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Abstract5

We present a new method for imposing a realistic equation of state in anisotropic hydrodynamics.6

The method relies on the introduction of a single finite-temperature quasiparticle mass which is7

fit to lattice data. By taking moments of the Boltzmann equation, we obtain a set of coupled8

partial differential equations which can be used to describe the 3+1d spacetime evolution of an9

anisotropic relativistic system. We then specialize to the case of a 0+1d system undergoing boost-10

invariant Bjorken expansion and subject to the relaxation-time approximation collisional kernel.11

Using this setup, we compare results obtained using the new quasiparticle equation of state method12

with those obtained using the standard method for imposing the equation of state in anisotropic13

hydrodynamics. We demonstrate that the temperature evolution obtained using the two methods14

is nearly identical and that there are only small differences in the pressure anisotropy. However,15

we find that there are significant differences in the evolution of the bulk pressure correction.16
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I. INTRODUCTION20

Ultrarelativistic heavy-ion collision experiments using the Relativistic Heavy Ion Collider21

(RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN22

allow researchers to study the behavior of matter subject to extreme conditions. In these23

experiments, high-energy collisions of nuclei are used to heat a tiny volume of matter up24

to temperatures that exceed the critical temperature (Tc ∼ 160 MeV) necessary to create a25

super-hot deconfined and chirally-symmetric phase, called the quark-gluon plasma (QGP).26

The study of this strongly interacting phase near and above the critical temperature is of27

fundamental interest. One can gain some insight into the physics of the QGP using per-28

turbation theory since the asymptotic freedom of quantum chromodynamics (QCD) ensures29

that, for the high temperatures, T � ΛQCD, the QGP can be thought of as a weakly-30

coupled many-body system. In this regime, perturbative methods, such as hard thermal31

loop (HTL) resummation, can be used [1–6].1 In the HTL framework, the quarks and glu-32

ons can be thought of as quasiparticles having temperature-dependent (thermal) masses33

with mq,q̄,g ∼ gT , where g is the strong coupling.34

Such a picture provides motivation to try to model the QGP as a gas of massive quasipar-35

ticles for the purposes of obtaining self-consistent hydrodynamic equations. However, per-36

turbation theory needs to be supplemented since, for temperatures T <∼ 2Tc, first-principles37

perturbative calculations based on deconfined quarks and gluons break down. In order38

to proceed, one can use non-perturbative lattice calculations of QCD thermodynamics to39

determine information about the necessary quasiparticle mass(es). In practice, one can40

perform this procedure at all temperatures and determine a non-perturbative temperature-41

dependent quasiparticle mass, m(T ). Once m(T ) is determined, one can use this to enforce42

the target equation of state (EoS) in an effective kinetic field theory framework. One compli-43

cation is that, in order to guarantee thermodynamic consistency in equilibrium and related44

out-of-equilibrium constraints, it is necessary to introduce a background (vacuum energy)45

contribution to the energy-momentum tensor [9–11]. The resulting EoS, together with a self-46

consistent non-equilibrium energy-momentum tensor and modified Boltzmann equation, can47

be used to derive relativistic hydrodynamic equations for such a quasiparticle gas.48

Relativistic hydrodynamics itself is an effective theory that can be used to describe the49

1HTL-resummed calculations of the thermodynamic potential at finite temperature and quark chemical potential(s)

describe the lattice data well for T >∼ 300 MeV with no free parameters [6–8].

2



spacetime evolution of the QGP. In the kinetic theory approach to relativistic hydrody-50

namics, one obtains the dynamical equations for the bulk variables by taking moments of51

the Boltzmann equation. Ideal hydrodynamics [12–14] and later on viscous hydrodynamics52

[15–46] have been used to study the QGP created in heavy-ion collisions and have proven53

to be quite successful. Recently, anisotropic hydrodynamics [47–68] has been developed54

in order to extend the range of applicability of relativistic hydrodynamics to situations in55

which the QGP possess a high degree of momentum-space anisotropy (for a recent review,56

see Ref. [69]).57

In most cases, however, the manner in which the EoS is imposed in hydrodynamics is58

somewhat uncontrolled. In many cases, one derives the hydrodynamic equations for a con-59

formal system and then imposes an EoS to relate the components of the energy-momentum60

tensor. We refer to this as the “standard EoS” method. However, since QCD is a non-61

conformal theory with a running coupling constant that depends strongly on the temperature62

near Tc, it is more self-consistent to take into account the breaking of conformal invariance63

from the beginning, which results in additional terms in the evolution equations and new64

transport coefficients. Some progress in this direction has been made in the last year, both65

in the context of second-order viscous hydrodynamics [44] and anisotropic hydrodynamics66

[62], however, in both of these previous works, the underlying microscopic picture was that67

of a gas of particles with temperature-independent masses. One would like to incorporate68

the temperature-dependence of the particle masses into the dynamical equations such that69

the equations themselves are consistent with the breaking of conformal invariance and the70

quasiparticle picture at high temperatures. In this paper, we present a method for doing71

this in the context of anisotropic hydrodynamics. Our method is to incorporate the effects72

of a temperature-dependent quasiparticle mass into the Boltzmann equation by taking into73

account extra terms which come from the spacetime gradients of the thermal mass. We74

show that adding the necessary additional term to the Boltzmann equation and enforcing75

energy-momentum conservation require one to introduce a non-equilibrium background field76

Bgµν to the energy-momentum tensor as was found by previous authors [10, 11], e.g.77

T µν = T µνkinetic +Bgµν . (1)

This extra background contribution can be shown to become precisely the additional term78

3



necessary to enforce thermodynamic consistency in the equilibrium limit, however, in prac-79

tice, we allow it to be a non-equilibrium quantity.80

The new method above will be referred to herein as the “quasiparticle EoS”. We com-81

pare results obtained using this method to results obtained using the canonical method for82

imposing a realistic equation of state. For this purpose, we reduce the dynamical equations83

in both cases to those appropriate for 0+1d boost-invariant and transversally-homogeneous84

expansion subject to a relaxation-time approximation collisional kernel. With this setup,85

comparisons of the evolution of the effective temperature, pressure anisotropy, and bulk86

correction to the pressure for different values of the shear viscosity to entropy density ratio87

are presented for both isotropic and anisotropic initial conditions. We demonstrate that88

the temperature evolution obtained using the two EoS methods is nearly identical and that89

there are only small differences in the pressure anisotropy. However, we find that there are90

significant differences in the evolution of the bulk pressure correction, which could poten-91

tially be important for determining the correct form of the particle distribution function on92

the freezeout hypersurface in phenomenological applications.93

The structure of the paper is as follows. In Sec. II, we present the notation and conventions94

we use in the paper. In Sec. III, we review the necessary setup including the anisotropic dis-95

tribution function, basis vectors necessary in different cases, and the lattice-based equation96

of state we will use. In Sec. IV, the Boltzmann equation and its generalization to quasiparti-97

cles with temperature-dependent masses is discussed. In Sec. V, we take different moments98

of distribution function in order to derive expressions for the particle current, energy den-99

sity, and components of the pressure. In Sec. VI, the 3+1d dynamical equations for mas-100

sive anisotropic hydrodynamics are derived and then simplified assuming boost-invariance101

together with either cylindrical-symmetry or transversally-homogeneity. In Sec. VII, we102

obtain the 0+1d dynamical equations for the quasiparticle EoS and standard EoS cases.103

In Sec. VIII, our numerical results obtained using both methods for a boost-invariant and104

transversally-homogeneous system are presented. Sec. IX contains our conclusions and an105

outlook for the future. All necessary identities and function definitions are collected in106

Apps. A-B.107
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II. CONVENTIONS AND NOTATION108

A parentheses in the indices indicates a symmetrized form, e.g. A(µν) ≡ (Aµν + Aνµ)/2.109

