper is to analyze LQCD data
on fluctuations and correlations of conserved charges within
the HRG model. In particular, we examine whether the miss-
ing resonances contained in the asymptotic Hagedorn mass
spectrum are sufficient to quantify LQCD results. We focus
on the susceptibilities χBS and χSS, where LQCD indicates
the largest deviations from HRG, in spite of their agreement
on the equation of state in the hadronic phase.

To calculate fluctuations of conserved charges within HRG,
one needs to identify the hadron mass spectrum for different
quantum numbers. For a continuous mass spectrum ρ(m), this
issue was addressed in Refs. [22] and [23], where the param-
eters of ρ(m) in different hadronic sectors were extracted by

fitting the spectra to the established hadronic states in the PDG
database [24]. It was shown in Ref. [23] that the Hagedorn
temperatures for mesons TMH and baryons TBH are different,
with TMH > TBH . The TBH ' 140 MeV found in [22] is clearly
below the LQCD crossover temperature Tc = 155(1)(8) MeV
from hadronic to quark-gluon plasma phase [25–27]. This,
however, is inconsistent with LQCD, as it implies a large fluc-
tuation of the net-baryon number deep in the hadronic phase,
which is not observed in lattice simulations.

In this study we have reanalyzed the Hagedorn mass spec-
trum in different sectors of quantum number, in the context
of the PDG data, and have shown that there is a common
Hagedorn temperature for mesons and baryons in different
strange sectors. We have applied our newly calculated ρ(m) in
the HRG model to explore different thermodynamics observ-
ables, in particular, fluctuations of conserved charges. The
results are compared with LQCD for the strangeness, net-
baryon number fluctuations, and for baryon-strangeness cor-
relations. We show that HRG, adopting a continuous mass
spectrum with its parameters fitted to the PDG data, can par-
tially account for the missing resonances needed to quantify
LQCD results.

To fully identify the missing resonance states, we motivate
a matching of LQCD and HRG to extract a continuous mass
spectrum ρ(m). In the strange-baryonic sector, this ρ(m) is
shown to be consistent with all known and expected states
listed by the PDG. However, the mass spectrum for strange
mesons require some additional resonances in the intermedi-
ate mass range beyond those listed in the PDG compilation.

The paper is organized as follows: In Sec. II, we introduce
the HRG thermodynamics with a discrete mass spectrum. In
Sec. III, we discuss HRG model comparisons with LQCD.
In Sec. IV, we extract the continuous ρ(m) in different sec-
tors of quantum number and discuss fluctuations of conserved
charges in conjunction with LQCD findings. Finally, Sec. V
is devoted to summary and conclusions.
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II. EQUATION OF STATE OF HADRONIC MATTER

To formulate a phenomenological model of hadronic mat-
ter at finite temperature and density, one needs to identify the
relevant degrees of freedom and their interactions. In the con-
fined phase of QCD the medium is composed of hadrons and
resonances.

The HRG model, in its simplest form, treats the medium
constituents as point-like and independent [1]. Thus, in such
a model setup, the interactions of hadrons and the resulting
widths of resonances are neglected. Hence, the composition
of the medium and its properties emerge through a discrete
mass spectrum

ρHRG(m) =
∑
i

diδ (m−mi) , (1)

where di = (2Ji+1) is the spin degeneracy factor of a particle
i with mass mi and the sum is taken over all stable particles
and resonances.

The mass spectrum in Eq. (1) can be identified experimen-
tally or can be calculated within LQCD. In both cases our
knowledge is far from complete. LQCD can determine the
masses of hadronic ground states and low-lying excited states
with fairly high precision [28]. However, the higher excited
states are still not well controlled in lattice calculations.

The spectrum of experimentally established hadrons, sum-
marized by the PDG [24], accounts for all identified par-
ticles and resonances, i.e., confirmed mesons and baryons
granted with a three- or four-star status, of masses up to
mM ' 2.4 GeV and mB ' 2.6 GeV respectively. The in-
vestigation of higher excited states remains a significant chal-
lenge for the experiments due to the complicated decay prop-
erties and large widths of the resonances.

