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Using the variational principle, we compute mass spectra and decay constants of ground state pseudoscalar
and vector mesons in the light-front quark model (LFQM) with the QCD-motivated effective Hamiltonian in-
cluding the hyperfine interaction. By smearing out the Dirac delta function in the hyperfine interaction, we avoid
the issue of negative infinity in applying the variational principle to the computation of meson mass spectra and
provide analytic expressions for the meson mass spectra. Our analysis with the smeared hyperfine interaction
indicates that the interaction for the heavy meson sector including the bottom and charm quarks gets more point-
like. We also consider the flavor mixing effect in our analysis and determine the mixing angles from the mass
spectra of (ω,φ) and (η ,η ′). Our variational analysis with the trial wave function including the two lowest
order harmonic oscillator basis functions appears to improve the agreement with the data of meson decay con-
stants and the heavy meson mass spectra over the previous computation handling the hyperfine interaction as
perturbation.

I. INTRODUCTION

Effective degrees of freedom to describe a strongly inter-
acting system of hadrons have been one of the key issues in
understanding the non-perturbative nature of QCD in the low
energy regime. Within an impressive array of effective theo-
ries available nowadays, the constituent quark model has been
quite useful in providing a good physical picture of hadrons
just like the atomic model for the system of atoms. Absorbing
the complicated effect of quark, antiquark and gluon interac-
tions into the effective constituent degrees of freedom, one
may make the problem more tractable yet still keep some key
features of the underlying QCD to provide useful predictions
[1]. The effective potentials used in constituent quark models
are typically described by the flux tube configurations gener-
ated by the gluon fields as well as the effective “one-gluon-
exchange” calculation in QCD [2, 3]. In the QCD-motivated
effective Hamiltonian, a proper way of dealing with the rel-
ativistic effects in the hadron system is quite essential due to
the nature of strong interactions. In particular, proper care
and handling of relativistic effects has been emphasized in
describing the hadrons made of u, d, and s quarks and anti-
quarks.

As a proper way of handling relativistic effects, the light-
front quark model (LFQM) [4–8] appears to be one of the
most efficient and effective tools in hadron physics as it
takes advantage of the distinguished features of the light-
front dynamics (LFD) [9, 10]. In particular, the LFD car-
ries the maximum number (seven) of the kinetic (or interac-
tion independent) generators and thus the less effort in dy-
namics is necessary in order to get the QCD solutions that
reflect the full Poincaré symmetries. Moreover, the ratio-
nal energy-momentum dispersion relation of LFD, namely
p− = (p2

⊥+m2)/p+, yields the sign correlation between the
light-front (LF) energy p−(= p0− p3) and the LF longitudi-
nal momentum p+(= p0 + p3) and leads to the suppression
of quantum fluctuations of the vacuum, sweeping the compli-
cated vacuum fluctuations into the zero-modes in the limit of
p+ → 0 [11–13]. This simplification is a remarkable advan-

tage in LFD and facilitates the partonic interpretation of the
amplitudes. Based on the advantages of the LFD, the LFQM
has been developed [14] and subsequently applied for vari-
ous meson phenomenologies such as the mass spectra of both
heavy and light mesons [15], the decay constants, distribu-
tion amplitudes, form factors and generalized parton distribu-
tions [10, 14–23].

Despite these successes in reproducing the general features
of the data, however, it has proved very difficult to obtain di-
rect connection between the LFQM and QCD. Typically, rig-
orous derivations of the connection between the effective con-
stituent degrees of freedom and the fundamental QCD quark,
antiquark and gluon degrees of freedom have been explored
by solving momentum-dependent mass gap equations as dis-
cussed in many-body Hamiltonian approach [24], Dyson-
Schwinger approach [25], etc. Although one has not yet
explored solving the momentum-dependent mass gap equa-
tion in LFD, there has been some attempt to derive an ef-
fective LF Hamiltonian starting from QCD using the discrete
light-cone quantization (DLCQ) and solve the correspond-
ing equation of motion approximately for the quark and anti-
quark bound-states to provide semianalytical expressions for
the masses of pseudoscalar and vector mesons [26]. The at-
tempt to link between QCD and LFQM is also supported
by our recent analyses of quark-antiquark distribution am-
plitudes for pseudoscalar and vector mesons in LFQM [27],
where we presented a self-consistent covariant description of
twist 2 and twist 3 quark-antiquark distribution amplitudes
for pseudoscalar and vector mesons in LFQM to discuss the
link between the chiral symmetry of QCD and the LFQM.
Our results for the pseudoscalar and vector mesons [27] ef-
fectively indicated that the constituent quark and antiquark in
the LFQM could be considered as the dressed constituents in-
cluding the zero-mode quantum fluctuations from the QCD
vacuum. Moreover, the light-front holography based on the
5-dimensional anti-de Sitter (AdS) spacetime and the confor-
mal symmetry has given insight into the nature of the effec-
tive confinement potential and the resulting light front wave-
functions for both light and heavy mesons [28]. As we have
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shown in Ref. [29], our LFQM analysis of the pion form fac-
tor provided compatible results both in spacelike and time-
like regions with the holographic approach to LF QCD [30].
These developments motivate our present work for the more-
in-depth analysis of the mass spectra and decay constants for
the ground state pseudoscalar and vector mesons in LFQM.