The metric is taken to be “mostly minus” such that in Minkowski space with xµ ≡ (t, x, y, z)110

the line element is ds2 = gµνdx
µdxν = dt2−dx2−dy2−dz2. We also make use of the transverse111

projector, ∆µν ≡ gµν−uµuν . When studying relativistic heavy-ion collisions, it is convenient112

to transform to variables defined by τ =
√
t2 − z2, which is the longitudinal proper time, and113

ς = tanh−1(z/t), which is the longitudinal spacetime rapidity. If the system is additionally114

cylindrically symmetric with respect to the beam-line, it is convenient to transform to polar115

coordinates in the transverse plane with r =
√
x2+y2 and φ = tan−1(y/x). In this case, the116

new set of coordinates xµ = (τ, r, φ, ς) defines polar Milne coordinates. Finally, the invariant117

phase space integration measure is defined as118

dP ≡ Ndof
d3p

(2π)3

1

E
= Ñ

d3p

E
, (2)

where Ndof is the number of degrees of freedom and Ñ ≡ Ndof/(2π)3.119

III. SETUP120

In this paper, we derive non-conformal anisotropic hydrodynamics equations for a sys-121

tem of quasiparticles with a temperature-dependent mass. To accomplish this goal, an122

effective Boltzmann equation for thermal quasiparticles is obtained. We then take moments123

of the resulting kinetic equation to obtain the leading-order 3+1d anisotropic hydrodynam-124

ics equations. Using a general set of basis vectors, the equations are expanded explicitly125

and then various simplifying assumptions (e.g. boost-invariance, etc.) are imposed to re-126

duce the equations from their general 3+1d to a 0+1d form appropriate for describing a127

boost-invariant and transversally-homogenous QGP. The obtained 0+1d equations are then128

solved numerically for our tests, however, the method used to obtain the 3+1d leading-order129

anisotropic hydrodynamics equations can be used without lack of generality.130
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A. Basis Vectors131

A general tensor basis can be constructed by introducing four four-vectors which in the132

local rest frame (LRF) are133

uµLRF ≡ (1, 0, 0, 0) ,

Xµ
LRF ≡ (0, 1, 0, 0) ,

Y µ
LRF ≡ (0, 0, 1, 0) ,

Zµ
LRF ≡ (0, 0, 0, 1) . (3)

One can define the general basis vectors in the lab frame (LF) by performing the Lorentz134

transformation necessary to go from LRF to the LF. The transformation required can be135

constructed using a longitudinal boost ϑ along the beam axis, followed by a rotation ϕ136

around the beam axis, and finally a transverse boost by θ⊥ along the x-axis [52, 53]. This137

parametrization gives138

uµ ≡ (cosh θ⊥ coshϑ, sinh θ⊥ cosϕ, sinh θ⊥ sinϕ, cosh θ⊥ sinhϑ) ,

Xµ ≡ (sinh θ⊥ coshϑ, cosh θ⊥ cosϕ, cosh θ⊥ sinϕ, sinh θ⊥ sinhϑ) ,

Y µ ≡ (0,− sinϕ, cosϕ, 0) ,

Zµ ≡ (sinhϑ, 0, 0, coshϑ) , (4)

where the three fields ϑ, ϕ, and θ⊥ are functions of Cartesian Milne coordinates (τ, x, y, ς).139

Introducing another parametrization by using the temporal and transverse components of140

flow velocity141

u0 = cosh θ⊥ , (5)

ux = u⊥ cosϕ , (6)

uy = u⊥ sinϕ , (7)
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where u⊥ ≡
√
u2
x + u2

y =
√
u2

0 − 1 = sinh θ⊥, one has142

uµ ≡ (u0 coshϑ, ux, uy, u0 sinhϑ) ,

Xµ ≡
(
u⊥ coshϑ,

u0ux
u⊥

,
u0uy
u⊥

, u⊥ sinhϑ
)
,

Y µ ≡
(

0,− uy
u⊥
,
ux
u⊥
, 0
)
,

Zµ ≡ (sinhϑ, 0, 0, coshϑ) . (8)

For a boost-invariant and cylindrically-symmetric system, one can simplify the basis vectors143

by identifying ϑ = ς and ϕ = φ where ς and φ are the spacetime rapidity and the azimuthal144

angle, respectively. In this case, the basis vectors (4) simplify to145

uµ = (cosh θ⊥ cosh ς, sinh θ⊥ cosφ, sinh θ⊥ sinφ, cosh θ⊥ sinh ς) ,

Xµ = (sinh θ⊥ cosh ς, cosh θ⊥ cosφ, cosh θ⊥ sinφ, sinh θ⊥ sinh ς) ,

Y µ = (0,− sinφ, cosφ, 0) ,

Zµ = (sinh ς, 0, 0, cosh ς) . (9)

In the case of a transversally-symmetric system, the transverse flow u⊥ is absent, i.e. θ⊥ = 0,146

and, as a consequence, one has147

uµ = (cosh ς, 0, 0, sinh ς) ,

Xµ = (0, cosφ, sinφ, 0) ,

Y µ = (0,− sinφ, cosφ, 0) ,

Zµ = (sinh ς, 0, 0, cosh ς). (10)

Note that in the last case, Xµ and Y µ are simply unit vectors pointing along the radial and148

azimuthal directions, respectively.149
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B. Ellipsoidal form including bulk pressure degree of freedom150

In the non-conformal case, anisotropic hydrodynamics is defined through the introduction151

of an anisotropy tensor of the form [53, 62]152

Ξµν = uµuν + ξµν −∆µνΦ , (11)

where uµ is four-velocity, ξµν is a symmetric and traceless tensor, and Φ is associated with153

the bulk degree of freedom. The quantities uµ, ξµν , and Φ are understood to be functions154

of spacetime and obey uµuµ = 1, ξµµ = 0, ∆µ
µ = 3, and uµξ

µν = 0; therefore, one has155

Ξµ
µ = 1 − 3Φ. At leading order in the anisotropic hydrodynamics expansion one assumes156

that the one-particle distribution function is of the form157

f(x, p) = fiso

(
1

λ

√
pµΞµνpν

)
, (12)

where λ has dimensions of energy and can be identified with the temperature only in the158

isotropic equilibrium limit (ξµν = 0 and Φ = 0).2 We note that, in practice, fiso need159

not be a thermal equilibrium distribution. However, unless one expects there to be a non-160

thermal distribution at late times, it is appropriate to take fiso to be a thermal equilibrium161

distribution function of the form fiso(x) = feq(x) = (ex + a)−1, where a = ±1 gives Fermi-162

Dirac or Bose-Einstein statistics, respectively, and a = 0 gives Boltzmann statistics. From163

here on, we assume that the distribution is of Boltzmann form, i.e. a = 0.164

C. Dynamical Variables165

Since the most important viscous corrections are to the diagonal components of the166

energy-momentum tensor, to good approximation one can assume that ξµν = diag(0, ξ) with167

ξ ≡ (ξx, ξy, ξz) and ξii = 0. In this case, expanding the argument of the square root appearing168

on the right-hand side of Eq. (12) in the LRF gives169

f(x, p) = feq

(
1

λ

√∑
i

p2
i

α2
i

+m2

)
, (13)

2Herein we assume that the chemical potential is zero.
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where i ∈ {x, y, z} and the scale parameters αi are170

αi ≡ (1 + ξi + Φ)−1/2 . (14)

Note that, for brevity, one can collect the three anisotropy parameters into vector α ≡171

(αx, αy, αz). In the isotropic equilibrium limit, where ξi = Φ = 0 and αi = 1, one has172

pµΞµνpν = (p · u)2 = E2 and λ→ T and, therefore,173

f(x, p) = feq

(
E

T (x)

)
. (15)