Instead of the hadron mass spectrum (1), the medium com-
position can be characterized by the cumulant [22]

NHRG(m) =
∑
i

diθ (m−mi) , (2)

such that

ρHRG =
∂NHRG

∂m
. (3)

Thus, NHRG(m) counts the number of degrees of freedom
with masses below m.

Since the spectrum (1) is additive in different particle
species, it can be decomposed into a sum of contributions
from mesons and baryons, as well as a sum of particles with
definite strangeness.

Fig. 1 shows the cumulants in different sectors of hadronic
quantum number with inputs from the PDG. The cumulant of
all hadrons is seen in Fig. 1(a) to rapidly increase with mass.
For m ≤ 2 GeV such increase is almost linear, indicating that
the hadron mass spectrum is exponential, as predicted by Rolf
Hagedorn in the context of SBM [15, 16].

A rapid increase in the number of states is also seen, in
Figs. 1(b) and 1(c), to appear separately for the mesonic and

baryonic sector, as well as for the strange and non-strange
mesons with m < 2 GeV. Baryons of different strangeness,
as illustrated in Fig. 1(d), follow a similar trend with the ex-
ception of |S| = 3 baryons, which consists only of Ω hyper-
ons.

For an uncorrelated gas of particles (and antiparticles) with
a mass spectrum ρ(m), the thermodynamic pressure P̂ =
P/T 4 is obtained as

P̂ (T, V, ~µ) = ±
∫

dmρ(m)

∫
dp̂

2π2
p̂2[

ln(1± λ e−ε̂) + ln(1± λ−1e−ε̂)
]

, (4)

where p̂ = p/T , m̂ = m/T , ε̂ =
√
p̂2 + m̂2 and (±)−sign

refers to fermions and bosons respectively. For a particle of
mass m, carrying baryon number B, strangeness S and elec-
tric charge Q, the fugacity λ reads

λ(T, ~µ) = exp (Bµ̂B + Sµ̂S +Qµ̂Q) , (5)

where µ̂ = µ/T . Note that for scalar particles with vacuum
quantum number, the anti-particle term should be dropped to
avoid double counting.

Expanding the logarithm and performing the momentum
integration in Eq. (4) with the discrete mass spectrum ρHRG

in Eq. (1), one obtains

P̂ =
∑
i

di
2π2

∞∑
k=1

(±1)k+1

k2
m̂2
i K2(km̂i)λ

k, (6)

where the first sum over i includes the contributions of all
known hadron and anti-hadron, andK2 is the modified Bessel
function. The upper and lower sign is for bosons and fermions
respectively. The Boltzmann approximation corresponds to
retaining only the first term in k-summation.

The thermodynamic pressure in Eq. (4), through the mass
spectrum ρ, contains all the relevant information about the dis-
tribution of mass and quantum number of the medium. Thus,
it allows for the study of different thermodynamic observ-
ables, including fluctuations of conserved charges.

Furthermore, one can turn this argument around, and ex-
plore the implication of the thermodynamic observables on
medium composition. This approach has been applied, for ex-
ample, in the pure gauge theory to extract an effective glueball
mass and spectrum based on the lattice results on pressure and
trace anomaly [29, 30]. For the case of QCD, the constraint
imposed by the trace anomaly on the hadronic spectrum has
been investigated [31, 32]. In this work, we focus on the im-
pact of recent LQCD data on the fluctuations of conserved
charges.

III. HADRON RESONANCE GAS AND LQCD

LQCD provides a theoretical framework to calculate the
equation of state and bulk properties of strongly interacting
matter at finite temperature. The first comparison of the equa-
tion of state calculated on the lattice with that derived from
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FIG. 1: (Color online) Cumulants of the PDG mass spectrum in different sectors of quantum number: (a) all hadrons; (b) mesons and baryons;
(c) mesons of different strangeness; (d) baryons of different strangeness. The lines are obtained from the fit of Eqs. (9) and (12) to the PDG
data with the parameters listed in Table I (see text).

