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We investigate the survival rate of an initial momentum anisotropy (vini

2 ), not spatial anisotropy,
to the final state in a multi-phase transport (AMPT) model in Au+Au collisions at

√
sNN=200 GeV.

It is found that both the final-state parton and charged hadron v2 show a linear dependence versus
vini

2 {PP} with respect to the participant plane (PP). It is found that the slope of this linear depen-
dence (referred to as the survive rate) increases with transverse momentum (pT ), reaching ∼100%
at pT∼2.5 GeV/c for both parton and charged hadron. The survival rate decreases with collision
centrality and energy, indicating decreasing survival rate with increasing interactions. It is further
found that a vini

2 {Rnd} with respect to a random direction does not survive in v2{PP} but in the
two-particle cumulant v2{2}. The dependence of v2{2} on vini

2 {Rnd} is quadratic rather than linear.

I. Introduction

A new state of matter, the strongly coupled quark
gluon plasma (sQGP), is created in relativistic heavy ion
collisions [1–4]. One of the most important evidence is
the measured large elliptic flow in non-central heavy ion
collisions, believed to stem out of final state interactions
in the anisotropic overlap zone [5]. The measured ellip-
tic flow is so large that it is compatiable with hydrody-
namic calculations with minimal shear viscosity to en-
tropy density ratio (η/s), indicating maximal final-state
interactions [6, 7].
Present hydrodynamic calculations start from an ini-

tial condition of isotropic momentum distribution. It
has been argued, however, that the initial momentum
anisotropy may not be zero in relativistic heavy ion colli-
sions. For example, it is suggested that the wave function
is asymmetric in momentum space due to Heisenberg un-
certainty principle because of the spatial anisotropic over-
lap [8]. In classical Yang-Mills dynamics it is found that
initial momentum anisotropy can arise from the event-by-
event breaking of rotational invariance in local domains
whose size is determined by the saturation scale [9]. Ini-
tial flow in classical Yang-Mills field can also develop from
the non-abelian generalization of Gauss’ Law and Am-
pere’s and Faraday’s Laws [10]. In proton-proton colli-
sions color reconnection can produce initial flow-like cor-
relations [11] and it may be relevant for heavy ion col-
lisions as well. If there indeed exist initial momentum
anisotropies and these initial anisotropies can partially
survive to the final state, then the comparison of data
to hydrodynamics without initial momentum anisotropy
would not be reliable to extract transport properties of
the sQGP, such as the η/s. In this paper, we investigate
the survival rate of an input initial momentum anisotropy
using a parton transport model.
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II. Analysis

We employ A Multi-Phase Transport (AMPT) model
with string melting and 3 mb parton cross section [12, 13].
This model can describe well the measured particle ra-
pidity distributions, transverse momentum spectra, and
elliptic flow [14]. AMPT consists of four main parts: the
initial condition, parton-parton interactions, hadroniza-
tion, and hadronic scatterings. The initial condition is
taken from the HIJING model [15]. It uses Glauber
nuclear geometry to model the spatial and momentum
information of minijet partons from hard processes and
strings from soft processes. The interactions of partons
are treated by the ZPC parton cascade model [16]. Af-
ter parton interactions cease, a combined coalescence and
string fragmentation model is used for the hadronization
of partons. Finally, the ART model is used to describe
the elastic and inelastic scatterings of hadrons [17].
Elliptic flow can be quantified by v2, the second har-

monic Fourier coefficient of the particle azimuthal distri-
bution in momentum space [18],

dN/dφ ∝ 1 + 2v2{PP} cos 2(φ−Ψ2{PP}). (1)

In AMPT, the initial parton azimuthal distribution is
isotropic:

dN

dφini

= constant. (2)

We can artificially create a momentum anisotropy by
“squeezing” particles towards a particular plane. We first
choose this plane to be the participant plane (PP) of the
initial partons in configuration space. The azimuthal an-
gle of the participant plane is given by

ΨPP

2 =
atan2(〈r2ini sin 2φini〉, 〈r2ini cos 2φini〉) + π

2
, (3)

where rini and φini are polar coordinate position. Mathe-
matically we change each parton’s initial azimuthal angle
φini into φ′

ini by:

φ′
ini = φini + δ, (4)
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such that

dN

dφ′
ini

= 1 + 2vini2 {PP} cos 2(φ′
ini −ΨPP

2 ). (5)

In order to achieve an initial anisotropy vini2 {PP} with
respect to ΨPP

2 , one applies

δ = − vini2 {PP} sin 2(φini −ΨPP
2 )

