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Abstract

Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in

particular, on predictions of the energy per particle in ferromagnetic neutron matter at different

orders of chiral effective field theory and for different choices of the resolution scale. We discuss

the convergence pattern of the predictions and their cutoff dependence. We explore to which

extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider

the more general case of partial polarization in neutron matter as well as the presence of a small

proton fraction. In other words, in our calculations, we vary both spin and isospin asymmetries.

Confirming the findings of other microscopic calculations performed with different approaches, we

report no evidence for a transition to a polarized phase of neutron matter.
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I. INTRODUCTION

The equation of state (EoS) of highly neutron-rich matter is a topic of current interest

because of its many applications ranging from the physics of rare isotopes to the properties

of neutron stars. In spite of recent and fast-growing effort, the density dependence of the

symmetry energy, which plays a chief role for the understanding of those systems, is not

sufficiently constrained and, at the same time, theoretical predictions show considerable

model dependence.

Polarization properties of neutron/nuclear matter have been studied extensively with a

variety of theoretical methods [1-25], often with contradictory conclusions. In the study

in Ref. [24], for instance, the possibility of phase transitions into spin ordered states of

symmetric nuclear matter was explored based on the Gogny interaction [5] and the Fermi

liquid formalism. In that paper, the appearance of an antiferromagnetic state (with opposite

spins for neutrons and protons) was predicted, whereas the transition to a ferromagnetic

state was not indicated. This is in contrast to predictions based on Skyrme forces [25].

The properties of polarized neutron matter (NM) have gathered much attention lately,

in conjunction with the issue of ferromagnetic instabilities together with the possibility of

strong magnetic fields in the interior of rotating neutron stars. The presence of polarization

would impact neutrino cross sections and luminosities, resulting into a very different scenario

for neutron star cooling.

There are also other, equally important, motivations to undertake studies of polarized

matter. In Ref. [26], for instance, we focussed on the spin degrees of freedom of symmetric

nuclear matter (SNM), having in mind a terrestrial scenario as a possible “laboratory”. We

payed particular attention to the spin-dependent symmetry potential, namely the gradient

between the single-nucleon potentials for upward and downward polarized nucleons in SNM.

The interest around this quantity arises because of its natural interpretation as a spin de-

pendent nuclear optical potential, defined in perfect formal analogy to the Lane potential

[27] for the isospin degree of freedom in isospin-asymmetric nuclear matter (IANM).

Whether one is interested in rapidly rotating pulsars or, more conventional, laboratory

nuclear physics, it is important to consider both spin and isospin asymmetries. First, neu-

tron star matter contains a non-negligible proton fraction. Concerning laboratory nuclear

physics, one way to access information related to the spin dependence of the nuclear inter-
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action in nuclear matter is the study of collective modes such as giant resonances. Because

a spin unsaturated system is usually also isospin asymmetric, both degrees of freedom need

to be taken into account. For those reasons, in previous calculations [29], we extended our

predictions [26, 28] to include matter with different concentrations of neutrons and protons

where each nucleon species can have definite spin polarization. Our framework was based on

the Dirac-Brueckner-Hartree-Fock (DBHF) approach to nuclear matter together with a real-

istic meson-theoretic potential. Our findings did not show evidence of a phase transition to a

ferromagnetic (FM) or antiferromagnetic (AFM) state. This conclusion appears to be shared

by predictions of all microscopic models, such as those based on conventional Brueckner-

Hartree-Fock theory [16]. On the other hand, calculations based on various parametrizations

of Skyrme forces result in different conclusions. For instance, with the SLy4 and SLy5 forces

and the Fermi liquid formalism a phase transition to the AFM state is predicted in asym-

metric matter at a critical density equal to about 2-3 times normal density [24]. Qualitative

disagreement is also encountered with other non-microscopic approaches such as relativistic

Hartree-Fock models based on effective meson-nucleon Lagrangians. For instance, in Ref. [9]

it was reported that the onset of a ferromagnetic transition in neutron matter, and its crit-

ical density, are crucially determined by the inclusion of isovector mesons and the nature of

their couplings.

The brief review given above summarizes many useful and valid calculations. However,

the problem common to all of them, including microscopic approaches, is that it is essentially

impossible to estimate, in a statistically meaningful way, the uncertainties associated with

a particular prediction, or to quantify the error related to the approximations applied in a

particular model.

