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We investigate the survival rate of an initial momentum anisotropy (vé’”), not spatial anisotropy,
to the final state in a multi-phase transport (AMPT) model in Au+Au collisions at \/syn=200 GeV.
It is found that both the final-state parton and charged hadron v2 show a linear dependence versus
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03" {PP} with respect to the participant plane (PP). It is found that the slope of this linear depen-
dence (referred to as the survive rate) increases with transverse momentum (pr), reaching ~100%
at pr~2.5 GeV/c for both parton and charged hadron. The survival rate decreases with collision
centrality and energy, indicating decreasing survival rate with increasing interactions. It is further

int

found that a vj

{Rnd} with respect to a random direction does not survive in v2{PP} but in the

two-particle cumulant v2{2}. The dependence of v2{2} on v4"*{Rnd} is quadratic rather than linear.

I. Introduction

A new state of matter, the strongly coupled quark
gluon plasma (sQGP), is created in relativistic heavy ion
collisions [1-4]. One of the most important evidence is
the measured large elliptic flow in non-central heavy ion
collisions, believed to stem out of final state interactions
in the anisotropic overlap zone [5]. The measured ellip-
tic flow is so large that it is compatiable with hydrody-
namic calculations with minimal shear viscosity to en-
tropy density ratio (n/s), indicating maximal final-state
interactions [6, 7.

Present hydrodynamic calculations start from an ini-
tial condition of isotropic momentum distribution. It
has been argued, however, that the initial momentum
anisotropy may not be zero in relativistic heavy ion colli-
sions. For example, it is suggested that the wave function
is asymmetric in momentum space due to Heisenberg un-
certainty principle because of the spatial anisotropic over-
lap [8]. In classical Yang-Mills dynamics it is found that
initial momentum anisotropy can arise from the event-by-
event breaking of rotational invariance in local domains
whose size is determined by the saturation scale [9]. Ini-
tial flow in classical Yang-Mills field can also develop from
the non-abelian generalization of Gauss’ Law and Am-
pere’s and Faraday’s Laws [10]. In proton-proton colli-
sions color reconnection can produce initial flow-like cor-
relations [11] and it may be relevant for heavy ion col-
lisions as well. If there indeed exist initial momentum
anisotropies and these initial anisotropies can partially
survive to the final state, then the comparison of data
to hydrodynamics without initial momentum anisotropy
would not be reliable to extract transport properties of
the sQGP, such as the n/s. In this paper, we investigate
the survival rate of an input initial momentum anisotropy
using a parton transport model.
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II. Analysis

We employ A Multi-Phase Transport (AMPT) model
with string melting and 3 mb parton cross section [12, 13].
This model can describe well the measured particle ra-
pidity distributions, transverse momentum spectra, and
elliptic flow [14]. AMPT consists of four main parts: the
initial condition, parton-parton interactions, hadroniza-
tion, and hadronic scatterings. The initial condition is
taken from the HIJING model [15]. It uses Glauber
nuclear geometry to model the spatial and momentum
information of minijet partons from hard processes and
strings from soft processes. The interactions of partons
are treated by the ZPC parton cascade model [16]. Af-
ter parton interactions cease, a combined coalescence and
string fragmentation model is used for the hadronization
of partons. Finally, the ART model is used to describe
the elastic and inelastic scatterings of hadrons [17].

Elliptic flow can be quantified by wvs, the second har-
monic Fourier coefficient of the particle azimuthal distri-
bution in momentum space [18],

dN/d¢p x 1+ 2v{PP} cos2(¢p — U2{PP}). (1)

In AMPT, the initial parton azimuthal distribution is
isotropic:

dN
We can artificially create a momentum anisotropy by
“squeezing” particles towards a particular plane. We first
choose this plane to be the participant plane (PP) of the

initial partons in configuration space. The azimuthal an-
gle of the participant plane is given by

= constant.

