

This is the accepted manuscript made available via CHORUS. The article has been published as:

Experimental study of β and β -n decay of the neutron-rich N=54 isotone ^{87}As

A. Korgul, K. P. Rykaczewski, R. Grzywacz, C. R. Bingham, N. T. Brewer, A. A. Ciemny, C. J. Gross, C. Jost, M. Karny, M. Madurga, C. Mazzocchi, A. J. Mendez, II, K. Miernik, D. Miller, S. Padgett, S. V. Paulauskas, D. W. Stracener, and M. Wolińska-Cichocka Phys. Rev. C 92, 054318 — Published 23 November 2015

DOI: 10.1103/PhysRevC.92.054318

Study of β and β -n decay of the neutron rich N=54 isotone ⁸⁷As*

A. Korgul, K.P. Rykaczewski, R. Grzywacz, C.R. Bingham, L.T. Brewer, A. A. Ciemny, C.J. Gross, C. Jost, M. Karny, M. Madurga, C. Mazzocchi, A.J. Mendez II, K. Miernik, D. Miller, S. Padgett, S.V. Paulauskas, D.W. Stracener, and M. Wolińska-Cichocka, C.

¹Faculty of Physics, University of Warsaw, PL 02-093 Warsaw, Poland
²Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
³Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
⁴Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
⁵Oak Ridge Associated Universities, Oak Ridge, TN 37831, USA
⁶Heavy Ion Laboratory, University of Warsaw, PL 02-093 Warsaw, Poland

The β -decay properties of neutron-rich ⁸⁷As produced in the proton-induced fission of ²³⁸U were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The low-energy excited states in N=53 ⁸⁷Se and N=52 ⁸⁶Se were identified through β - γ and β -delayed neutron- γ decay of ⁸⁷As, respectively. The experimental systematics of low-energy levels of N=53 isotones, Z=34 ⁸⁷Se and Z=32 ⁸⁵Ge, and along with an analysis of shell-model calculations, allow us to discuss the main features of excited states expected for the next N=53 isotone, ⁸³Zn.

PACS numbers: 23.20.Lv,23.35.+g,27.50.+e,29.38.-c

I. INTRODUCTION

Nuclei in the vicinity of ⁷⁸Ni offer the possibility to investigate the evolution of single-particle states in very neutron-rich nuclei having few protons and several neutrons added to the ⁷⁸Ni core. Here we present a continuation of our decay studies of such nuclei and focus our attention on the evolution of neutron levels north east of ⁷⁸Ni.

The study of excited states in the N=50+1 isotones with even Z was used to probe neutron single-particle states. Previous investigations of excited states for the neutron-rich N=51 isotones (83Ge, 85Se) by means of both transfer reactions and decay spectroscopy [1–3], revealed a reduction of the energy difference between the first $1/2^+$ excited level and the $5/2^+$ ground state with decreasing atomic number. In N=51 isotones, with one neutron outside the core, the dominating component of the wave function is given by the neutron single-particle orbital, hence their ground state has $I^{\pi} = 5/2^{+} (\nu d_{5/2})$ and their first excited state $I^{\pi} = 1/2^{+}$ ($\nu s_{1/2}$). The ground state spin/parity for the N=51 ⁸¹Zn, the closest N=51 isotope to ⁷⁸Ni studied experimentally, was determined to be $5/2^+$ on the basis of the beta feeding pattern [5]. The $\nu s_{1/2} - \nu d_{5/2}$ level crossing postulated in [4] was ruled out through more detailed $\beta - \gamma$ decay study of ⁸¹Zn

It was shown [7] that the properties of neutron states

in N=53 isotones are different from those in N=51 nuclei. The two extra valence neutrons occupying the $\nu d_{5/2}$ orbital and open a new possible range of mixed-configurations at low excitation energy. Also, the signatures of the onset of collectivity have been predicted [8] and reported for N=52 and N=54 isotones close to 87 As [9].

Here, we present new information on the levels in N=53 87 Se and N=52 86 Se populated in the $\beta-\gamma$ and $\beta-n-\gamma$ decay of the N=53 87 As isotope. The half-life of 87 As as obtained from this data set was previously reported in [10].

II. EXPERIMENTAL SETUP

The experiment was performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) by means of the on-line mass separation technique [11]. A 54 MeV proton beam of $10-12~\mu A$ average intensity from the ORIC cyclotron impinged on a high-temperature $^{238}UC_x$ target. The fission fragments were thermalised and ionised in the IRIS2 ion source. Ions of the isotope of interest ⁸⁷As were extracted in molecular form as ⁸⁷AsS⁺ molecules [10, 12] and separated using the first-stage mass separation dipole (m/ Δ m ≈ 1000) set for mass A=87+32. After passing through the Cs-vapor charge-exchange cell, the molecular bond was broken and the negatively-charged ion beam was transported through the high-resolution magnet (m/ Δ m ≈ 10000) that was set for A=87. This combination of molecular ion beam extraction, followed by two stages of mass selection with charge exchange, resulted in an almost pure ⁸⁷As beam [11–13]. The beam was directed to the Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS) [14] where it was deposited on the tape of a Moving Tape Collector (MTC) in the center of the detection set-up. This consisted of four HPGe clover

^{*} Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes.