Effective field theories (EFT) have shown the way out of this problem. Chiral effective

field theory is a low-energy realization of QCD [30, 31] which fits unresolved nuclear dynamics

at short distances to the properties of two- and few-nucleon systems. Together with a power

counting, chiral EFT provides a framework where two and few-nucleon forces are generated

on an equal footing in a systematic and controlled hierarchy.

Estimates of theoretical uncertainties [32] for calculations of the equation of state of

nuclear and neutron matter have largely focused on varying the low-energy constants and

resolution scale at which nuclear dynamics are probed [33–38]. In a recent work [40], we layed

the foundations for order-by-order calculations of nuclear many-body systems by presenting
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consistent NLO and N2LO chiral nuclear forces whose relevant short-range three-nucleon

forces (3NF) are fit to A = 3 binding energies and the lifetime of the triton [39]. We

then assessed the accuracy with which infinite nuclear and neutron matter properties and

the isospin asymmetry energy can be predicted from order-by-order calculations in chiral

effective field theory. In this paper, we apply the same philosophy to study the equation of

state of polarized neutron matter.

Based on the literature mentioned above, a phase transition to a polarized phase (at

least up to normal densities) seems unlikely, although the validity of such conclusion must

be assessed in the context of EFT errors. Furthermore, polarized neutron matter is a

very interesting system for several reasons. Because of the large neutron-neutron scattering

length, NM displays behaviors similar to those of a unitary Fermi gas. In fact, up to nearly

normal density, (unpolarized) neutron matter is found to display the behavior of an S-wave

superfluid [41, 42]. The possibility of simulating low-density NM with ultracold atoms near

a Feshbach resonance [43] has also been discussed. When the system is totally polarized,

it has been observed to behave like a weakly interacting Fermi gas [44]. Here, we wish to

explore to which extent and up to which densities we are in agreement with such conclusions,

and how this and other observations depend on the chiral order and the resolution scale.

In comparison with the calculations of Ref. [44] (where 3NFs and 4NFs up to N3LO were

included), our present work contains the following novelties:

• We consider both cutoff dependence and truncation error for the purpose of uncer-

tainty quantification of chiral EFT. Although incomplete in the 3NF at N3LO, our

calculations are a substantial step in that direction. We note, further, that the contri-

bution from the 3NF at N3LO was found to be very small in neutron matter for the

potentials in our perview [36], about -0.5 MeV at normal density. Here, we consider

neutron matter or highly neutron-rich matter.

• For the first time, we present results for both spin and isospin asymmetries within the

framework of chiral forces. As discussed in Section III, these tools are necessary to

assess, for instance, the sensitivity of the results (particularly, the potential onset of a

phase transition) to the presence of a proton fraction.

This paper is organized as follows: In the next section, we present the formal aspects

of the self-consistent calculation of the energy per particle, in general, applicable to infinite
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matter with any degree of isospin and spin asymmetry. We also describe our approach to

two- and three-body chiral forces. We provide expressions for the in-medium effective three-

body force suitable for the most general case of different proton and neutron concentrations

where each species can be polarized to a different degree. To the best of our knowledge, this

has not been reported before in the literature within the framework of chiral forces. Results

for polarized and partially polarized NM, as well as for polarized netron-rich matter in the

presence of a small proton fraction, are discussed in Section III. Conclusions and future

plans are summarized in Section IV.

II. FORMALISM

A. General aspects

In a spin-polarized and isospin asymmetric system with fixed total density, ρ, the partial

densities of each species are

ρn = ρnu + ρnd , ρp = ρpu + ρpd , ρ = ρn + ρp , (1)

where u and d refer to up and down spin-polarizations, respectively, of protons (p) or neu-

trons (n). The isospin and spin asymmetries, α, βn, and βp, are defined in a natural way:

α =
ρn − ρp

ρ
, βn =

ρnu − ρnd
ρn

, βp =
ρpu − ρpd

ρp
. (2)

The density of each individual component can be related to the total density by

ρnu = (1+βn)(1+α)
ρ

4
, ρnd = (1−βn)(1+α)

ρ

4
, ρpu = (1+βp)(1−α)

ρ

4
, ρpd = (1−βp)(1−α)

ρ

4
,

(3)

where each partial density is related to the corresponding Fermi momentum through ρτσ

=(kτσF )3/(6π2). The average Fermi momentum and the total density are related in the usual

way as ρ = (2k3F )/(3π2).