Eq. (6) have shown, that thermodynamics of hadronic matter
is well approximated by the HRG with mass spectrum gener-
ated on the corresponding lattice [2, 3].

At present we have more comprehensive information on the
thermodynamics of hadronic matter from LQCD with physi-
cal quark masses and extrapolated to the continuum [12, 33,
34]. Thus, a direct comparison of the equation of state from
Eq. (4) and LQCD can be performed with the physical mass
spectrum [4, 35, 36].

In Fig. 2(a) we show the temperature dependence of the
thermodynamic pressure obtained recently in lattice simula-
tions with physical quark masses [12, 33]. The bands of
the LQCD result indicate the systematic errors due to contin-
uum extrapolation. The vertical band marks the temperature
Tc = 155(1)(8) MeV, which is the chiral crossover tempera-

ture from the hadronic phase to the quark-gluon plasma [27].
These LQCD results are compared in Fig. 2(a) with predic-
tions of the HRG model for the mass spectrum (1), which
includes all known hadrons and resonances listed by the
PDG [24].

There is a clear coincidence of the HRG and LQCD re-
sults on the equation of state at low temperatures. The pres-
sure is strongly increasing with temperature towards the chiral
crossover. This behavior is well understood within HRG as
the consequence of growing contributions from the escalating
number of higher resonances.

Although HRG formulated with a discrete mass spectrum
does not exhibit any critical behavior, it nevertheless repro-
duces remarkably well the lattice results in the hadronic phase.
This agreement has now been extended to the fluctuations and
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FIG. 2: (Color online) Lattice QCD results of HotQCD [33, 35] and Budapest-Wuppertal Collaboration [9, 12] for different observables in
dimensionless units: (a) the thermodynamic pressure; (b) the net-baryon number fluctuations χ̂BB. Also shown are the HRG results for the
discrete PDG mass spectrum (dashed line) and for the effective mass spectrum in Eq. (11), which contains a continuous part to describe the
effects of massive resonances (continuous line).

correlations of conserved charges [9, 10, 37, 38].
In a thermal medium, the second order fluctuations and cor-

relations of conserved charges are quantified by the general-
ized susceptibilities

χ̂xy =
∂2P̂

∂µ̂x∂µ̂y
, (7)

where (x, y) are conserved charges, which in the following
are restricted to the baryon number B and strangeness S.

For HRG with a discrete mass spectrum of Boltzmann par-
ticles, χ̂xy is obtained from Eq. (6) as

χ̂HRG
xy

∣∣∣
µ̂x=µ̂y=0

=
1

π2

∑
i

dim̂
2
iK2 (m̂i)xiyi. (8)

The susceptibilities (7) and in particular (8) are observables
sensitive to the quantum numbers of medium constituents.
Thus, χ̂xy can be used to identify contributions of different
particle species to QCD thermodynamics [37, 38].

Recent LQCD calculations of HotQCD Collaboration [10]
and Budapest-Wuppertal Collaboration [9, 12] provide re-
sults on different fluctuations and correlations of conserved
charges. Thus, the apparent agreement of HRG and LQCD,
seen on the level of the equation of state, can be further tested
within different hadronic sectors [10].

In Figs. 2(b) and 3 we show the LQCD results on the
fluctuation of net-baryon number, strangeness, as well as the
baryon-strangeness correlations. They are compared to the
HRG model, formulated with the PDG mass spectrum. From
Fig. 2(b), it is clear that the net-baryon number fluctuation
in the hadronic phase are well described by HRG, whereas
strangeness fluctuation χ̂SS in Fig. 3(b) and χ̂BS correlation
in Fig. 3(a) are underestimated in the low temperature phase.

Following an analysis of the relations between differ-
ent susceptibilities of conserved charges, it was argued in
Ref. [10] that deviations seen in Fig. 3(a) can be attributed to
the missing resonances in the strange-baryonic sector. In view
of Fig. 3(b), similar conclusion can be drawn for the strange
mesons.