(2)

atan2((r2 . sin 2¢ini), (r2,; 08 2¢in;)) + 3)
2 9

where 7;,; and ¢;,; are polar coordinate position. Mathe-
matically we change each parton’s initial azimuthal angle
(bini into 4 by:

mni

PP _
Uyt =

Gini = Pini + 9, (4)
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such that

dN o
W = 1 —+ 2,0377,1{1)13} COS 2(@6;7”

In order to achieve an initial anisotropy v&"*{PP} with
respect to WEP | one applies

- w5 (5)

B Vi {PP} sin2(pin; — ¥HT) (©)
1+ 208" {PP} cos 2(in; — EF)’

6:

Second, we choose this particular plane to be a random
azimuthal direction W74 not the participant plane along
which hydrodynamic collective flow develops. We denote
this initial anisotropy as v3"*{Rnd}. Same as Eq. 6, one
applies

B Vi {Rnd} sin 2(¢,; — UHnd)
1 + 208" {Rnd} cos 2(¢n; — WHnd)’

= (7)

In these operations, only the parton’s azimuthal angle
is altered, no other changes. The event now has an ini-
tial anisotropy (vi"*{PP} or v&"{Rnd}). The event then
evolves as modeled by AMPT. In this analysis we have
used a given vy in each event, independent of the parton
pr-

We analyze the momentum anisotropies of the final-
state partons (i.e. after parton interactions cease and be-
fore hadronization) and the final-state hadrons by the
Fourier coefficients [19]:

v2{PP} = (cos2(¢ — ¥3")), (8)

where ¢ is the particle (parton or hadron) azimuthal an-
gle.

Experimentally, however, the participant plane is in-
accessible. The momentum anisotropy is often analyzed
by final-state two-particle correlations. In absence of in-
trinsic particle correlations (nonflow), the final-state two-
particle correlations are caused by each particle’s corre-
lation to the common participant plane (i.e. flow corre-
lations) of Eq. 1. In such a case, the two-particle density
is given by

d*N/dA¢ = 1 + 2v9{2}? cos A¢, (9)
where A¢p = ¢1 — ¢o is the azimuthal angle difference

between the two particles. The momentum anisotropy
can thereby be calculated by

v2{2} = V/{{cos 2(d1 — 62)), (10)

without requiring the participant plane [20]. We use the
Q-cumulant method [21] to calculate (cos2(¢1 — ¢2)) in
each event, by

foos2(0n —on)) = 2y ()

Here the second-harmonic flow vector Q)5 is given by

M

QQ = Zeﬁd)ia (12)

i

and M is the number of particles used in the Q-cumulant.
In the averaging of (cos2(¢1 — ¢2) over events in Eq. 10,
we have applied the weight of M (M — 1). For differen-
tial flow as a function of py, we compute the correlation
between a particle of interest at pr(azimuth ¢) and a
reference particle (azimuth ¢yer), ((c082(¢ — ¢rer))). The
anisotropy of the particles of interest is then given by

(cos2(¢p — Pret))
52}

where the reference particle vi*f{2} is given by Eq. 10,
where ¢ and ¢, are both of reference particles. We again
use the Q-cumulant method to compute (cos 2(¢ — dref)),
by

v2{2}(pr) = (13)

5—m
(cos2(¢p — Pret)) = %, (14)
where py is the second-harmonic flow vector (Eq. 12) of
the particles of interest, m,, is the number of the particles
of interest, and mg is the number of particles in the over-
lap of the two groups (particles of interest and reference
particles).

III. Results

Figure 1 shows the final-state charged hadron vy{PP}
at mid-rapidity (|| < 1) versus transverse momen-
tum (pr) for fixed impact parameter (b=8 fm) Au+Au
collisions at /syny=200 GeV. The ‘b‘lack circles show
the default result without initial v4"*{PP}. The red
squares show the result with v§"{PP}=8%. With ini-
tial vi"'{PP}, the final vo{PP} is larger, and the effect is
more significant at higher pp. This is consistent with the
finding in Ref. [22] that higher pr partons suffer fewer
collisions on average and thus retain larger fraction of
their initial anisotropy.