The single-particle potential of a nucleon in a particular τσ state, Uτσ, is the solution of

a set of four coupled equations,

Unu = Unu,nu + Unu,nd + Unu,pu + Unu,pd (4)

Und = Und,nu + Und,nd + Und,pu + Und,pd (5)
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Upu = Upu,nu + Upu,nd + Upu,pu + Upu,pd (6)

Upd = Upd,nu + Upd,nd + Upd,pu + Upd,pd , (7)

to be solved self-consistently along with the effective interaction, the G-matrix. (The latter

will be discussed in the next two subsections.) In the above equations, each Uτσ,τ ′σ′ term

on the right-hand side contains the appropriate (spin and isospin dependent) part of the

interaction, Gτσ,′τ ′σ′ . More specifically,

Uτσ,τ ′σ′(~k) =
∑

q≤kτ ′σ′F

< τσ, τ ′σ′|G(~k, ~q)|τσ, τ ′σ′ >, (8)

where the summation indicates integration over the Fermi seas of protons and neutrons with

spin-up and spin-down, and

< τσ, τ ′σ′|G(~k, ~q)|στ, σ′τ ′ > =
∑

L,L′,S,J,M,ML,T

| < 1

2
σ;

1

2
σ′|S(σ + σ′) > |2| < 1

2
τ ;

1

2
τ ′|T (τ + τ ′) > |2

× < LML;S(σ + σ′)|JM >< L′ML;S(σ + σ′)|JM >

×iL′−LY ∗L′,ML
(k̂rel)YL,ML

(k̂rel) < LSJ |G(krel, Kc.m.)|L′SJ > . (9)

The G-matrix which appears in the formulas above is constructed from the two-nucleon

potential and the effective density-dependent 3NF as explained later.

The need to separate the interaction by spin components brings along angular depen-

dence, with the result that the single-particle potential depends also on the direction of the

momentum, although such dependence was found to be weak [28]. The G-matrix equation

is solved using partial wave decomposition and the matrix elements are then summed as in

Eq. (9) to provide the new matrix elements in the representation needed for Eq. (8), namely

with spin and isospin components explicitely projected out. Furthermore, the scattering

equation is solved using relative and center-of-mass coordinates, krel and Kc.m., since the

former is a natural coordinate for the evaluation of the nuclear potential. Those are then

easily related to the momenta of the two particles, k and q, in order to perform the inte-

gration indicated in Eq. (8). Notice that solving the G-matrix equation requires knowledge

of the single-particle potential, which in turn requires knowledge of the effective interac-

tion. Hence, Eqs.( 4-7) together with the G-matrix equation constitute a rather lengthy

self-consistency problem, the solution of which yields the single-nucleon potentials in each

τσ channel.
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The kernel of the G-matrix equation contains the Pauli operator for scattering of two

particles with two different Fermi momenta, kτσF and kτ
′σ′
F , which is defined in analogy with

the one for isospin-asymmetric matter [45],

Qτσ,τ ′σ′(k, q, kτσF , k
′τ ′σ′

F ) =

 1 if p > kτσF and q > kτ
′σ′
F

0 otherwise.
(10)

The Pauli operator is expressed in terms of krel and Kc.m. and angle-averaged in the usual

way. We then proceed with the calculation of the energy per nucleon in the particle-particle

ladder approximation, namely the leading-order contribution in the hole-line expansion.

(See Ref. [40] and references therein for a discussion of the uncertainty associated with this

approximation.)

Once a self-consistent solution for Eqs. (4-7) has been obtained, the average potential

energy for a given τσ component can be calculated. A final average over all τσ components

provides, along with the kinetic energy Kτσ, the average energy per particle in spin-polarized

isospin-asymmetric nuclear matter. Specifically,

E

A
=

1

A

∑
σ=u,d

∑
τ=n,p

∑
k≤kτσF

(
Kτσ(k) +

1

2
Uτσ(k)

)
, (11)

where E/A is a function of ρ, α, βn, and βp, with α=1 in the present case. All calculations

are conducted including values of the total angular momentum J from 0 to 15.

B. Chiral two-body potentials

In this section we discuss in some detail the features of the nucleon-nucleon (NN) po-

tentials we use for these calculations.