In LFQM, the LF wave function is independent of all ref-
erence frames related by the front-form boosts because the
longitudinal boost operator as well as the LF transverse boost
operators are all kinematical. This is clearly an advantageous
feature unique to LFQM, which makes the calculation of ob-
servables such as mass spectra, decay constants, form factors,
etc. much more effective. Computing the meson mass spec-
tra, however, we have previously [14, 15] treated the hyper-
fine interaction as a perturbation rather than including it in
the variation procedure to avoid the negative infinity from the
Dirac delta function contained in the hyperfine interaction. In
the present work, we smear out the Dirac delta function by a
Gaussian distribution and resolve the infinity problem when
variational principle is applied to the hyperfine interaction.
We obtain optimal model parameters in our variational anal-
ysis including the hyperfine interaction and examine if it im-
proves phenomenologically our numerical results compared
to the ones obtained by the perturbative treatment of the hy-
perfine interaction. For our trial wave function, we also take a
larger harmonic oscillator (HO) basis to see if it provides any
phenomenological improvement in our predictions of mass
spectra and decay constants for ground state pseudoscalar and
vector mesons.

The paper is organized as follows: In Sec. II, we describe
our QCD-motivated effective Hamiltonian with the smeared-
out hyperfine interaction. Using the mixture of the two lowest
order HO states as our trial wave function of the variational
principle, we find the analytic formula of the mass eigenval-
ues for the ground state pseudoscalar and vector mesons. The
optimum values of model parameters are also presented in
this section. In Sec. III, we present our numerical results of
the mass spectra obtained by taking a larger HO basis in the
trial wave function and compare them with the experimen-
tal data as well as our previous calculations [14, 15]. To test
our trial wave function with the parameters obtained from the
variational principle, we also calculate the meson decay con-
stants and compare them with the experimental data as well as
other available theoretical predictions. Summary and conclu-
sion follow in Sec. IV. The detailed procedure of fixing our
parameters through variational principle is presented in Ap-
pendix A.

II. MODEL DESCRIPTION

As mentioned in the introduction, there has been an attempt
to derive an effective LF Hamiltonian starting from QCD us-
ing DLCQ [26]. Transforming the LFD variables to the ordi-
nary variables in the instant form dynamics (IFD), one may
see the equivalence between the resulting effective LF Hamil-
tonian for the quark and antiquark bound-states and the usual
relativistic constituent quark model Hamiltonian for mesons

typically given in the rest frame of the meson, i.e. the cen-
ter of mass (C.M.) frame for the constituent quark and anti-
quark system. It may be more intuitive to express the effective
LF Hamiltonian describing the relativistic constituent quark
model system for mesons in terms of the ordinary IFD vari-
ables. Effectively, the meson system at rest is then described
as an interacting bound system of effectively dressed valence
quark and antiquark typically given by the following QCD-
motivated effective Hamiltonian in the quark and antiquark
C.M. frame [14, 15]:

HC.M. =
√

m2
q +~k2 +

√
m2

q̄ +
~k2 +V, (1)

where~k = (k⊥,kz) is the relativistic three-momentum of the
constituent quarks and V is the effective potential between
quark and antiquark in the rest frame of the meson. The ef-
fective potential V is typically given by the linear confining
potential Vconf plus the effective one-gluon-exchange poten-
tial Voge. For S-wave pseudoscalar and vector mesons, the ef-
fective one-gluon-exchange potential reduces to the coulomb
potential Vcoul plus the hyperfine interaction Vhyp. Thus, one
may summarize V as

V =Vconf +Voge

= a + b r︸ ︷︷ ︸
conf

coul︷ ︸︸ ︷
− 4αs

3r
+

hyp︷ ︸︸ ︷
2
3

Sq ·Sq̄

mqmq̄
∇

2Vcoul︸ ︷︷ ︸
oge

, (2)

where αs is the strong interaction coupling constant 1, 〈Sq ·
Sq̄〉 = 1/4 (−3/4) for the vector (pseudoscalar) meson and
∇2Vcoul = (16παs/3)δ 3(r). Reduction of the LF Hamilto-
nian in QCD to a similar form of the effective Hamiltonian
in the C.M. frame of the quark and antiquark system given by
Eqs. (1) and (2) was discussed in Ref. [26]. For the hyper-
fine interaction Vhyp, one may consider the relativization such
as Vhyp →

√
mqmq̄/EqEq̄Vhyp

√
mqmq̄/EqEq̄ [31, 32]. Such

relativization may be important for the δ 3(r)-type potential
without any smearing in computing particularly the light me-
son sector. Since we apply the variational principle even for
the hyperfine interaction in this work smearing out the Dirac
delta function to resolve the infinity problem, we naturally in-
troduce a smearing parameter which may effectively compen-
sate the factor due to the relativization. With this treatment,
we are able to provide explicit analytic expressions for the
meson mass spectra (see Eq.(9)).

While the effective bound-state mass square M2
qq̄ is given

by M2
qq̄ = (P0

C.M.)
2 in the C.M. frame of the constituent quark

and antiquark system, the energy-momentum dispersion re-
lation in LFD is given by M2

qq̄ = P+P− − P2
⊥, where the

four-momentum of the bound system is denoted by Pµ =
(P+,P−,P⊥) = (P0 +P3,P0−P3,P⊥). From this, one may

1 Although one may consider a running coupling constant, we take αs as one
of the variation parameters in this work.
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consider the LFQM mass square operator P̂+P̂−− P̂2
⊥ (that

provides the eigenvalues P+P− − P2
⊥) as the square of the

effective Hamiltonian given by Eq. (1), i.e. H2
C.M.. Since

the eigenvalues and the expectation values are same for the
eigenstates, we compute the expectation value 〈HC.M.〉 using
the variation principle. Alternatively, one may consider com-
puting the expectation value 〈H2

C.M.〉 in view of the LFQM
mass square operator P̂+P̂−− P̂2

⊥ being 〈H2
C.M.〉. Although

〈(∆HC.M.)
2〉= 0 in principle for the eigenstates, it may be in-

teresting to examine numerically how small the corresponding
deviation 〈(∆HC.M.)