Out of the four anisotropy and bulk parameters there are only three independent ones. In174

practice, we use three variables αi as the dynamical anisotropy parameters since, by using175

Eq. (14) and the tracelessness of ξµν , one can write Φ in terms of the anisotropy parameters,176

Φ = 1
3

∑
i α
−2
i − 1. In the transversally-homogeneous case, one has αx = αy and, as a result,177

there are two independent anisotropy parameters. Note that, for conformal systems, one178

has Φ = 0 and in this case there are then only two independent anisotropy parameters in179

3+1d.180

D. Equation of state181

Herein we consider a system at finite temperature and zero chemical potential. At asymp-182

totically high temperatures, the pressure of a gas of quarks and gluons approaches the Stefan-183

Boltzmann (SB) limit, PSB = ESB/3 = NdofT
4/π2 = π2T 4

(
N2
c − 1 + 7

4
NcNf

)
/45. We will184

take Nc = Nf = 3 in what follows. At the temperatures probed in heavy-ion collisions there185

are important corrections to the SB limit and at low temperatures the relevant degrees of186

freedom change from quarks and gluons to hadrons. The standard way to determine the187

QGP EoS is to use non-perturbative lattice calculations. For this purpose, we use an an-188

alytic parameterization of lattice data for the QCD interaction measure (trace anomaly),189

Ieq = Eeq − 3Peq, taken from the Wuppertal-Budapest collaboration [70]190

Ieq(T )

T 4
=

[
h0

1 + h3t2
+
f0

[
tanh(f1t+ f2) + 1

]
1 + g1t+ g2t2

]
exp
(
−h1

t
− h2

t2

)
, (16)

9



ℰeq/ ℰSB

eq/ SB

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

T [GeV]

(a)

0.0 0.5 1.0 1.5 2.0

0.05

0.10

0.15

0.20

0.25

0.30

T [GeV]

c s
2

(b)

FIG. 1. Panel (a) shows the energy density and pressure scaled by their respective Stefan-

Boltzmann limits as a function of temperature. Panel (b) shows the speed of sound squared

as a function of temperature.

with t ≡ T/(0.2 GeV). For Nf = 2 + 1 (2 light quarks and one heavy quark) the parameters191

are h0 = 0.1396, h1 = −0.1800, h2 = 0.0350, f0 = 2.76, f1 = 6.79, f2 = −5.29, g1 = −0.47,192

g2 = 1.04, and h3 = 0.01.193

The pressure can be obtained from an integral of the interaction measure194

Peq(T )

T 4
=

∫ T

0

dT

T

Ieq(T )

T 4
, (17)

where we have assumed Peq(T = 0) = 0. Having Peq(T ), one can obtain the energy density195

Eeq using Eeq(T ) = 3Peq(T ) + Ieq(T ). In the limit T → ∞, the system tends to the ideal196

limit as expected.3 The temperature dependence of the resulting equilibrium energy density,197

pressure, and speed of sound squared (c2
s = ∂Peq/∂Eeq) are shown in the two panels of Fig. 1.198

Method 1: Standard equation of state199

In the standard approach for imposing a realistic EoS in anisotropic hydrodynamics, one200

derives the necessary equations in the conformal limit and exploits the conformal multi-201

plicative factorization of the components of the energy-momentum tensor [47, 48]. With202

this method, one relies on the assumption of factorization even in the non-conformal (mas-203

sive) case. Such an approach is justified by the smallness of the corrections to factorization204

3In the original parametrization presented in Ref. [70] the authors used h3 = 0, however, as pointed out in Ref. [66],

choosing h3 = 0 gives the wrong high temperature limit.
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in the massive case in the near-equilibrium limit [66]. For details concerning this method,205

we refer the reader to Refs. [54, 66]. Although this method is relatively straightforward206

to implement, it is only approximate since for non-conformal systems there is no longer207

exact multiplicative factorization of the components of the energy-momentum tensor. This208

introduces a theoretical uncertainty which is difficult to quantitatively estimate.209

Method 2: Quasiparticle equation of state210

Since the standard method is only approximate, one would like to find an alternative211

method for imposing a realistic equation of state in an anisotropic system that can be ap-212

plied for non-conformal systems. In order to accomplish this goal, we implement the realistic213

EoS detailed above by assuming that the QGP can be described as an ensemble of massive214

quasiparticles with temperature-dependent masses. As is well-known from the literature215

[9], one cannot simply substitute temperature-dependent masses into the thermodynamic216

functions obtained with constant masses because this would violate thermodynamic consis-217

tency. For an equilibrium system, one can ensure thermodynamic consistency by adding a218

background contribution to the energy-momentum tensor, i.e.219

T µνeq = T µνkinetic,eq + gµνBeq , (18)

with Beq ≡ Beq(T ) being the additional background contribution. The kinetic contribution220

to the energy momentum tensor is given by221

T µνeq,kinetic =

∫
dP pµpνfeq(x, p) . (19)

For an equilibrium Boltzmann gas, the number and entropy densities are unchanged,222

while, due to the additional background contribution, the energy density and pressure are223
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FIG. 2. In panel (a) we plot the temperature dependence of the quasiparticle mass scaled by the

temperature obtained using Eq. (26). In panel (b) we plot the temperature dependence of the

background term Beq scaled by the temperature obtained using (25).

shifted by +Beq and −Beq, respectively, giving224

neq(T,m) = 4πÑT 3 m̂2
eqK2 (m̂eq) , (20)

Seq(T,m) = 4πÑT 3 m̂2
eq

[
4K2 (m̂eq) + m̂eqK1 (m̂eq)

]
, (21)

Eeq(T,m) = 4πÑT 4 m̂2
eq

[
3K2 (m̂eq) + m̂eqK1 (m̂eq)

]
+Beq , (22)

Peq(T,m) = 4πÑT 4 m̂2
eqK2 (m̂eq)−Beq , (23)

where m̂eq = m/T with m implicitly depending on the temperature from here on. In order225

to fix Beq, one can require, for example, the thermodynamic identity226

TSeq = Eeq + Peq = T
∂Peq

∂T
, (24)

be satisfied. Using Eqs. (22), (23), and (24) one obtains227

dBeq

dT
= −1

2

dm2

dT

∫
dP feq(x, p)

= −4πÑm2TK1(m̂eq)
dm

dT
. (25)

If the temperature dependence of m is known, then Eq. (25) can be used to determine Beq.228
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In order to determine m, one can use the thermodynamic identity229

Eeq + Peq = TSeq = 4πÑT 4 m̂3
eqK3 (m̂eq) . (26)

Using the lattice parameterization (16) to compute the equilibrium energy density and pres-230

sure, one can numerically solve for m(T ). In Fig. 2a, we plot the resulting solution for231

m/T as a function of the temperature. Once m is determined using Eq. (26), one can solve232

Eq. (25) subject to the boundary condition Beq(T = 0) = 0 to find Beq(T ). We note that,233

using this method, one can exactly reproduce the lattice results for energy density, pressure,234

and entropy density. In Fig. 2b, we plot the resulting solution for the normalized quantity235

Beq(T )/T 4 as a function of the temperature.236

IV. BOLTZMANN EQUATION AND ITS MOMENTS237

In this paper, we derive the necessary hydrodynamical equations by taking the moments238

of Boltzmann equation. In what follows, we specialize to the case that the collisional kernel is239

given by the relaxation-time approximation (RTA), however, the general methods presented240

here can be applied to any collisional kernel. If the particles that comprise the system have241

temperature-independent masses then the Boltzmann equation is of the form242

pµ∂µf = −C[f ] . (27)

The function C[f ] at right-hand side of the equation is the collisional kernel containing all243

interactions involved in the dynamics. In RTA, one has244

C[f ] =
pµuµ
τeq

(f − feq) . (28)