All low-momentum interactions are limited in calculations of the EoS to densities where

the characteristic momentum scale (on the order of the Fermi momentum) is below the scale

set by the momentum-space cutoff Λ in the NN potential regulating function, which for

chiral NN forces typically has the form:

f(p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] , (12)

where Λ <∼ 500 MeV is associated with the onset of favorable perturbative properties [37, 38].
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NLO Λ (MeV) n c1 c3 c4

450 2

500 2

600 2

N2LO Λ (MeV) n c1 c3 c4

450 3 -0.81 -3.40 3.40

500 3 -0.81 -3.40 3.40

600 3 -0.81 -3.40 3.40

N3LO Λ (MeV) n c1 c3 c4

450 3 -0.81 -3.40 3.40

500 2 -0.81 -3.20 5.40

600 2 -0.81 -3.20 5.40

TABLE I: Values of n and low-energy constants of the dimension-two πN Lagrangian, c1,3,4, at

each order and for each type of cutoff in the regulator function given in Eq. (12). None of the ci’s

appears at NLO. The low-energy constants are given in units of GeV−1.

Although designed to reproduce similar NN scattering phase shifts, NN potentials with

different regulator functions will yield different predictions in the nuclear many-body prob-

lem due to their different off-shell behavior. On the other hand, appropriate re-adjustment

of the low-energy constants that appear in the nuclear many-body forces is expected to

reduce the dependence on the regulator function [37].

In the present investigation we consider NN potentials at order (q/Λχ)2, (q/Λχ)3 and

(q/Λχ)4 in the chiral power counting, where q denotes the small scale set by external nucleon

momenta or the pion mass and Λχ is the chiral symmetry breaking scale. Chiral NN

potentials at NLO and N2LO, corresponding to (q/Λχ)2 and (q/Λχ)3, have been constructed

previously in Ref. [47] for cutoffs ranging from Λ = 450 MeV to about 800 MeV. With

varying chiral order and cutoff scale, the low-energy constants in the two-nucleon sector are

refitted to elastic NN scattering phase shifts and properties of the deuteron. The low-energy

constants c1,3,4 associated with the ππNN contact couplings of the L(2)
πN chiral Lagrangian

are given in Table I. We note that the ci can be extracted from πN or NN scattering

data. The potentials we use here [46, 48] follow the second path. At N2LO, taking the
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range determined in analyses of elastic πN scattering as a starting point, values were chosen

to best reproduce NN data at that order. At N3LO, high-precision required a stronger

adjustment of c4 depending on the regulator function and cutoff. The fitting procedure is

discussed in Ref. [46], where it is noted that the larger value for c4 has, overall, a very small

impact but lowers the 3F2 phase shift for a better agreement with the phase shift analysis.

In Ref. [47], it was found that the two-body scattering phase shifts can be described well

at NLO up to a laboratory energy of about 100 MeV, while the N2LO potential fits the data

up to 200 MeV. Interestingly, in the latter case the χ2/datum was found to be essentially

cutoff independent for variations of Λ between 450 and approximately 800 MeV. Finally, we

also use NN potentials constructed at next-to-next-to-next-to-leading order (N3LO) [46, 48],

with low-energy constants c1,3,4 as displayed in Table I.

Although N2LO calculations can achieve sufficient accuracy in selected partial wave chan-

nels up to Elab = 200 MeV, only the N3LO interactions achieve the level of high-precision

potentials, characterized by a χ2/datum ∼ 1.

At the two-body level, each time the chiral order is increased, the NN contact terms

and/or the two-pion-exchange contributions proportional to the low-energy constants c1,3,4

are refitted. We recall that at N2LO no new NN contact terms are generated, and therefore

improved cutoff independence in the NN phase shifts [40] is due to changes in the two-

pion-exchange contributions. At N2LO, subleading ππNN vertices enter into the chiral NN

potential. These terms encode the important physics of correlated two-pion-exchange and

the excitation of intermediate ∆(1232) isobar states. Therefore, at this order it is possible

to obtain a realistic description of the NN interaction at intermediate range, traditionally

generated through the exchange of a fictitious σ meson of medium mass. At N3LO in the

chiral power counting, 15 additional NN contact terms (bringing the total number to 24 at

N3LO) result in a much improved description of NN scattering phase shifts.

C. The three-nucleon force

The leading three-nucleon force makes its appearance at third order in the chiral power

counting and contains three contributions: the long-range two-pion-exchange part with

ππNN vertex proportional to the low-energy constants c1, c3, c4, the medium-range one-pion

exchange diagram proportional to the low-energy constant cD, and finally the short-range
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(a) (b) (c)

FIG. 1: Diagrams for the chiral three-nucleon interaction at N2LO. In neutron matter, only diagram

(a) contributes.

contact term proportional to cE. The corresponding diagrams are shown in Fig. 1, labeled

as (a), (b), (c), respectively. Diagrams (b) and (c) vanish in neutron matter, while all three

terms contribute in symmetric nuclear matter [50, 51].