2〉 = 〈H2
C.M.〉− 〈HC.M.〉2 is. More future

works complementary to our present computation of 〈HC.M.〉
can be suggested in variational analysis. In this work, we ex-
amine the χ2 values of our computational results in compari-
son with experimental data to get optimal parameter values in
the 〈HC.M.〉 computation. This will provide useful ground in-
formation for any alternative and/or further works beyond the
present analysis.

As discussed earlier, the longitudinal boost operator as well
as the LF transverse boost operators are all kinematical and
thus the LF wave function does not depend on the external
momentum, i.e. P+ and P⊥. In effect, the determination of
the LF wave function in the meson rest frame such as P+ =
Mqq̄ and P⊥ = 0 won’t hinder its use for any other values of
P+ and P⊥. This provides the applicability of LFQM for the
computation of observables beyond the meson mass spectra.

The wave function is thus represented by the Lorentz in-
variant internal variables xi = p+i /P+, k⊥i = p⊥i− xiP⊥ and
helicity λi, where pµ

i is the momenta of constituent quarks.
Explicitly, the LF wave function of the ground state mesons is
given by

Ψ
JJz
100(xi,k⊥i,λi) = RJJz

λqλq̄
(xi,k⊥i)Φ(xi,k⊥i), (3)

where Φ is the radial wave function and RJJz
λqλq̄

is the
interaction-independent spin-orbit wave function. The spin-
orbit wave functions for pseudoscalar and vector mesons are
given by [14, 33]

R00
λqλq̄

=
−ūλq(pq)γ5νλq̄(pq̄)
√

2
√

M2
0 − (mq−mq̄)2

,

R1Jz
λqλq̄

=
−ūλq(pq)

[
/ε(Jz)−

ε·(pq−pq̄)
M0+mq+mq̄

]
νλq̄(pq̄)

√
2
√

M2
0 − (mq−mq̄)2

,

(4)

where εµ(Jz) is the polarization vector of the vector meson
and the boost invariant meson mass squared M2

0 obtained from
the free energies of the constituents is given by

M2
0 =

k2
⊥+m2

q

x
+

k2
⊥+m2

q̄

1− x
. (5)

The spin-orbit wave functions satisfy the relation
∑λqλq̄ RJJz†

λqλq̄
RJJz

λqλq̄
= 1 for both pseudoscalar and vector

mesons.
To use a variational principle, we take our trial wave func-

tion as an expansion of the true wave function in the HO ba-
sis. We use the same trial wave function expanded with the
two lowest order HO wave functions Φ = ∑

2
n=1 cnφnS for both

pseudoscalar and vector mesons, where

φ1S(xi,k⊥i) =
4π3/4

β 3/2

√
∂kz

∂x
e
− ~k2

2β2 , (6)

φ 2S(xi,k⊥i) =
4π3/4
√

6β 7/2

(
2~k2−3β

2
)√

∂kz

∂x
e
− ~k2

2β2 , (7)

and β is the variational parameter. We should note here that
our LF wave functions φnS are dependent on M2

0 and thus can-
not be factorized into a function of k⊥i multiplied by another
function of xi. In particular, ~k2 in Eqs. (6) and (7) is given
by~k2 = k2

⊥+ k2
z where kz = (x− 1/2)M0 +(m2

q̄−m2
q)/2M0.

For instance, e−~k
2/2β 2

= em2/2β 2
e−M2

0/8β 2
in the case of equal

quark and antiquark mass mq = mq̄ = m. The variable trans-
formation (x,k⊥)→~k = (k⊥,kz) requires the Jacobian factor
given by ∂kz/∂x = M0[1− (m2

q−m2
q̄)

2/M4
0 ]/4x(1− x) as one

can see from Eqs. (6) and (7). The normalization of the wave
function φnS is thus given by∫ 1

0
dx
∫ d2k⊥

16π3 |φnS(xi,k⊥i)|2 = 1. (8)

With Φ = ∑
2
n=1 cnφnS, we evaluate the expectation value

of the Hamiltonian in Eq. (1), i.e. 〈Φ|HC.M.|Φ〉 which de-
pends on the variational parameter β . According to the vari-
ational principle, we can set the upper limit of the ground
state’s energy by calculating the expectation value of the sys-
tem’s Hamiltonian with a trial wave function. In our pre-
vious calculations [14, 15], which we call “CJ model”, we
first evaluate the expectation value of the central Hamilto-
nian T +Vconf +Vcoul with the trial function φ1S, where T
is the kinetic energy part of the Hamiltonian. Once the
model parameters are fixed by minimizing the expectation
value 〈φ1S|(T +Vconf +Vcoul)|φ1S〉, then the mass eigenvalue
of each meson is obtained as Mqq̄ = 〈φ1S|HC.M.|φ1S〉. The hy-
perfine interaction Vhyp in CJ model, which contains a Dirac
delta function, was treated as perturbation to the Hamilto-
nian and was left out in the variational process that optimizes
the model parameters. The main reason for doing this was
to avoid the negative infinity generated by the delta function
as was pointed out in [31]. Specifically, 〈φ1S|Vhyp|φ1S〉 for
pseudoscalar mesons decreases faster than other terms that in-
crease as β increases and the expectation value of the Hamil-
tonian is unbounded from below.