In this relation, feq denotes the equilibrium one-particle distribution function (15) and τeq is245

the relaxation time which can depend on spacetime but which we assume to be momentum-246

independent. To obtain a realistic model for τeq, which is valid for massive systems, one247

can relate τeq to the shear viscosity to entropy density ratio. For a massive system, one has248

[71, 72]249

η(T ) =
τeq(T )Peq(T )

15
κ(m̂eq) . (29)
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In this formula the function κ(x) is defined as250

κ(x) ≡ x3

[
3

x2

K3(x)

K2(x)
− 1

x
+
K1(x)

K2(x)
− π

2

1− xK0(x)L−1(x)− xK1(x)L0(x)

K2(x)

]
, (30)

where Kn(x) are modified Bessel functions of second kind and Ln(x) are modified Struve251

functions. Assuming that the ratio of the shear viscosity to entropy density, η/Seq ≡ η̄, is252

held fixed during the evolution and using the thermodynamic relation Eeq +Peq = TSeq one253

obtains254

τeq(T ) =
15η̄

κ(m̂eq)T

(
1 +
Eeq(T )

Peq(T )

)
. (31)

Note that, in the massless limit, m→ 0, one has κ(m̂eq)→ 12, giving255

τeq(T ) =
5η

4Peq(T )
. (32)

A. Effective Boltzmann Equation256

If the quasiparticles have a temperature-dependent mass, one has to generalize the Boltz-257

mann equation in order to take into account gradients in the mass. Generally, the Boltzmann258

equation for on-shell quasiparticles can be written as [10]259 (
∂

∂t
+
∂E

∂p
· ∂
∂x
− ∂E

∂x
· ∂
∂p

)
f(x, p) =

(
∂f

∂t

)
coll

, (33)

where the “external force term” −dE/dx does not vanish in the thermal mass case since the260

particle energy depends on the mass and hence on the local temperature of the system. As261

a result, the temperature-dependence of the mass acts as an external force in the dynamics.262

Using the on-shell energy relation E ≡
√

p2 +m2 and defining the collisional kernel as263

C[f ] ≡ −E
(
∂f

∂t

)
coll

, (34)

in covariant form one has264

pµ∂µf +
1

2
∂im

2∂i(p)f = −C[f ] , (35)

where pµ ≡ (
√

p2 +m2,p) is the on-shell momentum four-vector, i is a spatial coordinate265

index, and ∂i(p) ≡ −∂/∂pi. Note that the extra term, (∂im
2/2)∂i(p)f , corresponds precisely266
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to the result obtained from derivation of the Boltzmann equation using quantum field the-267

oretical methods [73].268

We mention that an alternative way of deriving the effective Boltzmann equation above269

can be found in a recent paper of Romatschke [11]. In this paper, a general Boltzmann270

equation for off-shell particles (with constant mass) is first derived using the evolution of271

a single particle distribution function along eight-dimensional phase space geodesics, where272

the possibility of curved spaces is taken into account using geometrical covariant derivatives.273

Then, by adding a temperature-dependent background term to T µν , temperature-dependent274

masses are taken into account in a way that guarantees both thermodynamic consistency in275

the equilibrium limit and energy-momentum conservation, in general. Finally, the on-shell276

version of the effective Boltzmann equation for quasiparticles with a temperature-dependent277

mass in a general curved space time is obtained. The flat spacetime limit of the effective278

Boltzmann equation derived by Romatschke is the same as Eq. (35).279

B. Moments of Boltzmann Equation280

If one is interested in the evolution of the bulk properties of a system, one can use low-281

order moments of the Boltzmann equation. By calculating moments of Boltzmann equation282

one obtains evolution equations for tensors of different ranks, with the first moment giving an283

evolution equation for the energy-momentum tensor and the second-moment describing the284

evolution of a rank three tensor. Taking the zeroth, first, and second moments of Boltzmann285

equation gives, respectively286

∂µJ
µ = −

∫
dP C[f ] , (36)

∂µT
µν = −

∫
dP pνC[f ] , (37)

∂µIµνλ − J (ν∂λ)m2 = −
∫
dP pνpλC[f ] , (38)
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where the particle four-current Jµ, energy-momentum tensor T µν , and the rank-three tensor287

Iµνλ are given by288

Jµ ≡
∫
dP pµf(x, p) , (39)

T µν ≡
∫
dP pµpνf(x, p) +Bgµν , (40)

Iµνλ ≡
∫
dP pµpνpλf(x, p) . (41)

We note that we have introduced the non-equilibrium background field B ≡ B(α, λ), which289

is the analogue of the equilibrium background Beq in order to guarantee that the correct290

equilibrium limit of T µν is obtained. In the process of the derivation one finds that, in order291

to write the energy momentum conservation in the form given in Eq. (37), there must be a292

differential equation relating B and the thermal mass293

∂µB = −1

2
∂µm

2

∫
dPf(x, p) . (42)

In practice, one can use (42) to write the derivative of B with respect to any variable in294

terms of the derivative of the thermal mass times the E−1 moment of the non-equilibrium295

distribution function.296

V. BULK VARIABLES297

In this section, bulk variables, i.e. number density, energy density, and the pressures, are298

calculated by taking the projections of Jµ and T µν .299

A. Particle current 4-vector300

The particle current four-vector Jµ ≡ (n,J) is defined in Eq. (39). One can expand Jµ301

using the basis vectors as302

Jµ = nuµ + JxX
µ + JyY

µ + JzZ
µ . (43)
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Using Eqs. (13) and (39) one has303

Jµ = (n,0) = nuµ , (44)

where n = αneq(λ,m) and α ≡ αxαyαz.304

B. Energy-Momentum Tensor305

The energy-momentum tensor T µν is defined in Eq. (40). Expanding it using the basis306

vectors one obtains307

T µν = Euµuν + PxXµXν + PyY µY ν + PzZµZν . (45)

Using Eqs. (13), (40), and (45) and taking projections of T µν one can obtain the energy308

density and the components of pressure309

E = H3(α, m̂)λ4 +B ,

Px = H3x(α, m̂)λ4 −B ,

Py = H3y(α, m̂)λ4 −B ,

Pz = H3L(α, m̂)λ4 −B , (46)

where m̂ ≡ m/λ. In the transversally-symmetric case one has PT ≡ Px = Py and PL ≡ Pz310

and Eq. (45) simplifies to311

T µν = (E + PT )uµuν − PTgµν + (PL − PT )ZµZν , (47)

where312

E = H̃3(α, m̂)λ4 +B ,

PT = H̃3T (α, m̂)λ4 −B ,

PL = H̃3L(α, m̂)λ4 −B . (48)

The various H-functions appearing above are defined in App. B 1.313
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VI. DYNAMICAL EQUATIONS314

In order to obtain the dynamical equations from Eqs. (36)-(38), one needs the tensor de-315

composition of Jµ, T µν , and Iµνλ using the basis vectors. Herein the general 3+1d equations316

for a system with temperature-dependent masses are obtained in the RTA. We then simplify317

to the case of 0+1d transversally-symmetric case by the taking necessary limits. In what318

follows, the convective derivatives Dα and divergences θα, with α ∈ {u, x, y, z}, are defined319

in App. A.320

A. Zeroth moment321

The evolution equation for the particle four-current (36) in the RTA is322

∂µJ
µ =

1

τeq

(neq − n) . (49)

Using Eq. (44) one has323

Dun+ nθu =
1

τeq

(neq − n) . (50)

In the case of 0+1d, this simplifies to324

∂τn+
n

τ
=

1

τeq

(neq − n) . (51)

B. First Moment325

The conservation of energy and momentum is enforced by ∂µT
µν = 0. This requires that326

both the left and right hand sides of Eq. (37) vanish. The vanishing of the right-hand side327

of this equation results in a constraint equation that can be used to write T in terms of the328

non-equilibrium microscopic parameters α and λ. Using (13), (15), and (28) one obtains329