Although efforts are in progress to incorporate potentially important N3LO 3NF contri-

butions [52–54] both in the neutron and nuclear equations of state and the fitting of the

relevant low-energy constants, the “N3LO” study reported in this paper is limited to the

inclusion of the N2LO three-body force together with the N3LO two-body force, an approx-

imation that is commonly used in the literature. The associated uncertainties for neutron

matter have been investigated in Ref. [40].

To facilitate the inclusion of 3NFs in the particle-particle ladder calculation, we employ

the density-dependent NN interaction derived in Refs. [49, 50] from the N2LO chiral three-

body force. This effective interaction is obtained by summing one particle line over the

occupied states in the Fermi sea. Neglecting small contributions [51] from terms depending

on the center-of-mass momentum, the resulting NN interaction can be expressed in analyt-

ical form with operator structures identical to those of free-space NN interactions, and are

therefore included on the same footing as two-body forces. The small uncertainty associated

with the use of these effective density-dependent 3NFs was discussed in Ref. [40].

For the case of polarized isospin-asymmetric matter, the expressions from Ref. [50] are to

be extended to include four different Fermi momenta, namely those of upward(downward)

polarized neutrons(protons), as described below.

Using the notation established above to indicate the Fermi momenta of spin-up and spin-

down neutrons or protons, the neutron and proton densities are given by ρn = [(knuF )3 +
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(1) (2) (3)

(4)
(5) (6)

FIG. 2: Diagrams for the in-medium NN interactions corresponding to V med,i
NN (i=1,...,6) given in

the text.

(kndF )3]/6π2 and ρp = [(kpuF )3 + (kpdF )3]/6π2.

Concerning kinematics, we consider elastic scattering process N1(~p ) +N2(−~p )→ N1(~p+

~q ) +N2(−~p− ~q ) in the center-of-mass frame.

Following the notation of Ref. [50], we can distinguish between six effective density-

dependent NN interactions, denoted by diagram (1) to (6) in Fig. 2. They are:

The Pauli blocked pion-selfenergy (diagram (1)):

V med,1
NN =

g2A
2f 4

π

~τ1 · ~τ2
~σ1 · ~q ~σ2 · ~q
(m2

π + q2)2
(2c1m

2
π + c3q

2)(ρp + ρn) , (13)

The Pauli blocked vertex correction (diagram (2)):

V med,2
NN =

g2A
16π2f 4

π

~τ1 · ~τ2
~σ1 · ~q ~σ2 · ~q
m2
π + q2

{
− 4c1m

2
π

[
Γ+
0 (p) + Γ+

1 (p)
]
− (c3 + c4)

×
[
q2
(
Γ+
0 (p) + 2Γ+

1 (p) + Γ+
3 (p)

)
+ 4Γ+

2 (p)
]

+ 4c4
[
2π2(ρp + ρn)−m2

πΓ+
0 (p)

]}
+

g2A
32π2f 4

π

(τ 31 + τ 32 )
~σ1 · ~q ~σ2 · ~q
m2
π + q2

{
− 4c1m

2
π

[
Γ−0 (p) + Γ−1 (p)

]
+ (c4 − c3)

×
[
q2
(
Γ−0 (p) + 2Γ−1 (p) + Γ−3 (p)

)
+ 4Γ−2 (p)

]
+ 4c4

[
2π2(ρn − ρp) +m2

πΓ−0 (p)
]}

+
g2A

16π2f 4
π

(τ 31 − τ 32 ) i(~σ1 − ~σ2) · (~p× ~q )
1

m2
π + 4p2 − q2
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×
{

4c1m
2
π

[
Γ−0 (p) + Γ−1 (p)

]
+ c3(4p

2 − q2)
[
Γ−0 (p) + 2Γ−1 (p) + Γ−3 (p)

]}
, (14)

The last contribution, proportional to (τ 31 −τ 32 ), leads to spin-singlet and spin-triplet mixing

in the medium. It has been Fierz-transformed to bring it into the form of the anti-symmetric

spin-orbit operator i(~σ1−~σ2)·(~p×~q ). Terms which break rotational invariance in momentum-

space due to the spin-polarization of the nuclear medium in z-direction have been discarded.