1 + 2vini
2

{PP} cos 2(φini −ΨPP
2

)
. (6)

Second, we choose this particular plane to be a random
azimuthal direction ΨRnd

2 , not the participant plane along
which hydrodynamic collective flow develops. We denote
this initial anisotropy as vini2 {Rnd}. Same as Eq. 6, one
applies

δ = − vini2 {Rnd} sin 2(φini −ΨRnd
2 )

1 + 2vini
2

{Rnd} cos 2(φini −ΨRnd
2

)
. (7)

In these operations, only the parton’s azimuthal angle
is altered, no other changes. The event now has an ini-
tial anisotropy (vini2 {PP} or vini2 {Rnd}). The event then
evolves as modeled by AMPT. In this analysis we have
used a given vini2 in each event, independent of the parton
pT .
We analyze the momentum anisotropies of the final-

state partons (i.e. after parton interactions cease and be-
fore hadronization) and the final-state hadrons by the
Fourier coefficients [19]:

v2{PP} = 〈cos 2(φ−ΨPP

2 )〉, (8)

where φ is the particle (parton or hadron) azimuthal an-
gle.
Experimentally, however, the participant plane is in-

accessible. The momentum anisotropy is often analyzed
by final-state two-particle correlations. In absence of in-
trinsic particle correlations (nonflow), the final-state two-
particle correlations are caused by each particle’s corre-
lation to the common participant plane (i.e. flow corre-
lations) of Eq. 1. In such a case, the two-particle density
is given by

d2N/d∆φ = 1 + 2v2{2}2 cos∆φ, (9)

where ∆φ = φ1 − φ2 is the azimuthal angle difference
between the two particles. The momentum anisotropy
can thereby be calculated by

v2{2} =
√

〈〈cos 2(φ1 − φ2)〉〉, (10)

without requiring the participant plane [20]. We use the
Q-cumulant method [21] to calculate 〈cos 2(φ1 − φ2)〉 in
each event, by

〈cos 2(φ1 − φ2)〉 =
|Q2|2 −M

M(M − 1)
. (11)

Here the second-harmonic flow vector Q2 is given by

Q2 =

M
∑

i

ei2φi , (12)

andM is the number of particles used in the Q-cumulant.
In the averaging of 〈cos 2(φ1 − φ2) over events in Eq. 10,
we have applied the weight of M(M − 1). For differen-
tial flow as a function of pT , we compute the correlation
between a particle of interest at pT (azimuth φ) and a
reference particle (azimuth φref), 〈〈cos 2(φ−φref)〉〉. The
anisotropy of the particles of interest is then given by

v2{2}(pT ) =
〈cos 2(φ− φref)〉

vref
2

{2} (13)

where the reference particle vref2 {2} is given by Eq. 10,
where φ1 and φ2 are both of reference particles. We again
use the Q-cumulant method to compute 〈cos 2(φ−φref)〉,
by

〈cos 2(φ− φref)〉 =
p2Q

∗
2 −mq

mpM −mq

, (14)

where p2 is the second-harmonic flow vector (Eq. 12) of
the particles of interest, mp is the number of the particles
of interest, and mq is the number of particles in the over-
lap of the two groups (particles of interest and reference
particles).

III. Results

Figure 1 shows the final-state charged hadron v2{PP}
at mid-rapidity (|η| < 1) versus transverse momen-
tum (pT ) for fixed impact parameter (b=8 fm) Au+Au
collisions at

√
sNN=200 GeV. The black circles show

the default result without initial vini2 {PP}. The red
squares show the result with vini2 {PP}=8%. With ini-
tial vini2 {PP}, the final v2{PP} is larger, and the effect is
more significant at higher pT . This is consistent with the
finding in Ref. [22] that higher pT partons suffer fewer
collisions on average and thus retain larger fraction of
their initial anisotropy.
Figure 2 shows the parton and hadron v2{PP} versus

initial parton vini2 {PP}, for 1.5< pT <2 GeV/c as an ex-
ample. We fit the results with the two-parameter linear
function, v2{PP} = r×vini2 {PP}+v2(0). The fitting pa-
rameter v2(0) corresponds to the result without an initial
vini2 {PP}. We use the slope parameter r to quantify the
survival rate of an input initial vini2 {PP}. We show in
Fig. 3 the survival rate as a function of pT for b=8 fm
Au+Au collisions. The survival rate increases with pT .
This is because partons with lower pT suffer on average
more collisions before freezeout, which tend to wash out
the initial v2. Meanwhile, at higher pT , the survival rate
is larger as they suffer fewer collisions. With zero colli-
sion, the initial vini2 {PP} will be intact and the survival
rate would be 100%. It is interesting to note that the
survival rate at high pT can be larger than unity, at least
for the partons in the highest pT bin studied in this anal-
ysis. This probably suggests some non-linear effect in v2
at high pT that the initial v2 enhances the final-state de-
velopment of collective anisotropic flow. It is worthwhile