Ekinetic = Eeq,kinetic, or more explicitly330

H̃3λ
4 = H̃3,eqT

4. (52)

Turning to the left hand side, using Eq. (45) and taking U -, X-, Y -, and Z-projections,331
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one obtains four independent equations332

DuE + Eθu + PxuµDxX
µ + PyuµDyY

µ + PzuµDzZ
µ = 0 ,

DxPx + Pxθx − EXµDuu
µ − PyXµDyY

µ − PzXµDzZ
µ = 0 ,

DyPy + Pyθy − EYµDuu
µ − PxYµDxX

µ − PzYµDzZ
µ = 0 ,

DzPz + Pzθz − EZµDuu
µ − PxZµDxX

µ − PyZµDyY
µ = 0 . (53)

In the 0+1d case, using PT ≡ Px = Py and PL ≡ Pz and taking the appropriate limits, as333

explained in App. A, one can simplify Eqs. (53) to334

∂τE = −E + PL
τ

, (54)

∂rPT = ∂φPT = ∂ςPL = 0 . (55)

Eqs. (55) are consequences of boost invariance and transverse homogeneity in the 0+1d case335

and, as a result, the only independent dynamical equation is Eq. (54).336

C. Second moment337

The second moment of Boltzmann equation in the RTA is338

∂µIµνλ − J (ν∂λ)m2 =
1

τeq

(uµIµνλeq − uµIµνλ) , (56)

where Iµνλeq can be obtained from Eq. (41) by taking f → feq. For a distribution function339

of the form specified in Eq. (13), the only non-vanishing terms in Eq. (41) are those with340

an even number of similar spatial index. As a result, one can expand Iµνλ over the basis341

vectors as342

I = Iu [u⊗ u⊗ u]

+ Ix [u⊗X ⊗X +X ⊗ u⊗X +X ⊗X ⊗ u]

+ Iy [u⊗ Y ⊗ Y + Y ⊗ u⊗ Y + Y ⊗ Y ⊗ u]

+ Iz [u⊗ Z ⊗ Z + Z ⊗ u⊗ Z + Z ⊗ Z ⊗ u] . (57)
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Evaluating the necessary integrals using the distribution function (13), one finds343

Iu =
(∑

i

α2
i

)
α Ieq(λ,m) + αm2neq(λ,m) , (58)

Ii = αα2
i Ieq(λ,m) , (59)

where344

Ieq(λ,m) = 4πÑλ5m̂3K3(m̂) . (60)

Note that, in general, one has Iu−
∑

i Ii = αm2neq(λ,m) and limm→0 Iu =
∑

i Ii. Expanding345

Eq. (56) and taking its uu-, XX-, Y Y -, and ZZ-projections gives346

DuIu + Iuθu + 2IxuµDxX
µ + 2IyuµDyY

µ + 2IzuµDzZ
µ − nDum

2 =
1

τeq

(Iu,eq − Iu) , (61)

DuIx + Ix(θu + 2uµDxX
µ) =

1

τeq

(Ieq − Ix) , (62)

DuIy + Iy(θu + 2uµDyY
µ) =

1

τeq

(Ieq − Iy) , (63)

DuIz + Iz(θu + 2uµDzZ
µ) =

1

τeq

(Ieq − Iz) . (64)

Also, taking uX-, uY -, and uZ-projections one can find347

DxIx + Ixθx + (Ix + Iu)uµDuX
µ − IyXµDyY

µ − IzXµDzZ
µ − 1

2
nDxm

2 = 0 , (65)

DyIy + Iyθy + (Iy + Iu)uµDuY
µ − IxYµDxX

µ − IzYµDzZ
µ − 1

2
nDym

2 = 0 , (66)

DzIz + Izθz + (Iz + Iu)uµDuZ
µ − IxZµDxX

µ − IyZµDyY
µ − 1

2
nDzm

2 = 0 , (67)

and finally projecting with XY , XZ, and Y Z gives348

Ix(YµDuX
µ + YµDxu

µ) + Iy(XµDuY
µ +XµDyu

µ) = 0 , (68)

Ix(ZµDuX
µ + ZµDxu

µ) + Iz(XµDuZ
µ +XµDzu

µ) = 0 , (69)

Iy(ZµDuY
µ + ZµDyu

µ) + Iz(YµDuZ
µ + YµDzu

µ) = 0 . (70)

It can be shown that Eq. (61) is not independent. One can subtract the sum of Eqs. (62)-349

(64) from it to obtain350

m2(Dun+ nθu) =
m2

τeq

(neq − n) . (71)
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This equation is the same as Eq. (50) for non-vanishing mass. In the 0+1d case, one has351

Ix = Iy and Eqs. (62)-(64) simplify to352

Du log Ix +
1

τ
=

1

τeq

(Ieq

Ix
− 1
)
, (72)

Du log Iz +
3

τ
=

1

τeq

(Ieq

Iz
− 1
)
. (73)

Finally, we note that Eqs. (65)-(70) are trivially satisfied in the 0+1d case.353

D. Selection of relevant equations of motion354

For the 0+1d case, we need four equations for the four independent parameters, λ, T, αx, αz.355

Using the equations derived thus far up to the second moment of Boltzmann equation, we356

have five independent equations. Herein, we use the equations obtained solely from the first357

and second moments of the Boltzmann equation which give Eqs. (52), (54), (72), and (73).4358

VII. 0+1D DYNAMICAL EQUATIONS359

In this section, we present the dynamical equations for the “quasiparticle EoS” and the360

“standard EoS” cases. For simplicity, we present only the 0+1d case herein. We postpone361

the 3+1d numerical comparisons to a future work.362

A. Quasiparticle equation of state363

One potential complication encountered when using temperature-dependent masses is364

that the first moment equation will involve the background contribution B and its proper-365

time derivative, since on the left-hand side of (54) one has the total energy density which366

includes the background contribution. In practice, however, all derivatives of B can be367

written in terms of derivatives of m using Eq. (42). For the 0+1d case, we only need the368

proper-time derivative of B. Taking the distribution function to be of the form (13) and369

using Eq. (42) one obtains370

∂τB = −λ
2

2
H̃3B(α, m̂) ∂τm

2 . (74)

4For the “quasiparticle EoS” case one obtains quite similar results if one instead uses the equation obtained from the

zeroth-moment (51); however, in the “standard EoS” case, one finds that using the zeroth moment equation (51)

results in solutions that do not approach the isotropic equilibrium limit at late times.
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In this way, all proper-time derivatives of B necessary for the evolution equations can be371

obtained from derivatives of the thermal mass and knowledge of the non-equilibrium mi-372

croscopic parameters which enter the H̃3B function. However, in order to obtain the total373

energy density or pressures one needs to know B itself. Our procedure will be to integrate374

the dynamical equations to a very late proper time τf when the system is close to equilib-375

rium and then integrate Eq. (74) backwards in time from τf to the intial time τ0 subject to376

the boundary condition that B(τf ) = Beq(T (τf )).377

Using Eqs. (48), (59), and (60) one can expand (54), (72), and (73) to obtain378

4H̃3∂τ log λ+ Ω̃m∂τ log m̂+ Ω̃L∂τ logαz + Ω̃T∂τ logα2
x +

∂τB

λ4
+

Ω̃L

τ
= 0 , (75)

4∂τ logαx + ∂τ logαz + 5∂τ log λ+ ∂τ log
(
m̂3K3(m̂)

)
+

1

τ

=
1

τeq

[
1

α4
xαz

(T
λ

)2K3(m̂eq)

K3(m̂)
− 1

]
, (76)

2∂τ logαx + 3∂τ logαz + 5∂τ log λ+ ∂τ log
(
m̂3K3(m̂)