In general, the contributions of heavy resonances in HRG
are suppressed due to the Boltzmann factor. However, the rel-
ative importance of these states depends on observable. In
the hadronic phase, the pressure is dominated by the low-
lying particles. At temperature T = 150 MeV, the contribu-
tion to the pressure from particles and resonances with mass
M > 1.5 GeV is of the order of 7%. However, in the fluctu-
ations of the net-baryon number and baryon-strangeness cor-
relations, such contribution is already significant and amounts
to 26% and 33%, respectively.

Contributions from missing heavy states could be the po-
tential origin of the observed differences between LQCD re-
sults and HRG predictions on fluctuations and correlations of
conserved charges in the strange sector, shown in Figs. 3(a)
and 3(b).

IV. HAGEDORN MASS SPECTRUM AND LQCD
FLUCTUATIONS

A. The Hagedorn mass spectrum

To account for the unknown resonance states at large
masses we adopt the continuous Hagedorn mass spectrum
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FIG. 3: (Color online) As in Fig. 2, but for baryon-strangeness correlations χ̂BS (a), and for strangeness fluctuations χ̂SS (b). Also shown are
the corresponding results obtained from the least-square fit to lattice data up to T ' 156MeV.

with the following parametrization

ρH(m) =
a0

(m2 +m2
0)

5/4
em/TH , (9)

and its corresponding cumulant

NH(m) =

m∫
0

dm′ ρH(m′), (10)

where TH is the Hagedorn limiting temperature, whereas a0
and m0 are additional free parameters.

In general, the parameters of ρ(m) can be calculated within
a model, e.g., in SBM [16, 18]. In the following, we constrain
the Hagedorn temperature and the weight parameters (a0,m0)
in Eq. (9) based on the mass spectrum of the PDG and the lat-
tice data. In addition, we assume that the same exponential
functional form holds separately for hadrons in different sec-
tors of quantum number, i.e., for mesons and baryons with or
without strangeness.

The analysis of experimental hadron spectrum, in the con-
text of Hagedorn exponential form, has been extensively dis-
cussed in the literature [14, 16, 17, 39]. In one of the recent
studies [22, 23], it was shown that in fitting the Hagedorn
spectrum to experimental data, one arrives at different lim-
iting temperatures for mesons, baryons and hadrons with dif-
ferent electric charges. In particular, with ρ(m) from Eq. (9),
the limiting temperature for mesons, TMH ' 195 MeV, was
extracted to be considerably larger than that for baryons,
TBH ' 140 MeV. Such Hagedorn limiting temperatures, how-
ever, are inconsistent with recent lattice results, which show
that the change from the hadronic to the quarks and gluons
degrees of freedom in different sectors appear in the same
narrow temperature range of the chiral crossover. Thus, the
Hagedorn temperature of baryons should appear beyond the

chiral crossover, i.e., TBH > 155 MeV. In addition, the LQCD
data on χ̂BB are consistent with the discrete PDG baryon mass
spectrum up to T ' 160 MeV. This seems to suggest that
large contributions form heavy resonances are not expected in
χ̂BB at TBH < 155 MeV.

From the above one concludes that it is very unlikely for the
Hagedorn limiting temperatures in various hadronic sectors to
differ substantially. Moreover, they are expected to be larger
than the chiral crossover temperature. Consequently, the ex-
tracted Hagedorn temperature TBH ' 140 MeV for baryons in
Ref. [22, 23], though mathematically correct, is disfavored by
LQCD.

The reason for the very different Hagedorn temperatures for
mesons and baryons, is that the extraction of the parameters
in Eq. (9) has been performed over the whole mass range of
the PDG data. The low-lying baryons drives the fit towards a
lower TH , resulting in the deviation of Hagedorn temperatures
among different sectors.