3

 (GeV/c)
T

p
0 1 2 3

{P
P

}
2

H
ad

ro
n 

v

0

0.1

0.2

0.3

0.4

 = 8%{PP}ini
2v

 = 0%{PP}ini
2v

AMPT Au+Au 200 GeV b=8 fm

<1η

        

        

FIG. 1. (color online) Mid-rapidity (|η| < 1) hadrons v2{PP}
versus pT with vini

2 {PP} = 0% and vini

2 {PP} = 8% for b=8 fm
Au+Au collisions at

√
sNN=200 GeV by AMPT (string melt-

ing).

to note that the survival rate of the initial vini2 {PP} to
the final-state hadron, at a given pT value, is smaller than
that to the final-state partons before hadronization. This
is presumably due to the facts that partons cluster into
hadrons at higher pT and that hadrons rescatter after
hadronization.
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FIG. 2. (color online) Mid-rapidity (|η| < 1) final-state par-
tons and hadrons v2{PP} at 1.5 < pT < 2 GeV/c versus
vini

2 {PP} for b=8 fm Au+Au collisions at
√
sNN=200 GeV

by AMPT (string melting).

We show the beam energy dependence of the sur-
vival rate in Fig. 4 (a) and the centrality dependence in
Fig. 4 (b). The parton and haron pT are integrated over
the range of 0< pT <2 GeV/c. Note v2 is generally not
zero in b=0 fm collisions because of event-by-event fluctu-
ations in the initial overlap geometry. The survival rate
decreases with increasing collision energy and increasing
centrality for both partons and hadrons. Higher energy
collisions and/or more central collisions correspond to
stronger interactions which reduce the survival rate of
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FIG. 3. (color online) The survival rate of initial momentum
anisotropy to final-state partons and charged hadrons at mid-
rapidity (|η < 1|) as a function of pT for b=8 fm Au+Au
collisions at

√
sNN=200 GeV by AMPT (string melting).

the initial anisotropy.
The interpretation of our results is relatively straight-

forward. The survival rate depends on the final-state
activity. The more the partons (and hadrons) interact,
the smaller the survival rate of the initial momentum
anisotropy. Because in AMPT the collision system has
relatively low opacity [22], the survival rate is apprecia-
ble. With large opacity, the survival rate should be min-
imal. It will be interesting to repeat our study using
hydrodynamics, starting from a non-zero initial momen-
tum anisotropy.
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FIG. 4. (color online) Survival rate as a function of (a)
collision energy and (b) impact parameter for mid-rapidity
(|η| < 1) final-state partons and charged hadrons in 0< pT <2
GeV/c for Au+Au collisions by AMPT (string melting).

We have so far used the participant plane from the
model to calculate final-state particle v2{PP} to demon-
strate that initial momentum anisotropy can survive
to the final state. As mentioned earlier, participant
plane cannot be accessed in experiment, and instead two-
particle correlations are used to measure the momentum
anisotropy, v2{2}. We have verified that v2{2}, while
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slightly larger than v2{PP} because of nonflow effects in
AMPT, gives the same qualitative conclusion.
In the above we have generated vini2 {PP} with respect

to the participant plane. Several physics mechanisms [9–
11] suggest that the initial momentum anisotropy is inde-
pendent of the configuration space anisotropy of the col-
lision, but rather random. To study the survival rate of
such initial momentum anisotropies, we repeat our anal-
ysis but with vini2 {Rnd} with respect to a random plane
by Eq. 7.
Figure 5 (a) shows the v2{PP} as a function of

pT with various vini2 {Rnd}. As seen from the figure,
vini2 {Rnd} does not have major effect on v2{PP}. In
other words, vini2 {Rnd} does not survive in v2{PP}. This
is understandable because the initial correlations due to
vini2 {Rnd} are averaged out to zero in v2{PP}. Fig-
ure 5 (b) shows the v2{2} as a function of pT with various
vini2 {Rnd}. It is found that vini2 {Rnd} has noticeable ef-
fect on the final v2{2}.
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FIG. 5. (color online) Mid-rapidity (|η| < 1) hadrons (a)
v2{PP} and (b) v2{2} versus pT with vini

2 {Rnd}=0%, 8%
and 20% for b=8 fm Au+Au collisions at

√
sNN=200 GeV by

AMPT (string melting).