)
+

3

τ

=
1

τeq

[
1

α2
xα

3
z

(T
λ

)2K3(m̂eq)

K3(m̂)
− 1

]
, (77)

where Ω̃T , Ω̃L, and Ω̃m are defined in App. B 1.379

One can perform some algebra to change the matching condition (52) into a differential380

equation which is more convenient to solve since we then only have to solve a system of381

coupled ordinary differential equations. Taking a derivative of Eq. (52) with respect to τ382

and using Eq. (54), one obtains383

4H̃3,eq∂τ log T + Ω̃m,eq∂τ log m̂eq +
Ω̃L

τ

(λ
T

)4

+
∂τB

T 4
= 0 . (78)

In all equations above one can use Eq. (31) for τeq.384

B. Standard equation of state385

We now present the details of our implementation of the “standard EoS” method. In this386

case, one takes the particles to be massless, m → 0, and hence B → 0. For the massless387
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transversally-symmetric case, Eqs. (48) become388

E = H̄3(α)λ4 ,

PT = H̄3T (α)λ4 ,

PL = H̄3L(α)λ4 , (79)

where all H-functions are defined in App. B 2. As we can see from the above equations, there389

is a multiplicative factorization of the energy density and pressures into a function that only390

depends on the anisotropy parameters and a function that only depends on the scale λ.391

For a massless conformal Boltzmann gas, one has Eeq(T ) = 24πÑT 4 and Peq(T ) = 8πÑT 4.392

Using these relations, one can rewrite Eqs. (79) in terms of the equilibrium thermodynamic393

functions394

E =
Eeq(λ)

2
α4
xH̄2

(αz
αx

)
,

PT =
3Peq(λ)

4
α4
xH̄2T

(αz
αx

)
,

PL =
3Peq(λ)

2
α4
xH̄2L

(αz
αx

)
. (80)

These formulas suggest that, in order to impose a realistic EoS, one only has to replace395

Eeq(λ) and Peq(λ) by the results obtained from lattice QCD calculations.396

In order to obtain the necessary dynamical equations, one has to take the limit m → 0397

of the equations obtained from the moments of the Boltzmann equation and substitute E398

and PT,L from Eq. (80). For the first moment equation, starting from Eq. (54) and using399

Eq. (80) one obtains400

∂τ log Eeq(λ) + (1 + χ)∂τ logαz + (3− χ)∂τ logαx = −1

τ
− 3Peq(λ)

τEeq(λ)
χ , (81)

with χ ≡ H̄2L/H̄2. Taking the limit m → 0 and B → 0 of the second-moment equations401

(76) and (77), one obtains402

4∂τ logαx + ∂τ logαz + 5∂τ log λ+
1

τ
=

1

τeq

[(T
λ

)5 1

α4
xαz
− 1
]
, (82)

2∂τ logαx + 3∂τ logαz + 5∂τ log λ+
3

τ
=

1

τeq

[(T
λ

)5 1

α2
xα

3
z

− 1
]
. (83)
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For the matching relation which gives T in terms of the microscopic parameters, one can403

use E(λ) = Eeq(T ) and Eq. (81) to find404

∂τ log Eeq(T ) = −1

τ
− 3Peq(λ)

τEeq(λ)
χ . (84)

In all equations above one can use Eq. (32) for τeq.405

VIII. RESULTS406

In this section, we present the results of numerically integrating the dynamical equations407

using the “standard EoS” and the “quasiparticle EoS” methods. In both cases, we specialize408

to the 0+1d case. We take the initial proper time to be τ0 = 0.25 fm/c and the final time to409

be τf = 500 fm/c. In all cases, the initial temperature is taken to be T0 = 600 MeV which410

is appropriate for LHC heavy-ion collisions at
√
sNN = 2.76 TeV. The final time used here is411

very long compared to the timescales relevant for heavy-ion collisions, but we are interested412

in the late-time approach to isotropic thermal equilibrium in both approaches. Additionally,413

as mentioned previously, in order to determine B(τ), we solve the the differential equation414

(74) by evolving it backwards in proper time subject to a boundary condition that B(τf ) =415

Beq(T (τf )) and, consequently, we should evolve the system to a late proper-time at which416

the system is close to isotropic thermal equilibrium.417

Before proceedings to our results, we need to define one quantity which has yet to be418

defined, namely the bulk correction to the pressure. In viscous hydrodynamics, the energy-419

momentum tensor is expressed generally as420

T µν = Eequ
µuν − (Peq + Π)∆µν + πµν , (85)

where Eeq = Eeq(T ) and Peq = Peq(T ) are the equilibrium energy density and pressure421

evaluated at the effective temperature. In the definition above, πµν is the shear tensor422

and Π is the (isotropic) bulk correction. Since πµν is a traceless tensor, πµµ = 0, which is423

transverse to the fluid four-velocity, uµπ
µν = 0, one finds that the bulk correction can be424

computed from425

Π = −1

3
∆µνT

µν − Peq =
1

3
(PL + 2PT )− Peq . (86)
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FIG. 3. The four panels show: (a) the effective temperature scaled by T0, (b) (τ/τ0)4/3 times the

energy density scaled by the initial energy density, E0, (c) the pressure anisotropy, and (d) the bulk

correction to the pressure scaled by Peq. For this figure we took 4πη/s = 1.

For the case of a temperature-dependent mass, one can use Eqs. (23) and (48). For the426

massless case, one can use Eqs. (17) and (80).427

Numerical results428

We now turn to our numerical results. In all plots, we compare the two methods for429

implementing the EoS in anisotropic hydrodynamics. For the curves labeled “Quasiparticle430

EoS”, we solve the dynamical equations specified in Sec. VII A and for the “Standard EoS”,431

we solve those in Sec. VII B. For purposes of the comparison, we match physical quantities432

rather than the microscopic parameters at τ0. In practice, this means that we specify an433

initial temperature T0, an initial momentum-space anisotropy quantified by PL,0/PT,0, and434
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FIG. 4. Same as Fig. 3 except here we take 4πη/s = 3.

an initial bulk correction, Π0. In all results figures, we present four panels which correspond435

to: (a) the effective temperature scaled by T0, (b) (τ/τ0)4/3 times the energy density scaled436

by E0, (c) the LRF pressure anisotropy, and (d) the bulk correction scaled by the equilibrium437

pressure, Π/Peq.438

In Figs. 3 - 5 we present our results for the case of isotropic initial conditions. In all439

panels, the microscopic parameters were adjusted to achieve PL,0/PT,0 = 1 and Π0 = 0.440

From panel (a) of this set of figures, we see that there is excellent agreement between441

the effective temperature predicted by each method for implementing the EoS. In practice,442

we found that, for all initial conditions we considered, the maximum difference between443

the effective temperature obtained using the two approaches was less than on the order of444

1%. To further explore the differences in the “first order” quantities, in panel (b) we have445

multiplied the scaled energy density by a factor of (τ/τ0)4/3. If the system behaved as an446
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FIG. 5. Same as Fig. 3 except here we take 4πη/s = 10.

ideal gas undergoing boost-invariant expansion in ideal hydrodynamics, then at late times447

this quantity should approach unity. Any late-time deviations from unity are indicative of448

the corrections to ideal Bjorken scaling. As we can see from panel (b) of Figs. 3 - 5, the449

energy density evolution obtained using the two approaches is quite close, with the largest450

difference between the two approaches being approximately 4%.451

Considering panel (c) of Figs. 3 - 5, we see that there are larger differences in the pressure452

anisotropy predicted by the two approaches. For this quantity, we see differences as large453

as 20%, however, the behavior of the pressure anisotropy is qualitatively the same overall.454

Finally, we turn to panel (d) of Figs. 3 - 5 which shows the bulk correction scaled by455

the equilibrium pressure. As we see from these panels, there is a qualitative difference in456

the temporal evolution of the bulk correction when comparing the two approaches. At late457

times, however, both approaches seem to converge to the same asymptotic limiting behavior.458
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FIG. 6. Same as Fig. 4 except here we take anisotropic initial conditions.