To avoid the above problem, we adopt Hagedorn’s idea to
treat the contributions of ground state particles1 separately
from the exponential mass spectrum. In addition, we start the
continuous part of the spectrum from the onset of the first res-
onance in the corresponding sector. Therefore, we apply the
following form of the mass spectrum

ρ(m) =
∑
i

diδ(m−mi) + ρH(m)θ(m−mx), (11)

1 Particles that do not decay under the strong interaction. In this context,
there are no ground states in the |S| = 2 and |S| = 3 baryonic sectors.
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fit to PDG fit to LQCD
m0 [GeV] a0(m0) [GeV3/2] m0 [GeV] a0(m0) [GeV3/2]

ρH 0.529(22) 0.744(40) 0.425(24) 0.573(36)
ρB 0.145(23) 0.135(7) 0.078(13) 0.108(9)
ρS=0
B 0.053(8) 0.064(12)
ρS=−1
B 0.051(12) 0.046(6) 0.193(96)(122) 0.067(27)
ρS=−2
B 1.453(441) 0.023(20) 2.469(456)(297) 0.091(47)
ρS=−3
B 0.00194(0) 0.00027(0)
ρM 0.244(17) 0.341(19)
ρS=0
M 0.183(19) 0.212(17)
ρS=−1
M 0.183(43) 0.060(9) 0.378(32)(95) 0.099(24)

constraint
mx [GeV] NHRG(mx)

ρH 0.77526 18
ρB 1.2320 28
ρS=0
B 1.2320 40
ρS=−1
B 1.3828 20
ρS=−2
B 1.31486 2
ρS=−3
B 1.67245 4
ρM 0.77526 18
ρS=0
M 0.77526 14
ρS=−1
M 0.89166 5

TABLE I: (Left) Parameters of the Hagedorn mass spectra in Eqs. (9) and (11), in different sectors, obtained from fits to PDG and LQCD
data. The Hagedorn temperature has been set to TH = 180MeV. Sectors of all hadrons, all mesons and non-strange mesons include both the
particles and anti-particles contributions. In matching the LQCD results, the data for pressure and second-order fluctuations are compared with
the HRG model through Eqs. (4) and (15). Also shown are the errors of m0 arising from the least-square fit, which induce the uncertainties in
a0(m0) through Eq. (14). For the sectors ρS=−1

B , ρS=−2
B , and ρS=−1

M , the systematic errors in the approximation schemes are also included
(see text). (Right) The constraint on the continuous mass spectrum in each sector, given in Eq. (13).

and the corresponding cumulant

N(m) =
∑
i

diθ(m−mi) + θ(m−mx)

m∫
mx

dm ρH(m), (12)

where ρH(m) is given by Eq. (9). The index i counts the
hadronic ground states, i.e., states with masses less than mx

of the first resonance in the corresponding channel.
With such a prescription in analyzing the hadronic spec-

trum, we find no practical advantage in treating the continuous
ρH(m) as a two-parameter function of (m0, a0). We therefore
impose the following constraint on the continuous mass spec-
trum

NHRG(mx) =

mx∫
0

dm ρH(m). (13)

This way, ρH is reduced to a function of a single parameter
m0. The parameter a0 can be determined by

a0(m0) = NHRG(mx)

 mx∫
0

dm
em/TH

(m2 +m2
0)

5/4

−1 . (14)

The above spectrum can now be compared with the experi-
mental data listed by the PDG, in different sectors of quantum
number. From the analysis of the mass spectrum parameters
of all hadrons, we find that the best description is obtained
with TH ' 180 MeV. This value is consistent with that re-
cently found in Ref. [14]. In addition, TH ' 180 MeV is the
largest temperature obtained as the solution of the Bootstrap
equation [40]. In the following, we apply the same TH for
strange and non-strange hadrons.

In Fig. 1 we show that the spectra of PDG hadrons in dif-
ferent sectors are indeed properly described by the asymptotic

mass spectrum (11) with a common Hagedorn temperature
TH ' 180 MeV. The weight parameters (a0,m0) in Eq. (9)
are determined by the composition and decay properties of
the resonances, hence, they are distinct for each hadronic
quantum number. The optimal sets of parameters of ρ(m)
in Eq. (9) are summarized in Table I. The corresponding mass
spectra are shown in Fig. 1 as continuous lines, whereas cir-
cles indicate the lowest masses mx of the corresponding fit.
Also shown, as broken lines in Fig. 1, are the extrapolated
cumulants below mx.