The singular nature of the hyperfine interaction and its reg-
ularization is a standard topic in atomic physics and the atomic
analysis has been carried out to extraordinary precision [34].
In particular, a Bethe-Salpeter based bound-state formalism
was applied to the calculation of recoil contributions of order
mα6 to hyperfine splitting in ground-state positronium [35].
Instead of dropping the relative energy dependence in favor
of equations with a simpler kinematical structure but a more
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complicated effective kernel, the Barbieri-Remiddi formal-
ism [36] was discussed as an effective way to handle signif-
icant complications concerning the Bethe logarithm [37]. As
discussed in Ref. [35], the δ function of the relative energy
p0 is replaced by a smearing function of p0 in the Barbieri-
Remiddi formalism [36]. In LFD, the equal LF time x+(=
x0 + x3) correlates the ordinary time x0 and space x3 so that
the idea of smearing p0 in the Barbieri-Remiddi formalism
may be extended to smear the δ 3(r) function in hyperfine in-
teraction discussed in the present work. In this respect, our
regularization procedure discussed below would also be valid
and is compatible for the hyperfine splitting in atoms. Ana-
lytic treatment of positronium spin splittings was presented in
LF QED [38] and more recent DLCQ application to the anal-
ysis of µ+µ− bound state spectrum can be found in Ref. [39].

To avoid the negative infinity, we thus use a Gaussian
smearing function to weaken the singularity of δ 3(r) in hy-
perfine interaction, viz. [31, 32], δ 3(r)→ (σ3/π3/2)e−σ2r2

.
Once the delta function is smeared out like this, a true min-
imum for the mass occurs at a finite value of β . The ana-
lytic formulae of mass eigenvalues for our modified Hamilto-
nian with the smeared-out hyperfine interaction, i.e. Mqq̄ =

〈Φ|HC.M.|Φ〉, are found as follows: 2

Mqq̄ = a+
b

β
√

π

(
3− c2

1−2

√
2
3

c1c2

)

+
β√
π

∑
i=q,q̄

{√
π

(√
6c1c2−3c2

2

)
U
(
−1

2
,−2,zi

)
+

1
3

c2
2z2

i e
zi
2 (3− zi)K2

( zi

2

)
+

1
6

zie
zi
2

(
2c2

2z2
i −3c2

1−6
√

6c1c2 +9
)

K1

( zi

2

)}
− 4αsβ

9
√

π

{
5+ c2

1 +6
√

2/3c1c2

−
4β 2σ3〈Sq ·Sq̄〉

(β 2 +σ2)7/2 mqmq̄

[(
2
√

6c1c2 +3− c2
1

)
σ

4

+2β
2
(

2c2
1 +
√

6c1c2

)
σ

2 +2β
4
]}

,

(9)

where zi = m2
i /β 2 and K1 is the modified Bessel function of

the second kind and U(a,b,z) is Tricomi’s (confluent hyper-
geometric) function. We should note that the mass formula for
the delta-function hyperfine interaction corresponds to Eq. (9)
in the limit of σ → ∞. We then apply the variational princi-
ple, i.e. ∂Mqq̄/∂β = 0, to find the optimal model parameters
in order to get a best fit for the mass spectra of ground state
pseudoscalar and vector mesons (a more detailed description
of this procedure can be found in A).

Our optimized potential parameters are obtained as {a =
−0.6699 GeV,b = 0.18 GeV2,αs = 0.4829}. For the best fit

2 Although the true minimum occurs with the smeared-out hyperfine interac-
tion even for φ1S case, we found that the phenomenological results do not
show any significant improvement compared to CJ model.

of the ground state mass spectra, we obtain c1 = +
√

0.7 and
c2 = +

√
0.3. We should note that our potential parameters

are quite comparable with the ones suggested by Scora and Is-
gur [40], where they obtained a=−0.81 GeV, b= 0.18 GeV2,
and αs = 0.3 ∼ 0.6. For a comparison, the coupling constant
we found in our previous CJ model [14, 15] was αs = 0.31.

While we use the common potential parameters (a,b,αs)
for all the mesons, it was shown in [32, 41] that if a smearing
procedure for the δ 3(r) function is used, then a large Gaus-
sian parameter σ is obtained for the heavy quark sector. In our
updated potential model using the smeared hyperfine interac-
tion (σ3/π3/2)e−σ2r2

, we also confirm the same observation
as in [32] for the heavy meson sector including (b,c) quarks.
Thus, we differentiate the smearing parameter σ for the heavy
(b,c) sectors such as (cc̄,bc̄,bb̄) from the other (qq̄) sectors by
introducing multiplicative factor in front of σ , i.e. σ → λσ

with λ > 1, while other potential parameters (a,b,αs) remain
the same for all (qq̄) sectors. This differentiation is to ac-
commodate the hyperfine splittings for the heavy (b,c) quark
sectors as we will show in the next section. Our new updated
results with λ differentiation using the common potential pa-
rameters (a,b,αs,σ) for all meson sectors show definite im-
provement in the χ2 fit of the experimental data for meson
masses.

Our optimal constituent quark masses and the smearing pa-
rameters σ are listed in Table I. Since we included the hyper-
fine interaction with smearing function entirely in our varia-
tional process, we now obtain the two different sets of β val-
ues, one for pseudoscalar and the other for vector mesons,
respectively. The optimal Gaussian parameters βqq̄ for pseu-
doscalar and vector mesons are also listed in Table II. We
should note that the values of the multiplicative factor λ to
get the best fits for the mass eigenvalues are obtained as
λ = (2,2.3,3) for (cc̄,bc̄,bb̄) sectors. As a sensitivity check,
however, we present the numerical results with the follow-
ing theoretical error bars λ = (2+1

−1,2.3
+1
−1,3

+2
−2) for (cc̄,bc̄,bb̄)

sectors, respectively. Although one may fine-tune more to im-
prove the hyperfine splittings for the heavy-light sectors by
using different set of λ parameters, we set λ = 1 for any other
qq̄ sectors except (cc̄,bc̄,bb̄) sectors in this work for simplic-
ity.