Next, we give the expression for the Pauli blocked two-pion exchange (diagram (3)):

V med,3
NN =

g2A
32π2f 4

π

{
− 12c1m

2
π

[
2Γ+

0 (p)− (2m2
π + q2)G+

0 (p, q)
]

−3c3
[
8π2(ρp + ρn)− 4(2m2

π + q2)Γ+
0 (p)− 2q2Γ+

1 (p) + (2m2
π + q2)2G+

0 (p, q)
]

+4c4 ~τ1 · ~τ2 (~σ1 · ~σ2 q2 − ~σ1 · ~q ~σ2 · ~q )G+
2 (p, q)

−(3c3 + c4~τ1 · ~τ2) i(~σ1 + ~σ2) · (~q × ~p )
[
2Γ+

0 (p) + 2Γ+
1 (p)− (2m2

π + q2)

×
(
G+

0 (p, q) + 2G+
1 (p, q)

)]
− 12c1m

2
π i(~σ1 + ~σ2) · (~q × ~p )

[
G+

0 (p, q) + 2G+
1 (p, q)

]
+4c4 ~τ1 · ~τ2 ~σ1 · (~q × ~p )~σ2 · (~q × ~p )

[
G+

0 (p, q) + 4G+
1 (p, q) + 4G+

3 (p, q)
]}

+
g2A

64π2f 4
π

(τ 31 + τ 32 )
{

4c1m
2
π

[
2Γ−0 (p)− (2m2

π + q2)G−0 (p, q)
]

+c3
[
8π2(ρp − ρn)− 4(2m2

π + q2)Γ−0 (p)− 2q2Γ−1 (p) + (2m2
π + q2)2G−0 (p, q)

]
−4c4 (~σ1 · ~σ2 q2 − ~σ1 · ~q ~σ2 · ~q )G−2 (p, q)

+(c3 + c4) i(~σ1 + ~σ2) · (~q × ~p )
[
2Γ−0 (p) + 2Γ−1 (p)− (2m2

π + q2)

×
(
G−0 (p, q) + 2G−1 (p, q)

)]
+ 4c1m

2
π i(~σ1 + ~σ2) · (~q × ~p )

[
G−0 (p, q) + 2G−1 (p, q)

]
−4c4 ~σ1 · (~q × ~p )~σ2 · (~q × ~p )

[
G−0 (p, q) + 4G−1 (p, q) + 4G−3 (p, q)

]}
. (15)

The loop functions Γ±j (p) and G±j (p, q) with a superscript + or − are given by:

Γ±j (p) =
1

2

[
Γj(p, kpu) + Γj(p, kpd)

]
± 1

2

[
Γj(p, knu) + Γj(p, knd)

]
, (16)

G±j (p, q) =
1

2

[
Gj(p, q, kpu) +Gj(p, q, kpd)

]
± 1

2

[
Gj(p, q, knu) +Gj(p, q, knd)

]
, (17)

where Γj(p, kf ) and G(p, q, kf ) are defined in Eqs. (13-16) and Eqs. (18-22) of Ref. [50].

Now we present the contributions from the 1π-exchange 3NF proportional to the low-

energy constant cD. The vertex correction to 1π-exchange linear in proton and neutron

densities is (diagram (4)):

V med,4
NN =

gAcD
16f 4

πΛχ

[
− 2~τ1 · ~τ2(ρp + ρn) + (τ 31 + τ 32 )(ρp − ρn)

] ~σ1 · ~q ~σ2 · ~q
m2
π + q2

. (18)
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Pauli-blocking, diagram (5), contributes:

V med,5
NN =

gAcD
32π2f 4

πΛχ

{
~τ1 · ~τ2

[
2~σ1 · ~σ2 Γ+

2 (p) +
(
~σ1 · ~σ2

(
2p2 − q2

2

)
+ ~σ1 · ~q ~σ2 · ~q

×
(
1− 2p2

q2

)
− 2

q2
~σ1 · (~q × ~p )~σ2 · (~q × ~p )

)[
Γ+
0 (p) + 2Γ+

1 (p) + Γ+
3 (p)

]]
+12π2(ρp + ρn)− 6m2

πΓ+
0 (p)

}
+

gAcD
64π2f 4

πΛχ

(τ 31 + τ 32 )
{

2~σ1 · ~σ2 Γ−2 (p) +
[
~σ1 · ~σ2

(
2p2 − q2

2

)
+ ~σ1 · ~q ~σ2 · ~q

×
(
1− 2p2

q2

)
− 2

q2
~σ1 · (~q × ~p )~σ2 · (~q × ~p )