It is important for the decomposition of the hadron mass
spectrum (11) into different sectors, using parameters from
Table I, to produce results that are thermodynamically consis-
tent. Thus, e.g., the total pressure P̂H obtained from Eq. (4)
with the mass spectrum from Fig. 1(a), should be consistent
with the sum of meson P̂M and baryon P̂B pressures, calcu-
lated with the mass spectra in Fig. 1(b). Similar results should
hold for the pressure when adding up the contributions from
strange particles in different sectors. This consistency check
provides further constraints on the mass spectrum parameters
presented in Table I.

With the PDG mass spectrum extrapolated to the contin-
uum, we can now test whether heavy resonances can reduce
or eliminate the discrepancies between HRG and LQCD on
baryon-strangeness correlations and strangeness fluctuations,
seen in Figs. 3(a) and 3(b).

The second order cumulants χ̂xy , at vanishing chemical po-
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FIG. 4: (Color online) Cumulants of the discrete PDG mass spectrum (black dashed line) and the corresponding fits (red dashed line) for:
(a) strange baryons, (b) strange mesons. Also shown are the cumulants containing in addition the unconfirmed states (broken-dashed line).
Continuous lines are obtained by matching the LQCD results to the continuous mass spectra through Eq. (15), assuming that the missing
strange baryons come solely from the |S| = 1 sector (scheme (I)) or |S| = 2 sector (scheme (II)) (see text).

tential, are obtained in HRG as

χ̂H
BB =

∞∫
0

dm

π2
ρB(m)m̂2K2 (m̂) , (15a)

χ̂H
SS =

∞∫
0

dm

π2

[
ρS=−1
M (m) +

3∑
k=1

k2ρS=−k
B (m)

]
m̂2K2 (m̂) ,

(15b)

χ̂H
BS = −

∞∫
0

dm

π2

[
3∑

k=1

kρS=−k
B (m)

]
m̂2K2 (m̂) , (15c)

using the mass spectrum ρ(m) in Eq. (11) and the parameters
presented in Table I.

In Figs. 2 and 3, we show the contribution of the contin-
uous Hagedorn mass spectrum to the pressure and different
charge susceptibilities. The difference between the full line
(fit to PDG) and the dashed line (PDG) comes from the inclu-
sion of heavy resonances. The results in Figs. 3(a) and 3(b)
indicate that heavy resonances can capture, to a large extent,
the differences between HRG and LQCD for strangeness and
baryon-strangeness correlations. However, at low tempera-
tures, χ̂BS still differs from the lattice. These deviations sug-
gest that there are additional missing resonances in the PDG
data in the mass rangem < 2 GeV, as they begin to contribute
substantially to χ̂BS and χ̂SS at lower temperatures.

B. Spectra of strange hadrons from LQCD

To identify the missing strange resonances in the Hagedorn
mass spectrum, we use the LQCD susceptibility data as input
for Eq. (15) to constrain ρ(m) in different sectors.

We begin with the strange-baryonic sector. The χ̂BS data
alone does not allow for a unique determination of the contri-
bution from a particular sector. This is because the observable
depends only on a linear combination of the spectra, namely
ρSB = ρS=−1B + 2ρS=−2B + 3ρS=−3B . In principle, this problem
could be resolved with additional lattice data on higher-order
strangeness fluctuation, e.g. χ̂BBSS and the kurtosis.

For our purpose of analyzing the present data, we instead
make the following simplification. The |S| = 3 sector is re-
stricted to those states listed by the PDG. We then make the as-
sumption that the additional strange baryons come solely from
the |S| = 1 (thereafter named scheme (I)) or |S| = 2 sector
(scheme (II)), and treat the remaining one with the spectrum
fitted to the PDG2. The resulting spectrum parameters for both
schemes are presented in Table I.

In Fig. 4(a) we show the cumulants of the lattice-induced
ρ(m) under both schemes, together with the experimental
spectra including the unconfirmed states from the PDG. The
mass spectrum extracted with scheme (I) is seen in Fig. 4(a)
to follow the trend of the unconfirmed states of the PDG. This
is not the case for scheme (II). Hence, the extra PDG data for
the unconfirmed hyperons supports the former scenario.