TABLE I. Constituent quark masses [GeV] and the smearing parame-
ter σ [GeV] obtained by the variational principle for the Hamiltonian
with a smeared-out hyperfine interaction. Here q = u and d.
mq ms mc mb σ

0.205 0.380 1.75 5.15 0.423

We also determine the mixing angles from the mass spec-
tra of (ω,φ) and (η ,η ′). Identifying (F ,F ′) = (φ ,ω) and
(η ,η ′) for vector and pseudoscalar nonets, the flavor assign-
ment of F and F ′ mesons in the quark-flavor basis nn̄ =
(uū+dd̄)/

√
2 and ss̄ is given by [42–44](

F
F ′

)
=

(
cosα − sinα

sinα cosα

)(
nn̄
ss̄

)
=U(α)

(
nn̄
ss̄

)
,(10)

where α is the mixing angle in the quark-flavor basis. For



5

TABLE II. The Gaussian parameter β [GeV] for ground state pseudoscalar (JPC = 0−+) and vector (1−−) mesons obtained by the variational
principle. q = u and d. We should note that λ = (2+1

−1,2.3
+1
−1,3

+2
−2) are used to get (βcc,βbc,βbb) values and λ = 1 is used to get the rest of βqq

values.
JPC βqq βqs βss βqc βcs βcc βqb βbs βbc βbb

0−+ 0.4465 0.3759 0.3445 0.3801 0.3859 0.5270+0.0291
−0.0235 0.4226 0.4412 0.6646+0.0219

−0.0174 0.9906+0.0420
−0.0223

1−− 0.2346 0.2598 0.2820 0.3445 0.3667 0.4914−0.0062
+0.0072 0.4057 0.4321 0.6365−0.0058

+0.0056 0.9603−0.0122
+0.0075

the η −η ′ mixing, the SU(3) mixing angle θ in the the fla-
vor SU(3) octet-singlet basis (η8,η1) can also be used and
the relation between the mixing angles is given by θ = α −
arctan

√
2 ' α − 54.7◦[45]. Taking into account SU(3) sym-

metry breaking and using the parametrization for the (mass)2

matrix suggested by Scadron [46], we obtain [14]

tan2
α =

(M2
F ′ −M2

ss̄)(M
2
F −M2

nn̄)

(M2
F ′ −M2

nn̄)(M
2
ss̄−M2

F )
, (11)

which is the model-independent equation for any qq̄ meson
nonets. The details of obtaining meson mixing angles using
quark-annihilation diagrams are summarized in [14], where
the mixing angle δ = α − 90◦ is used in the quark-flavor
basis. In order to predict the ω − φ and η − η ′ mixing
angles, we use the experimental values of MF = (Mφ ,Mη)

and MF ′ = (Mω ,Mη ′) as well as the masses of MV
nn̄ [MV

ss̄] =

780 (901) MeV and MP
nn̄ [MP

ss̄] = 140 (726) MeV obtained
from 〈Φ|Hss̄|Φ〉 for both vector (V ) and pseudoscalar (P)
mesons, respectively. Our prediction for ω − φ mixing an-
gle is αω−φ = 84.8◦, which is about 5.2◦ deviated from the
ideal mixing α

ω−φ

ideal = 90◦. Our prediction for η −η ′ mixing
angle is αη−η ′ = 36.3◦, which is in agreement with the range
34.7◦ to 44.7◦ of phenomenological values [42, 45].

Our updated model with the smeared hyperfine interaction
appears to improve the result of mass spectrum, which is pre-
sented in the next section. This may suggest that when using
constituent quark models, the contact interactions has to be
smeared out in general. In fact, we think this smeared interac-
tion is more consistent with the physical picture for a system
of the effective constituent quarks which are not point-like.

For practical application of our model, we also compute the
decay constants for the ground state pseudoscalar and vector
mesons. The decay constants are typically defined by

〈0|q̄γ
µ

γ5q|P〉= i fPPµ ,

〈0|q̄γ
µ q|V (P,h)〉= fV MV ε

µ(h),
(12)

for pseudoscalar and vector mesons, respectively. For the η

and η ′ case, one may also define decay constants through ma-
trix elements of octet and singlet axial-vector currents. How-
ever, as discussed in [42, 43], they cannot be expressed as
U(θ)diag[ f8, f1] due to the U(1)A anomaly. Thus, the follow-
ing two mixing angle parametrization is adopted [42, 43]

f 8
η = f8 cosθ8, f 1

η =− f1 sinθ1,

f 8
η ′ = f8 sinθ8, f 1

η ′ = f1 cosθ1. (13)

The parameters appearing in Eq. (13) are related to the basis

parameters α, fq ≡ fnn̄ and fs ≡ fss̄, characterizing the quark-
flavor mixing scheme as follows [42]:

f 2
8 =

f 2
q +2 f 2

s

3
, θ8 = α− arctan

(√
2 fs

fq

)
,

f 2
1 =

2 f 2
q + f 2

s

3
, θ1 = α− arctan

(√
2 fq

fs

)
. (14)

Using the plus component (µ =+) of the currents, one can
calculate the decay constants. The explicit formulae of pseu-
doscalar and vector meson decay constants in quark-flavor ba-
sis are given by [14, 33]

fP =
√

6
∫ 1

0
dx
∫ d2k⊥

8π3
Φ(x,k⊥)√
A 2 +k2

⊥

A ,

fV =
√

6
∫ 1

0
dx
∫ d2k⊥

8π3
Φ(x,k⊥)√
A 2 +k2

⊥

[
A +

2k2
⊥

DLF

]
,

(15)

where A = (1− x)mq + xmq̄ and DLF = M0 +mq +mq̄.