Note that the differences in the pressure anisotropy and bulk correction are already self-459

consistently taken into account in the evolution of the temperature/energy density. In this460

sense, despite having differences in the viscous corrections, the first order quantities seem461

to be quite insensitive to whether one uses the quasiparticle EoS method or the standard462

EoS method. That being said, the differences seen in panels (c) and (d) could manifest463

themselves as differences in the particle spectra computed along the hypersurface if these464

two methods are applied to QGP phenomenology.465

Finally, in Fig. 6 we present the same four panels, but in the case of an anisotropic initial466

condition with an oblate momentum-space anisotropy. As can be seen from Fig. 6, even for467

anisotropic initial conditions, the two EoS methods agree extremely well for the evolution468

the effective temperature and energy density. However, similar to the case of isotropic initial469

conditions, we see somewhat larger differences in the evolution of the pressure anisotropy and470
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qualitative differences in the evolution of the bulk pressure correction. For both quantities,471

we see that the two methods have the same late-time asymptotic behavior. Finally, we note472

that the behavior seen in Fig. 6 is indicative of the results we obtained for a variety of473

different non-equilibrium initial conditions.474

IX. CONCLUSIONS AND OUTLOOK475

In this paper, we presented a new method for imposing a realistic EoS in the context476

of anisotropic hydrodynamics. The method relies on a quasiparticle picture of the QGP,477

which is conceptually consistent with the kinetic theory method used to derive the re-478

quired hydrodynamic evolution equations from the Boltzmann equation. We discussed the479

fact that the introduction of a temperature-dependent quasiparticle mass requires an addi-480

tional background contribution to the energy-momentum tensor. We showed that requiring481

energy-momentum conservation results in a constraint equation on the background contribu-482

tion which reduces to the constraint necessary to enforce thermodynamic consistency in the483

isotropic equilibrium limit as found by previous authors [10, 11]. When solving the result-484

ing dynamical equations, we allowed the background contribution to be a non-equilibrium485

quantity. This was necessary to self-consistently implement the constraint equation.486

By numerically solving the resulting dynamical equations in the 0+1d, we compared487

the results obtained using the quasiparticle EoS method with those obtained using the488

standard method for imposing a realistic EoS in anisotropic hydrodynamics. We found that489

the temperature evolution obtained using the two methods was nearly identical and that490

there were only small differences in the pressure anisotropy. However, we found that there491

were large qualitative differences in the evolution of the bulk pressure correction. These492

conclusions were supported by the presentation of results for both isotropic and anisotropic493

initial conditions and also for different values of the shear viscosity to entropy density ratio,494

however, we internally checked a much larger set of initial conditions/parameter sets and495

found that these conclusions were generic. We note, however, that the difference in the496

bulk pressure correction found does not necessarily imply large corrections for heavy-ion497

phenomenology. As we have shown, first order quantities like the energy density are the498

same to within a few percent when comparing the two approaches. That being said, the499

differences in the bulk pressure in particular could be important when fixing the form of the500
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distribution function on the freezeout hypersurface.501

Looking forward, in a future work we will present numerical comparisons of the two502

approaches beyond the simple case of 0+1d expansion considered herein. Additionally, it503

would be quite interesting to apply the quasiparticle EoS method to obtain the dynamical504

evolution for a non-conformal system with temperature-dependent masses within the context505

of second-order viscous hydrodynamics. Finally, we note that it may be possible to construct506

exact solutions of the RTA Boltzmann equation for a system of particles with temperature-507

dependent masses using methods similar to those in Refs. [74–76]. Additionally, for the case508

of quasiparticle masses that are linear in the temperature, it may be possible to exactly509

solve the RTA Boltzmann equation subject to Gubser flow similar to Refs. [77, 78].510
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Appendix A: Explicit formulas for derivatives516

In this section, first we introduce the notations used in derivation of the general moment-517

based hydrodynamics equations and then, by taking the appropriate limits, we simplify them518

for the transversally-homogeneous 0+1d case. Using the definitions519

D ≡ cosh(ϑ− ς)∂τ +
1

τ
sinh(ϑ− ς)∂ς ,

D̃ ≡ sinh(ϑ− ς)∂τ +
1

τ
cosh(ϑ− ς)∂ς , (A1)

∇⊥ · u⊥ ≡ ∂xux + ∂yuy ,

u⊥ · ∇⊥ ≡ ux∂x + uy∂y ,

u⊥ ×∇⊥ ≡ ux∂y − uy∂x , (A2)
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and four-vectors defined in Eq. (8) one has520

Du ≡ uµ∂µ = u0D + u⊥ · ∇⊥ ,

Dx ≡ Xµ∂µ = u⊥D +
u0

u⊥
(u⊥ · ∇⊥) ,

Dy ≡ Y µ∂µ =
1

u⊥
(u⊥ ×∇⊥) ,

Dz ≡ Zµ∂µ = D̃ . (A3)

The divergences are defined as521

θu ≡ ∂µu
µ = Du0 + u0D̃ϑ+∇⊥ · u⊥ ,

θx ≡ ∂µX
µ = Du⊥ + u⊥D̃ϑ+

u0

u⊥
(∇⊥ · u⊥)− 1

u0u2
⊥

(u⊥ · ∇⊥)u⊥ ,

θy ≡ ∂µY
µ = − 1

u⊥
(u⊥ · ∇⊥)ϕ ,

θz ≡ ∂µZ
µ = Dϑ , (A4)

where ϕ = tan−1(uy/ux).522

uµDαX
µ =

1

u0

Dαu⊥ ,

uµDαY
µ = u⊥Dαϕ ,

uµDαZ
µ = u0Dαϑ ,

XµDαY
µ = u0Dαϕ ,

XµDαZ
µ = u⊥Dαϑ ,

YµDαZ
µ = 0 , (A5)

where α ∈ {u, x, y, z}. Note that contractions such as XµDαuµ are also non-vanishing, how-523

ever, such terms can be written in terms of the expressions above by using the orthogonality524

of the basis vectors, i.e. Dα(Xµuµ) = 0 implies that XµDαuµ = −uµDαX
µ.525
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1. Simplification for 1+1d526

In the case of boost-invariant and cylindrically-symmetric flow one has ϕ→ φ and ϑ→ ς,527

where ς is the spatial rapidity. Using u⊥ ≡ sinh θ⊥, one can rewrite (A2) as528

D = ∂τ ,

D̃ =
1

τ
∂ς , (A6)

∇⊥ · u⊥ = ∂ru⊥ +
u⊥
r
,

u⊥ · ∇⊥ = u⊥∂r ,

u⊥ ×∇⊥ =
u⊥
r
∂φ .

Also, the identities in (A4) become529

Du = cosh θ⊥∂τ + sinh θ⊥∂r , (A7)

Dx = sinh θ⊥∂τ + cosh θ⊥∂r , (A8)

Dy =
1

r
∂φ , (A9)

Dz =
1

τ
∂ς , (A10)

θu = cosh θ⊥

(1

τ
+ ∂rθ⊥

)
+ sinh θ⊥

(1

r
+ ∂τθ⊥

)
, (A11)

θx = sinh θ⊥

(1

τ
+ ∂rθ⊥

)
+ cosh θ⊥

(1

r
+ ∂τθ⊥

)
, (A12)

θy = θz = 0 . (A13)

In this limit, the only non-vanishing terms in (A5) are530

uµDuX
µ = Duθ⊥ ,

uµDxX
µ = Dxθ⊥ ,

uµDyY
µ =

1

r
sinh θ⊥ ,

uµDzZ
µ =

1

τ
cosh θ⊥ ,

XµDyY
µ =

1

r
cosh θ⊥ ,

XµDzZ
µ =

1

τ
sinh θ⊥ . (A14)
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2. Simplification for 0+1d531

For this case, one has θ⊥ = 0 and532

Du = ∂τ , (A15)

Dx = ∂r , (A16)

Dy =
∂φ
r
, (A17)

Dz =
∂ς
τ
, (A18)

θu =
1

τ
, (A19)

θx =
1

r
, (A20)

θy = θz = 0 . (A21)

In this limit, the only non-vanishing terms in (A5) are533

uµDzZ
µ =

1

τ
,

XµDyY
µ =

1

r
.