][
Γ−0 (p) + 2Γ−1 (p) + Γ−3 (p)

]
+4π2(ρn − ρp) + 2m2

πΓ−0 (p)
}
. (19)

The contribution from the contact 3NF proportional to the low-energy constant cE is

(diagram (6)):

V med,6
NN =

3cE
4f 4

πΛχ

[
− 2(ρp + ρn) + (ρp − ρn)(τ 31 + τ 32 )

]
. (20)

Partial wave matrix elements with J ≥ 1 of the antisymmetric spin-orbit term, which

occur in Eq. (14), mix spin-singlet and spin-triplet states and these can be calculated for

on-shell kinematics in the center-of-mass frame as:

〈J0J |i(~σ1−~σ2)·(~p× ~q )F (q2)|J1J〉 = 〈J1J |i(~σ1−~σ2)·(~p× ~q )F (p2, q2)|J0J〉

=

√
J(J + 1)

2J + 1

∫ 1

−1
dz p2F (p2, 2p2(1− z))

[
PJ−1(z)− PJ+1(z)

]
. (21)

However, because of the small size of this contribution, particularly for small proton frac-

tions, we neglect this term in the present calculations.

III. RESULTS AND DISCUSSION

We show in Fig. 3 the energy per particle in fully polarized neutron matter as a function

of density. The yellow and red bands represent the predictions of complete calculations

at second and third order, respectively, of chiral effective field theory, while the blue band

shows the predictions obtained with the exploratory N3LO calculation as described above.

For each band, the width is obtained by changing the cutoff between 450 MeV and 600 MeV.

At N2LO and N3LO, cutoff dependence is generally moderate up to saturation density.

At NLO, the cutoff dependence is practically negligible throughout. In unpolarized neutron
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matter, on the other hand, the largest cutoff dependence was seen at NLO [40]. This suggests

that, in unpolarized NM, the larger cutoff sensitivity at NLO is mostly due to singlet states,

particularly 1S0, which are absent from the polarized system. At the same time, 3NFs do

not appear at NLO, implying that most of the cutoff dependence in polarized NM at N2LO

and N3LO is caused by the 3NF contributions.

Clearly, the variations associated with changing the cutoff are not a good indicator of

the uncertainty at a given order of chiral effective field theory, as the results from one order

to the other do not overlap. Furthermore, the predictions do not show a good convergence

pattern, although some indication of slow convergence can be seen when moving from N2LO

to our N3LO calculation.

As can be concluded from Table II, the predictions from the N3LO calculation are close

to the free Fermi gas energy, at least up to saturation densities. Our results with the N3LO

(Λ=500 MeV) potential are in good agreement with those from Ref. [44] using the same

potential as well as three- and four-nucleon forces at N3LO. With regard to the similarity

with the free Fermi gas, it is interesting to include some additional considerations. As

mentioned in the Introduction, many-fermion systems with large scattering lengths offer the

opportunity to model low-density neutron matter. In the unitary limit (that is, when the

system can support a bound state at zero energy), the scattering length approaches infinity.

The system then becomes scale-independent and the ground-state energy is determined by a

single universal parameter, known as the Bertsch parameter, ξ. The latter is defined as the

ratio of the energy per particle of the unitary gas to that of the free Fermi gas. In Ref. [55],

using a simple ansatz for the interaction, it is shown that ξ increases from approximately

0.5 to 1.0 as the spin asymmetry of neutron matter, βn, is increased from 0 (unpolarized)

to 1 (fully polarized).

In Fig. 4, for our N3LO calculation, we compare predictions (along with their cutoff

variations) of the energy per neutron in: unpolarized NM (green band), partially polarized

NM (pink band), and fully polarized NM (blue band). For the partially polarized case, the

value of βn (see Eq. (2)) is equal to 0.5, corresponding to 75% of the neutrons being polarized

in one direction and 25% in the opposite direction, see Eqs. (3-4). Clearly, a lesser degree of

spin asymmetry (as compared to the ferromagnetic case) yields considerably less repulsion.