III. RESULTS AND DISCUSSION

In Fig. 1, we show the masses (and hyperfine splittings)
and the corresponding decay constants of heavy quarkonia de-
pending on the variation of the multiplicative factor λ . For
(cc̄) (Fig. 1(a) and 1(b)) and (bb̄) (Fig. 1(c) and 1(d)) , we
plot the curves corresponding three different λ values, i.e.
λσ = (1,2,3)σ and λσ = (1,3,5)σ , respectively. The results
indicate that the interaction between heavier quarks gets more
point-like as the larger λ values are favored in comparison
with data. In general, as one can see from Fig. 1, the hyper-
fine splittings for both charmoninum (Fig. 1(a)) and bottomo-
nium (Fig. 1(c)) states increases as λ increases while other
potential parameters remain the same. On the other hand, the
decay constants of vector mesons decrease while the corre-
sponding decay constants of pseudoscalar mesons increase as
λ increases (see Fig. 1(b) and 1(d)). One may increase λ value
even further to have better hyperfine splittings compared to the
data. However, one may not increase λ value arbitrarily to ac-
commodate the empirical constraint fV ≥ fP. Similarly, we
could improve the hyperfine splitting for (bc̄) sector by using
λ = 2.3.

We show in Fig. 2 our prediction of the meson mass spectra
obtained from the variational principle to the effective Hamil-
tonian with the smeared-out hyperfine interaction using the
trial function Φ = ∑

2
i ciφiS and compare them with the exper-
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FIG. 1. (color online). The masses (and hyperfine splittings) and the corresponding decay constants of heavy quarkonia depending on the
variation of the multiplicative factor λ , i.e. (cc̄) (Fig. 1(a) and 1(b)) with two different λσ = (1,2)σ and (bb̄) (Fig. 1(c) and 1(d)) with two
different λσ = (1,3)σ values, respectively.
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FIG. 2. (color online). Fit of the ground state meson masses [MeV]
with the parameters given in Table II and I compared with the fit
from our previous calculations using CJ model [15] as well as the
experimental values. The (π,ρ) masses are our input data. The
(η ,η ′,ω,φ) masses are also used as input to find the (η −η ′) and
(ω − φ) mixing angles. The theoretical error bars for (cc̄,bc̄,bb̄)
sectors are due to the usage of λ = (2+1

−1,2.3
+1
−1,3

+2
−2) values, respec-

tively.

imental data [45] as well as the results obtained from the CJ
model with the linear confining potential [14]. We should note
that the (π,ρ) masses are used as inputs. The (η ,η ′,ω,φ)
masses are also used as inputs to find the (η−η ′) and (ω−φ)
mixing angles. The theoretical error bars for (cc̄,bc̄,bb̄) sec-
tors are due to the usage of λ = (2+1

−1,2.3
+1
−1,3

+2
−2) values, re-

spectively. As one can see, our trial wave function Φ includ-
ing more HO basis generates overall better results than our
CJ model. This can be seen from our χ2 = 0.008 compared to
χ2 = 0.012 obtained from the CJ model [15]. Except the mass
of K, our predictions for the masses of 1S-state pseudoscalar
and vector mesons are within 4% error. Especially, our effec-
tive Hamiltonian with the smeared hyperfine interaction using
Φ clearly improves the predictions of heavy-light and heavy
quarkonia systems such as (ηc,J/ψ,Bc,ηb,ϒ) compared to
the CJ model adopting the contact hyperfine interaction. Al-
though the experimental data for B∗c is not yet available, our
predictions of B∗c , i.e. 6330+3

−5 MeV, are quite comparable
with the lattice prediction 6331(9) MeV [47] as well as other
quark model predictions such as 6340 MeV [32] and 6345.8
MeV [48].

In Table III, we list our predictions for the decay constants

TABLE III. Decay Constants for light mesons (in unit of MeV) ob-
tained from our updated LFQM.
Model fπ fρ fK fK∗

This work 130 205 161 224
CJ [16] 130 246 161 256
Exp. [45] 130.4(2) 208(a),216(5)(b) 156.1(8) 217(7)

(a) Exp. value for Γ(τ → ρντ)
(b) Exp. value for ρ0→ e+e−.

TABLE IV. Decay constants in the singlet-octet basis and the mixing
angle in the quark-flavor basis.

Reference f8/ fπ θ8 f1/ fπ θ1 α

This work 1.30 −27.3◦ 1.16 −8.6◦ 36.3◦

[42] 1.26 −21.2◦ 1.17 −9.2◦ 39.3◦

[44] 1.28 −20.5◦ 1.25 −4◦ −
[49] 1.51 −23.8◦ 1.29 −2.4◦ 40.7◦

[50] 1.27 −19.5◦ 1.17 −5.5◦ 42.1◦

of light mesons (π,K,ρ,K∗) obtained by using the mixed
wave function Φ of 1S and 2S HO states and compare them
with the results from the CJ model [16] and the experimen-
tal data [45]. As one can see, our updated model calculation
including the hyperfine interaction in the variation procedure
clearly improves the results over the CJ model.

For the decay constant of φ meson, our prediction for the
ideal mixing angle (αω−φ

ideal = 90◦) is given by fφ = f V
ss̄ = 245.1

MeV. However, we obtain fφ = f V
ss̄ = 226 MeV using our pre-

dicted mixing angle αω−φ = 84.8◦. Comparing to the exper-
imental value f exp .

φ
= 233 MeV [45] (extracted from the par-

tial width of φ → e+e− decay), our prediction for fφ prefers
a rather small ω−φ mixing angle such as αω−φ ' 87.5◦ than
the ideal mixing.