Appendix B: special functions534

In this section, we provide definitions of the special functions appearing in the body of535

the text. We start by introducing536

H2(y, z) ≡ y

∫ 1

−1

dx
√

(y2 − 1)x2 + z2 + 1

=
y√
y2 − 1

[
(z2 + 1) tanh−1

√
y2 − 1

y2 + z2
+
√

(y2 − 1)(y2 + z2)

]
, (B1)

537

H2T (y, z) ≡ y

1∫
−1

dx(1− x2)√
(y2 − 1)x2 + z2 + 1

=
y

(y2 − 1)3/2

[(
z2 + 2y2 − 1

)
tanh−1

√
y2 − 1

y2 + z2
−
√

(y2 − 1)(y2 + z2)

]
, (B2)
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538

H2L(y, z) ≡ y3

1∫
−1

dx x2√
(y2 − 1)x2 + z2 + 1

=
y3

(y2 − 1)3/2

[√
(y2 − 1)(y2 + z2)− (z2 + 1) tanh−1

√
y2 − 1

y2 + z2

]
. (B3)

Derivatives of these functions satisfy the following relations539

∂H2(y, z)

∂y
=

1

y

[
H2(y, z) +H2L(y, z)

]
, (B4)

∂H2(y, z)

∂z
=

1

z

[
H2(y, z)−H2L(y, z)−H2T (y, z)

]
. (B5)

1. Massive Case540

The H-functions appearing in the definitions of components of the energy-momentum541

tensor are542

H3(α, m̂) ≡ Ñαxαy

∫ 2π

0

dφα2
⊥

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2

(
αz
α⊥

,
m̂

α⊥p̂

)
, (B6)

H3x(α, m̂) ≡ Ñα3
xαy

∫ 2π

0

dφ cos2 φ

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2T

(
αz
α⊥

,
m̂

α⊥p̂

)
, (B7)

H3y(α, m̂) ≡ Ñαxα
3
y

∫ 2π

0

dφ sin2 φ

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2T

(
αz
α⊥

,
m̂

α⊥p̂

)
, (B8)

H3T (α, m̂) ≡ 1

2

[
H3x(α, m̂) +H3y(α, m̂)

]
, (B9)

H3L(α, m̂) ≡ Ñαxαy

∫ 2π

0

dφα2
⊥

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2L

(
αz
α⊥

,
m̂

α⊥p̂

)
, (B10)

H3m(α, m̂) ≡ Ñαxαym̂
2

∫ 2π

0

dφα2
⊥

∫ ∞
0

dp̂ p̂3
feq

(√
p̂2 + m̂2

)
√
p̂2 + m̂2

H2

(
αz
α⊥

,
m̂

α⊥p̂

)
, (B11)

H3B(α, m̂) ≡ Ñαxαy

∫ 2π

0

dφ

∫ ∞
0

dp̂ p̂feq

(√
p̂2 + m̂2

)
H2B

(
αz
α⊥

,
m̂

α⊥p̂

)
, (B12)

ΩT (α, m̂) ≡ H3 +H3T , (B13)

ΩL(α, m̂) ≡ H3 +H3L , (B14)

Ωm(α, m̂) ≡ H3 −H3L − 2H3T −H3m , (B15)
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where α2
⊥ ≡ α2

x cos2 φ+ α2
y sin2 φ and543

H2B(y, z) ≡ H2T (y, z) +
H2L(y, z)

y2
=

2√
y2 − 1

tanh−1

√
y2 − 1

y2 + z2
. (B16)

Also, derivatives of H3 satisfy544

∂H3

∂αx
=

2

αx
ΩT , (B17)

∂H3

∂αz
=

1

αz
ΩL , (B18)

∂H3

∂m̂
=

1

m̂
Ωm . (B19)

For a 0+1d system one has αx = αy such that α⊥ = αx and H̃3T ≡ H̃3x = H̃3y, so that one545

obtains546

H̃3(α, m̂) ≡ 2πÑα4
x

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2

(
αz
αx
,
m̂

αxp̂

)
, (B20)

H̃3T (α, m̂) ≡ πÑα4
x

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2T

(
αz
αx
,
m̂

αxp̂

)
, (B21)

H̃3L(α, m̂) ≡ 2πÑα4
x

∫ ∞
0

dp̂ p̂3feq

(√
p̂2 + m̂2

)
H2L

(
αz
αx
,
m̂

αxp̂

)
, (B22)

H̃3m(α, m̂) ≡ 2πÑα4
xm̂

2

∫ ∞
0

dp̂ p̂3
feq

(√
p̂2 + m̂2

)
√
p̂2 + m̂2

H2

(
αz
αx
,
m̂

αxp̂

)
, (B23)

H3B(α, m̂) ≡ 2πÑα2
x

∫ ∞
0

dp̂ p̂feq

(√
p̂2 + m̂2

)
H2B

(
αz
αx
,
m̂

αxp̂

)
. (B24)

For the isotropic equilibrium case, one has αi → 1, λ→ T , and m̂→ m̂eq547

H̃3,eq(m̂eq) = 4πÑm̂2
eq

[
m̂eqK1(m̂eq) + 3K2(m̂eq)

]
, (B25)

H̃3T,eq(m̂eq) = H̃3L,eq(m̂eq) = 4πÑm̂2
eqK2(m̂eq) , (B26)

H̃3m,eq(m̂eq) = 4πÑm̂4
eqK2(m̂eq) . (B27)
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2. Massless Case548

Taking the massless limit of Eqs. (B6) - (B12) one obtains549

Ĥ3(α) ≡ lim
m→0
H3(α, m̂) = 6Ñαxαy

∫ 2π

0

dφα2
⊥H̄2

( αz
α⊥

)
, (B28)

Ĥ3x(α) ≡ lim
m→0
H3x(α, m̂) = 6Ñα3

xαy

∫ 2π

0

dφ cos2 φ H̄2T

( αz
α⊥

)
, (B29)

Ĥ3y(α) ≡ lim
m→0
H3y(α, m̂) = 6Ñαxα

3
y

∫ 2π

0

dφ sin2 φ H̄2T

( αz
α⊥

)
, (B30)

Ĥ3L(α) ≡ lim
m→0
H3L(α, m̂) = 6Ñαxαy

∫ 2π

0

dφα2
⊥H̄2L

( αz
α⊥

)
, (B31)

Ĥ3m(α) ≡ lim
m→0
H3m(α, m̂) = 0 , (B32)

where H̄2,2T,2L(y) ≡ H2,2T,2L(y, 0). In the transversally-symmetric case, αx = αy and H̄3T ≡550

H̄3x = H̄3y, and the functions above simplify to551

H̄3(α) = 12πÑα4
xH̄2

(αz
αx

)
, (B33)

H̄3T (α) = 6πÑα4
xH̄2T

(αz
αx

)
, (B34)

H̄3L(α) = 12πÑα4
xH̄2L

(αz
αx

)
. (B35)

In the isotropic equilibrium case, one has αi → 1 and λ→ T , and, as a result,552

H̄3,eq = 24πÑ , (B36)

H̄3T,eq = H̄3L,eq(α) = 8πÑ . (B37)
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