Figure 2 shows the parton and hadron vo{PP} versus
initial parton vi"*{PP}, for 1.5< pr <2 GeV/c as an ex-
ample. We fit the results with the two-parameter linear
function, vo{PP} = r x vi"*{PP} +v2(0). The fitting pa-
rameter v3(0) corresponds to the result without an initial
v {PP}. We use the slope parameter r to quantify the
survival rate of an input initial vi"*{PP}. We show in
Fig. 3 the survival rate as a function of pr for b=8 fm
Au+Au collisions. The survival rate increases with pp.
This is because partons with lower pp suffer on average
more collisions before freezeout, which tend to wash out
the initial vo. Meanwhile, at higher pr, the survival rate
is larger as they suffer fewer collisions. With zero colli-
sion, the initial v§"*{PP} will be intact and the survival
rate would be 100%. It is interesting to note that the
survival rate at high pr can be larger than unity, at least
for the partons in the highest pr bin studied in this anal-
ysis. This probably suggests some non-linear effect in vy
at high pr that the initial v enhances the final-state de-
velopment of collective anisotropic flow. It is worthwhile
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FIG. 1. (color online) Mid-rapidity (|n| < 1) hadrons v2{PP}
versus pr with v3"* {PP} = 0% and v3"* {PP} = 8% for b=8 fm
Au+Au collisions at /syny=200 GeV by AMPT (string melt-
ing).

to note that the survival rate of the initial v5"*{PP} to
the final-state hadron, at a given pr value, is smaller than
that to the final-state partons before hadronization. This
is presumably due to the facts that partons cluster into
hadrons at higher pr and that hadrons rescatter after
hadronization.
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FIG. 3. (color online) The survival rate of initial momentum
anisotropy to final-state partons and charged hadrons at mid-

rapidity (|[n < 1|) as a function of pr for b=8 fm Au+Au
collisions at /syny=200 GeV by AMPT (string melting).

the initial anisotropy.

The interpretation of our results is relatively straight-
forward. The survival rate depends on the final-state
activity. The more the partons (and hadrons) interact,
the smaller the survival rate of the initial momentum
anisotropy. Because in AMPT the collision system has
relatively low opacity [22], the survival rate is apprecia-
ble. With large opacity, the survival rate should be min-
imal. It will be interesting to repeat our study using
hydrodynamics, starting from a non-zero initial momen-
tum anisotropy.
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FIG. 2. (color online) Mid-rapidity (|| < 1) final-state par-
tons and hadrons v2{PP} at 1.5 < pr < 2 GeV/c versus
vé’”{PP} for b=8 fm Au+Au collisions at /syy=200 GeV
by AMPT (string melting).

We show the beam energy dependence of the sur-
vival rate in Fig. 4 (a) and the centrality dependence in
Fig. 4 (b). The parton and haron pr are integrated over
the range of 0< pr <2 GeV/c. Note vq is generally not
zero in b=0 fm collisions because of event-by-event fluctu-
ations in the initial overlap geometry. The survival rate
decreases with increasing collision energy and increasing
centrality for both partons and hadrons. Higher energy
collisions and/or more central collisions correspond to
stronger interactions which reduce the survival rate of
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FIG. 4. (color online) Survival rate as a function of (a)

collision energy and (b) impact parameter for mid-rapidity
(In] < 1) final-state partons and charged hadrons in 0< pr <2
GeV/c for Au+Au collisions by AMPT (string melting).

We have so far used the participant plane from the
model to calculate final-state particle v2{PP} to demon-
strate that initial momentum anisotropy can survive
to the final state. As mentioned earlier, participant
plane cannot be accessed in experiment, and instead two-
particle correlations are used to measure the momentum
anisotropy, v2{2}. We have verified that v2{2}, while



slightly larger than vo{PP} because of nonflow effects in
AMPT, gives the same qualitative conclusion.

In the above we have generated v5"{PP} with respect
to the participant plane. Several physics mechanisms [9-
11] suggest that the initial momentum anisotropy is inde-
pendent of the configuration space anisotropy of the col-
lision, but rather random. To study the survival rate of
such initial momentum anisotropies, we repeat our anal-
ysis but with vi"*{Rnd} with respect to a random plane
by Eq. 7.

Figure 5 (a) shows the v2{PP} as a function of
pr with various v&"*{Rnd}. As seen from the figure,
v8&"{Rnd} does not have major effect on v2{PP}. In
other words, vi"*{Rnd} does not survive in vo{PP}. This
is understandable because the initial correlations due to

vi"{Rnd} are averaged out to zero in vo{PP}. Fig-
ure 5 (b) shows the v2{2} as a function of py with various
vi"{Rnd}. It is found that vi"*{Rnd} has noticeable ef-
fect on the final vy{2}.
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FIG. 5. (color online) Mid-rapidity (|n| < 1) hadrons (a)

v2{PP} and (b) v2{2} versus pr with v&"*{Rnd}=0%, 8%
and 20% for b=8 fm Au+Au collisions at \/syny=200 GeV by
AMPT (string melting).