For the decay constants of η and η ′, our predictions of the
decay constants fq and fs are given by fq = 130 MeV and
fs = 184.8 MeV so that fq/ fπ = 1 and fs/ fπ = 1.42, where
the SU(3) breaking effect is manifest in the ratio fq/ fs 6= 1.
Using Eq. (14), we obtain f8/ fπ = 1.30 and f1/ fπ = 1.16
with θ8 =−27.3◦ and θ1 =−8.6◦, respectively. In Table IV,
we compare our results for the decay constants in the singlet-
octet basis and the mixing angle in the quark-flavor basis with
other theoretical predictions [42, 44, 49, 50]. As one can see,
our results are consistent with other theoretical model results.
Since the experimental values are very well known for light
mesons, this improvement is very encouraging.

In Table V, we list our predictions for the charmed me-
son decay constants ( fD, fD∗ , fDs , fD∗s , fηc , fJ/Ψ) together with
CJ model [23], lattice QCD [51–54], QCD sum rules [55],
relativistic Bethe-Salpeter (BS) model [56], relativized quark
model [57], and other relativistic quark model (RQM) [58]
predictions as well as the available experimental data [45, 59].
We extract the experimental value ( fJ/Ψ)exp = (407±5) MeV
from the data Γexp(J/Ψ→ e+e−) = (5.55± 0.14) keV [45]
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and the formula

Γ(V → e+e−) =
4π

3
α

2
QEDe2

Q
f 2
V

MV
, (16)

where eQ is the electric charge of the heavy quark in units of e
(2/3 for c and −1/3 for b). We should note that our results of
the ratios fDs/ fD = 1.11 and fηc/ fJ/Ψ = 0.98+0.08

−0.07 are quite
comparable with the available experimental data, fDs/ fD =
1.25±0.06 [45] and fηc/ fJ/Ψ = 0.81±0.19 [45, 59], respec-
tively. Our result of the ratios fD∗s / fD∗ = 1.13 is also in good
agreement with other theoretical model calculations such as
1.16±0.02±0.06 from the lattice QCD [54] and 1.10±0.06
from the BS model [56].

We list our results for the bottomed mesons
( fB, fB∗ , fBs , fB∗s , fηb , fϒ) in Table VI, and compare with
CJ model [23], lattice QCD [51, 52, 60], QCD sum rules
[55], BS model [56], relativized quark model [57], and
RQM [58] predictions as well as the available experi-
mental data [45, 61]. Note that we extract the exper-
imental value ( fϒ)exp = (689 ± 5) MeV from the data
Γexp(ϒ → e+e−) = 1.340 ± 0.018 keV [45] and Eq. (16)
with e2

Q = 1/9 for V = ϒ. Our results for the ratios
fBs/ fB = 1.13 and fB∗s / fB∗ = 1.15 are in good agreement
with the QCD sum rules [55] predictions: fBs/ fB = 1.17+0.04

−0.03,
and fB∗s / fB∗ = 1.20± 0.04. Ours are also in good agree-
ment with the lattice results, fBs/ fB = 1.206(24) [52]
and fB∗s / fB∗ = 1.17(4)+1

−3 [51]. Our result for the ratio
fηb/ fϒ = 0.99+0.07

−0.04 is consistent with the heavy quark
symmetry fηb/ fϒ = 1 [62]. One can also see that for heavy
charmed and bottomed mesons, the trial wave function φB
produces better results when compared with the experimental
data as well as the lattice results.

In Table VII, we present our model predictions for the de-
cay constants of fBc and fB∗c , and compare them with other
model calculations [15, 63–68]. Our results are comparable
with other model calculations.

IV. SUMMARY AND CONCLUSION

In this work, we updated our LFQM by smearing out the
Dirac delta function in the hyperfine interaction to avoid the
issue of negative infinity in applying the variational principle
to the computation of meson mass spectra, while our previ-
ous model(CJ model) used the perturbation method to handle
the delta function in the contact hyperfine interaction. Using
the mixed wave function Φ of 1S and 2S HO states as the
trial wave function, we calculated both the mass spectra of the
ground state pseudoscalar and vector mesons and the decay
constants of the corresponding mesons. The flavor mixing
effect has also been implemented for the meson systems of
(ω,φ) and (η ,η ′).

The variational analysis with Φ seems to improve the agree-
ment with the data of meson decay constants over the results
of the CJ model. It also appears to provide the better agree-
ment with data in the heavy meson mass spectra. Accommo-
dating the empirical constraint fV ≥ fP, we have shown that

the mass spectra and the hyperfine splittings for heavy (b,c)
quark sector get improved by introducing the multiplicative
factor λ in front of the smearing parameter σ , i.e. σ → λσ ,
in the smeared hyperfine interaction (σ3/π3/2)e−σ2r2

. Our re-
sults indicate that the interaction between heavier quarks gets
more point-like as the larger λ values are favored in compari-
son with data. The distinction between the heavy meson sec-
tor and the light meson sector is rather natural in our LFQM
analyses. To get more definite conclusion in this respect, fur-
ther analysis of other wave function related observables such
as various meson elastic and transition form factors may be
useful. It may be also interesting to analyze radially excited
meson states using the larger HO basis.
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Appendix A: Fixation of the model parameters using variational
principle

In our model, we assumed SU(2) flavor symmetry and
have the following parameters that need to be fixed: con-
stituent quark masses (mu(d),ms,mc,mb), potential parameters
(a,b,αs), gaussian parameter β , and the smearing parameter
σ . For our trial wave function Φ = ∑

2
n=1 cnφnS, we also have

the mixing factor cn(n = 1,2) that we have to adjust. Notice
that the β values here are not only different for different quark
combinations, but also different for pseudoscalar and vector
mesons of the same quark combination. The reason for this
is that the hyperfine interaction we included in our parame-
terization process gives different contributions to the masses
of pseudoscalar and vector mesons and thus induces different
parameterizations under variational principle.