The χ̂SS fluctuation in general receives contributions from
both the strange mesons and the strange baryons. However,
due to Boltzmann suppression, we expect the observable to be
dominated by the mesonic contribution. This can be inferred
from the fact that χ̂SS � χ̂BS. To be definite, we fix the
strange baryon contribution to χ̂SS by the scenario dictated by

2 The errors induced by the use of the PDG-fitted spectra are introduced as
systematic errors for the spectrum parameters. See Table I.
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scheme (I). The lattice data on χ̂SS then directly determines
the strange-mesonic spectrum. The resulting parameter is pre-
sented in Table I, with the corresponding cumulant shown in
Fig. 4(b).

Similar to the case of strange baryons, the spectrum de-
termined from LQCD requires additional states beyond the
known strange mesons. From Fig. 4(b), we find that it ex-
ceeds even the trend set by the inclusion of the unconfirmed
resonances. This may point to the existence of some uncharted
strange mesons in the intermediate mass range.

In addition, the general conclusion of an enhanced
lattice-motivated strange spectra, relative to the PDG, does
not depend on the chosen functional form of the continuous
spectrum (9). It follows from the observation that lattice data
shows a stronger interaction strength in the strange sector than
that expected from a free gas of known hadrons. Within the
framework of HRG this implies an increase in the correspond-
ing particle content.

Nevertheless, it is important to bear in mind that such con-
clusion, based on an ideal resonance-formation treatment of
the hadron gas, is not definitive. For example, the contribution
to χ̂SS from the non-strange sector is also possible through the
vacuum fluctuation of ss̄ mesons. Such an effect is neglected
in the current model and a theoretical investigation is under
way.

V. SUMMARY AND CONCLUSIONS

Modeling the hadronic phase of QCD by the Hadron Res-
onance Gas (HRG), we have examined the contribution of
heavy resonances, through the exponential Hagedorn mass
spectrum ρ(m) ' maem/TH , to the fluctuation of con-
served charges. A quantitative comparison between model
predictions and lattice QCD (LQCD) calculations is made,
with a special focus on strangeness fluctuations and baryon-
strangeness correlations.

We have reanalyzed the mass spectrum of all known
hadrons and resonances listed in the Particle Data Group
(PDG) database. A common Hagedorn temperature, TH '
180 MeV, is employed to describe hadron mass spectra
in different sectors of quantum number. This value of
TH exceeds the LQCD chiral crossover temperature Tc =
155(1)(8) MeV. The latter signifies the conversion of the
hadronic medium into a quark-gluon plasma.

Applying the continuum-extended mass spectrum calcu-

lated from the PDG data, we have shown that the Hagedorn
asymptotic states can partly remove the disparities with lat-
tice results in the strange sector.

To fully identify the missing hadronic states, we perform
a matching of LQCD data on strangeness fluctuations and
baryon-strangeness correlations with HRG. The parameters of
the Hagedorn mass spectrum ρ(m) are well constrained by
LQCD data in different sectors of strange quantum number,
using the same limiting temperature TH ' 180 MeV.

The mass spectra for strange baryons inferred from the ex-
isting LQCD data are shown to be consistent with the trend
of the unconfirmed resonances in the PDG. This is not the
case for the strange-mesonic sector, where the corresponding
ρ(m) exceeds the current data of the PDG, even after the un-
confirmed states are included. This may point to the existence
of some uncharted strange mesons in the intermediate mass
range. Clearly, new data and further lattice studies are needed
to clarify these issues. Moreover, such missing resonances
could be important for modeling particle production yields in
heavy ion collisions.

It would be interesting to assess the effects of resonance
width on the Hagedorn spectrum. Recent studies suggest that
the implementation of low-lying broad resonances in thermal
models must be handled with care [41, 42]. The impact on
the global spectrum and consequently the thermodynamics is
currently under investigation.
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