In order to study the survival rate of vi"*{Rnd}, we
show in Fig. 6 the mid-rapidity (|n| < 1) charged hadron
v2{2} (solid markers) and vo{PP} (hollow markers) ver-

ini

sus v5"" {Rnd} in two pr ranges. The vo{2} is slightly
1arger than v2{PP} with no v, and this is because
of nonflow effects in AMPT which are present in v2{2}
but not in v2{PP}. The horizontal dashed line (going
through the hollow point at v3"*{Rnd}=0) would indicate
vanishing effect of vi"*{Rnd}. As can be seen from the
figure, the vo{PP} data points approximately lie along
the dashed line. Some minor, but noticeable deviations
from the horizontal line may be due to the fact that the
AMPT evolution will not be the same once an initial
v4"{Rnd} is introduced in an event. A large v5"{Rnd}
may drive the collision system to expand more efficiently
in a direction not coinciding with the participant plane
but slightly deviating from it. This could cause a smaller
vo{PP}, which seems to be the case for large vi"*{Rnd}.

The v2{2}, on the other hand, increases with
””{Rnd} The increase is not linear as previously ob-
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FIG. 6. (color online) Mid-rapidity (|n| < 1) hadrons v2{2}
and v2{PP} versus v5"{Rnd} for b=8 fm Au+Au collisions
at /snn=200 GeV by AMPT (string melting). The solid
lines are fitting results. The dashed lines are horizontal and
through the point of v4"*{Rnd}=0.

served with v3"*{PP}. This can be understood as follows.
Suppose the final single particle azimuthal distribution is
described by

dN/d¢ < 14 202{PP}(0) cos(¢ — ¥ET) + 2r x v&" {Rnd} cos 2(¢ — wHnd), (15)

where v2{PP}(0) is the “hydrodynamic” flow from normal AMPT, and rxv&"{Rnd} is the surviving initial momentum
anisotropy along Wo{Rnd} with a rate r. The two-particle correlations would be

d®’N/dA¢ o / dwl? / AUEM1 + 205 {PP}(0) cos(py — UET) + 27 x vi"{Rnd} cos2(¢1 — UH)]

x[1 4 202 {PP}(0) cos(po — TEF) + 2r x v&" {Rnd} cos 2(¢a — UH"D)]

o 14 202 {PP}(0)% cos 2A¢ + r? x 205" {Rnd}? cos 2A¢. (16)

Thus, comparing to Eq. 9 , we have

v2{2} = /o2 {PP}(0)2 + 72 x vi* {Rnd}2.  (17)

The relationship is not linear, but quadratic. If the initial
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vy was with respect to the participant plane, as we have
studied previously, then the final vy would be

v2{2} & v {PP} = v {PP}(0) + r x vi"{PP}, (18)

as we have used in the linear fit in Fig. 2. We thus fit the
v2{2} vs. v§"{Rnd} data in Fig. 6 by a quadratic func-
tion of the form in Eq. 17. The fits are shown by the solid
curves in Fig. 6. Our results show that vi"*{Rnd} will
survive to final state. This is because the vi"*{Rnd} in-
troduces an initial particle correlation, which survives to
the end when the particles interact minimally in the final
state. Therefore, the initial momentum anisotropy, even
with respect to a random plane, will contribute to the
final anisotropy measurement by particle correlations.

IV. Summary

We have studied to what extent an input initial mo-
mentum anisotropy survives to the final state using
the AMPT model. It is found that the final momen-
tum anisotropy shows a linear dependence on the ini-
tial momentum anisotropy relative to the configuration-
space participant plane (PP). The slope of this lin-

ear dependence (survival rate) increases approximately
linearly with pr, with ~100% survival rate at high
pr~2.5 GeV/c. The survival rate decreases with increas-
ing centrality and increasing beam energy. An initial mo-
mentum anisotropy relative to a random plane does not
survive to the final-state vo{PP} with respect to the par-
ticipant plane, but survives to the two-particle cumulant
v2{2}. The v2{2} survival rate is quadratic in v5"{Rnd}
with appreciable magnitude when v&"{Rnd} is sizeable.
Our results can be understood as that the survival rate
decreases with increasing final-state interactions.
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