In order to study the survival rate of vini2 {Rnd}, we
show in Fig. 6 the mid-rapidity (|η| < 1) charged hadron
v2{2} (solid markers) and v2{PP} (hollow markers) ver-

sus vini2 {Rnd} in two pT ranges. The v2{2} is slightly
larger than v2{PP} with no vini2 , and this is because
of nonflow effects in AMPT which are present in v2{2}
but not in v2{PP}. The horizontal dashed line (going
through the hollow point at vini2 {Rnd}=0) would indicate
vanishing effect of vini2 {Rnd}. As can be seen from the
figure, the v2{PP} data points approximately lie along
the dashed line. Some minor, but noticeable deviations
from the horizontal line may be due to the fact that the
AMPT evolution will not be the same once an initial
vini2 {Rnd} is introduced in an event. A large vini2 {Rnd}
may drive the collision system to expand more efficiently
in a direction not coinciding with the participant plane
but slightly deviating from it. This could cause a smaller
v2{PP}, which seems to be the case for large vini2 {Rnd}.
The v2{2}, on the other hand, increases with

vini2 {Rnd}. The increase is not linear as previously ob-
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FIG. 6. (color online) Mid-rapidity (|η| < 1) hadrons v2{2}
and v2{PP} versus vini

2 {Rnd} for b=8 fm Au+Au collisions
at

√
sNN=200 GeV by AMPT (string melting). The solid

lines are fitting results. The dashed lines are horizontal and
through the point of vini

2 {Rnd}=0.

served with vini2 {PP}. This can be understood as follows.
Suppose the final single particle azimuthal distribution is
described by

dN/dφ ∝ 1 + 2v2{PP}(0) cos(φ−ΨPP

2 ) + 2r × vini2 {Rnd} cos 2(φ−ΨRnd

2 ), (15)

where v2{PP}(0) is the “hydrodynamic” flow from normal AMPT, and r×vini2 {Rnd} is the surviving initial momentum
anisotropy along Ψ2{Rnd} with a rate r. The two-particle correlations would be

d2N/d∆φ ∝
∫

dΨPP

2

∫

dΨRnd

2 [1 + 2v2{PP}(0) cos(φ1 −ΨPP

2 ) + 2r × vini2 {Rnd} cos 2(φ1 −ΨRnd

2 )]

×[1 + 2v2{PP}(0) cos(φ2 −ΨPP

2 ) + 2r × vini2 {Rnd} cos 2(φ2 −ΨRnd

2 )]

∝ 1 + 2v2{PP}(0)2 cos 2∆φ+ r2 × 2vini2 {Rnd}2 cos 2∆φ. (16)

Thus, comparing to Eq. 9 , we have

v2{2} =
√

v2{PP}(0)2 + r2 × vini
2

{Rnd}2. (17)

The relationship is not linear, but quadratic. If the initial
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vini2 was with respect to the participant plane, as we have
studied previously, then the final v2 would be

v2{2} ≈ v2{PP} = v2{PP}(0) + r × vini2 {PP}, (18)

as we have used in the linear fit in Fig. 2. We thus fit the
v2{2} vs. vini2 {Rnd} data in Fig. 6 by a quadratic func-
tion of the form in Eq. 17. The fits are shown by the solid
curves in Fig. 6. Our results show that vini2 {Rnd} will
survive to final state. This is because the vini2 {Rnd} in-
troduces an initial particle correlation, which survives to
the end when the particles interact minimally in the final
state. Therefore, the initial momentum anisotropy, even
with respect to a random plane, will contribute to the
final anisotropy measurement by particle correlations.

IV. Summary

We have studied to what extent an input initial mo-
mentum anisotropy survives to the final state using
the AMPT model. It is found that the final momen-
tum anisotropy shows a linear dependence on the ini-
tial momentum anisotropy relative to the configuration-
space participant plane (PP). The slope of this lin-

ear dependence (survival rate) increases approximately
linearly with pT , with ∼100% survival rate at high
pT∼2.5 GeV/c. The survival rate decreases with increas-
ing centrality and increasing beam energy. An initial mo-
mentum anisotropy relative to a random plane does not
survive to the final-state v2{PP} with respect to the par-
ticipant plane, but survives to the two-particle cumulant
v2{2}. The v2{2} survival rate is quadratic in vini2 {Rnd}
with appreciable magnitude when vini2 {Rnd} is sizeable.
Our results can be understood as that the survival rate
decreases with increasing final-state interactions.
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