We now illustrate our procedure for fixing these parameters.
The variational principle gives us one constraint:

∂ 〈Φ|H|Φ〉
∂β

=
∂Mqq̄

∂β
= 0. (A1)

We can use this equation to rewrite the coupling constant αs
in terms of other parameters and plug it back into Eq. (9)
and thus eliminate αs. The string tension b is fixed to
be 0.18 GeV, a well known value from other quark model
analysis [32, 40, 69]. We will leave the quark masses and
smearing parameter σ and the mixing factor c1 as exter-
nally adjustable variables. We picked a set of values for
(mu(d),ms,mc,mb,σ ,c1) and proceed with the following pro-
cedure to solve for the rest of parameters.

We are left with 3 more parameters (a,β P
qq̄,β

V
qq̄) for mesons

of a certain quark combination (qq̄), where β P
qq̄, βV

qq̄ are the
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TABLE V. Charmed meson decay constants (in unit of MeV) obtained from our updated LFQM. The theoretical error bars for fηc(J/ψ) come
from the variation of the smearing parameters σ , i.e. fηc(J/ψ)(2σ

+σ
−σ ).

Model fD fD∗ fDs fD∗s fηc fJ/ψ

This work 208 230 231 260 353+22
−17 361−6

+7
CJ [23] 197 239 232 273 326 360
Lattice [51] 211±3±17 245±20+3

−2 231±12+8
−1 272±16+3

−20 – –
QCD [52, 53] 208±7 [52] – 250±7 [52] – 387±7 [53] 418±9 [53]
Sum-rules [55] 201+12

−23 242+20
−12 238+13

−23 293+19
−14 – –

BS [56] 230±25 340±23 248±27 375±24 292±25 459±28
QM [57] 240±20 – 290±20 – – –
RQM [58] 234 310 268 315 – –
Exp. 206.7±8.9 [45] – 257.5±6.1 [45] – 335±75 [59] 407±5 [45]

TABLE VI. Bottomed meson decay constants (in unit of MeV) obtained from our updated LFQM. The theoretical error bars for fηb(ϒ) come
from the variation of the smearing parameters σ , i.e. fηb(ϒ)(3σ

+2σ

−2σ
).

Model fB fB∗ fBs fB∗s fηb fϒ

This work 181 188 205 216 605+32
−17 611−11

+6
CJ [23] 171 185 205 220 507 529
Lattice [51] 179±18+34

−9 196±24+39
−2 204±16+41

−0 229±20+41
−16 – –

QCD [52, 60] 189±8 [52] – 228±8 [52] – – 649±31 [60]
Sum-rules [55] 207+17

−9 210+10
−12 242+17

−12 251+14
−16 – –

BS [56] 196±29 238±18 216±32 272±20 – 498±20
QM [57] 155±15 – 210±20 – – –
RQM [58] 189 219 218 251 – –
Exp. 229+36+34

−31−37 [61] – – – – 689±5 [45]

TABLE VII. Bottom-charmed meson decay constants(in unit of MeV) obtained from our updated LFQM. The theoretical error bars for fBc(B∗c)

come from the variation of the smearing parameters σ , i.e. fBc(B∗c)(2.3σ
+σ
−σ ).

Model This work CJ [15] [63] [64] [65] [66] [67] [68]
fBc 389+16

−3 349 360 433 500 460± 60 517 410± 40
fB∗c 391−5

+4 369 – 503 500 460± 60 517 –

gaussian parameters for pseudoscalar and vector mesons, re-
spectively. Using the masses of π and ρ as our input values
for Mqq̄ in in Eq. (9), and the condition that our coupling con-
stants αs are the same for all these ground state pseudoscalar
and vector mesons, we can fix the three model parameters
(a,β p

qq̄,β
V
qq̄) for q = u or d from the following three equations:

Mπ(β
P
qq̄,a) = 0.140, (A2a)

Mρ(β
V
qq̄,a) = 0.780, (A2b)

αs(β
P
qq̄,a) = αs(β

V
qq̄,a). (A2c)

Solving these equations not only gives us the remaining pa-
rameters a,β P

qq̄,andβV
qq̄, but also the coupling constant αs

which we assumed to be the same for all the mesons we con-
sider here. We can then solve for the β values of all the other

mesons using the known αs value, by equating the αs expres-
sions for different mesons that we got from Eq. (A1). We thus
fixed all parameters for the ground state pseudoscalar and vec-
tor mesons we consider here.

We then assign a different set of values to the externally
adjustable variables, i.e. (mu(d),ms,mc,mb,σ ,c1), and repeat
the above procedure until we find a set of values that give best
fit for the meson mass spectra.

Through our trial and error type of analysis, we found
mq = 0.205 GeV,ms = 0.38 GeV,mc = 1.75 GeV,mb =

5.15 GeV,σ = 0.423 GeV,c1 =
√

0.7 gives best fit. We then
determine the mixing angles from the mass spectra of (ω,φ)
and (η ,η ′) using Eqs.(10) and (11) as we have described in
Sec.II. In addition, the multiplicative factor λ in front of the
smearing parameter σ for the (cc̄,bc̄,bb̄) systems were ad-
justed utilizing the hyperfine splittings of (b,c) quark sectors
as we have discussed in Sec.III. The updated β values with
this λ adjustment are listed in Table II.
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