There is definitely no sign of a phase transition, particularly to a ferromagnetic state, nor

an indication that such transition may occurr at higher densities. This is consistent with
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Density (fm−3) Λ (MeV) EFFG/E

0.15 450 0.95

500 0.92

600 0.95

0.17 450 0.95

500 0.91

600 0.93

TABLE II: Ratio of the energy per particle of a free Fermi gas to the energy per particle of

polarized neutron matter around saturation density at N3LO (as described in the text) and for

different values of the cutoff.

what we observed earlier [29] with meson-theoretic interactions.

As a baseline comparison, we also include, for the unpolarized case, predictions based on

a different approach, shown by the black dotted line in Fig. 4. These are taken from Ref. [56]

and are based on the Argonne v18 two-nucleon interaction plus the Urbana IX three body-

force, using variational methods. The predictions are overall in reasonable agreement with

our green band, although those from Ref. [56] show more repulsion as compared to the softer

chiral interactions.

Most typically, models which do predict spin instability of neutron matter find the phase

transition to occurr at densities a few times normal density. Such high densities are out-

side the domain of chiral perturbation theory. With some effective forces, though, it was

found [17] that a small fraction of protons can significantly reduce the onset of the threshold

density for a phase transition to a spin-polarized state of neutron-rich matter. We explored

this scenario by adding a small fraction of protons to fully polarized or unpolarized neutrons.

From Eqs. 1-3, a proton fraction of 10% is obtained with α=0.8. The results are displayed

in Fig. 5, where a crossing of the bands labeled with “0.8, 1.0” and “0.8, 0.0”, respectively,

would indicate a phase transition. Thus we conclude that such transition is not predicted

with chiral forces. By extrapolation, a transition to a polarized state would also appear very

unlikely at higher densities.
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FIG. 3: (color online) Energy per neutron in fully polarized neutron matter as a function of

density. The yellow and red bands represent the uncertainities due to cutoff variations obtained in

the complete calculations at NLO and N2LO, respectively. The blue band is the result of the same

cutoff variations applied to our exploratory N3LO calculation, see text for details. The dotted

curve shows the energy of the free Fermi gas.

IV. CONCLUSIONS AND OUTLOOK

We have calculated the equation of state of (fully and partially) polarized neutron-rich

matter. We performed complete calculations at second and third order of chiral effective

field theory and calculations employing the N3LO 2NF plus the leading 3NF. Results with

both spin and isospin asymmetries are presented for the first time with chiral forces.

In all calculations, the cutoff dependence is moderate and definitely underestimates the

uncertainty of each order. Concerning the latter, we do not see a satisfactory convergence

pattern. The missing 3NFs are most likely not the main cause of uncertainty at N3LO, since
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FIG. 4: (color online) Energy per neutron in pure neutron matter as a function of density at

N3LO. From lowest to highest curve: unpolarized NM; partially polarized NM, with βn=0.5; fully

polarized NM (βn=1). The width of each band shows the uncertainty from varying the cutoff

between 450 and 600 MeV. The black dotted line shows the predictions for the equation of state

of unpolarized neutron matter from Ref. [56].

Ref. [44] has demonstrated that large cancelations take place between the 2π-exchange 3NF

and the π-ring 3NF at N3LO, while other 3NF contributions are very small (about 0.1-0.2

MeV). Clearly a calculation at N4LO is absolutely necessary to get a realistic indication of

the EFT error at N3LO. Such effort is in progress. If such calculation displays a reason-

able convergence pattern, it will be strong evidence that polarized neutron matter, indeed,

behaves nearly like a free Fermi gas, at least up to normal densities.

In our N3LO calculation, the energies of the unpolarized system at normal density are

close to 16 MeV for all cutoffs, whereas those in the polarized case are approximately 60 MeV.

Thus, even in the presence of the large uncertainties discussed above, a phase transition to
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FIG. 5: (color online) Energy per nucleon in neutron-rich matter as a function of density at N3LO

and different conditions of isospin and spin polarization. The (brighter blue) band labeled as “0.8,

1.0” displays the results for neutron-rich matter with a proton fraction equal to 10% (α=0.8)

and fully polarized neutron (βn=1.0). The (brighter green) band labeled as “0.8, 0.0” refers to

neutron-rich matter with the same proton fraction and no polarization (βn=0.0). The protons are

unpolarized. For comparison, we also include the bands (darker blue and darker green) already

shown in the previous figure, which refer to pure neutron matter (α=1) with fully polarized (βn=1)

or unpolarized (βn=0) neutrons. The bands are obtained varying the cutoff between 450 and 600

MeV.

a ferromagnetic state can be excluded. This conclusion remaind valid in the presence of a

small proton fraction.
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