 γ -ray detectors (6 % efficiency at 1.3 MeV) and two plastic scintillation counters for β -particle detection surrounding the activity-deposition point. The trigger less data from all detectors were collected by a fully digital acquisition-system [15, 16] both during the implantation of the activity (beam-on, 1.5 s) and while the beam was deflected away (beam-off, 1.5 s) by electrostatic plates placed after the high resolution mass separator. After the period of 3 s, the tape was moved, transporting the implanted long-lived isobaric contaminants and daughter activities away from the measuring position, and a new cycle was started. This beam-on and beam-off time structure helped to enhance the ⁸⁷As ($T_{1/2}$ =0.56 s [10]) with respect to the longer-lived daughter activities.

III. RESULTS

The experimental knowledge on excited states in 87 Se originates from two recent works. A 92 keV transition was assigned to the $\beta\gamma$ decay-branch of 87 As and used for β -decay lifetime determination [10]. This low-energy transition in 87 Se was confirmed shortly after by analysis of 248 Cm fission data where three γ -transitions at 91.9(2), 744.6(2) and 886.2(2) keV were identified [9].

A substantial β -n decay branch ⁸⁷As \rightarrow ⁸⁶Se can be expected due to the large energy window for β -n emission $(Q_{\beta n}=Q_{\beta}(^{87}As)-S_{n}(^{87}Se)=6.814(4)$ MeV [17]). In ⁸⁶Se, only the high-spin yrast states up to I=7 were reported recently [18, 19].

The analysis of the β -gated γ energy spectrum yielded new γ -transitions belonging to the $\beta\gamma$ and $\beta-n\gamma$ decay branches of ⁸⁷As and respective daughter activities (Fig. 1). The $\beta\gamma$ spectrum obtained in coincidence with the 92 keV transition in ⁸⁷Se, see Fig. 2a and Fig. 2b, allowed us to construct the level scheme given in Fig. 3. The proposed spin and parity assignments for the lowenergy states are mostly based on the systematics and are discussed in Section IV.

The observed coincidences with the known 704 keV transition in ⁸⁶Se, see Fig. 2 (c), identified a 694.5 keV line depopulating the 1398.6 keV state. This 1398.6 keV level also de-excites through a direct transition to the ⁸⁶Se ground state, see Fig. 1b. The transition at 863 keV seen in β - γ spectrum (Fig.1) is known as the 4⁺ to 2⁺ transition in ⁸⁶Se [18–20]. The 695 keV and 1399 keV gamma-lines were added to the level schemes proposed in ref. [18, 19] following [20] and this work. The spins and parities of the 704.1 and 1567.4 keV levels were earlier firmly assigned on the basis of angular correlations, to be 2^+ and 4^+ , respectively [19]. We tentatively assign $I^{\pi}=(2^{+})$ to the 1399 keV excited state in ⁸⁶Se since this level is not present in the high-spin sequence of states populated in spontaneous fission of $^{248}\mathrm{Cm}$ [18, 19], but it is observed in the β -n decay of ⁸⁷As (this work) and in β -decay of ⁸⁶As [20].

The relative intensities for the γ -ray transitions in the β - γ and β -n- γ decay of ⁸⁷As are listed in Table I.

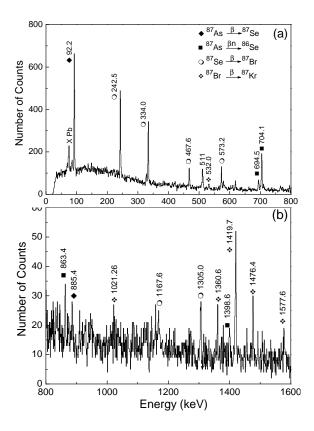


FIG. 1. Portions of the β -gated γ -ray spectrum from 0 to 800 keV (a) and from 800 to 1600 keV (b) obtained at mass A=87. The strongest transitions belonging to the $\beta\gamma$ and $\beta-n\gamma$ decay of ⁸⁷As are labelled.

IV. DISCUSSION

The N=54 isotone ⁸⁷As has five protons outside the closed Z=28 shell. These protons are distributed among fpg orbitals, generating a negative parity ground state in Z=33 ⁸⁷As. For ⁸⁷As, with $\nu g_{9/2}$ orbital fully occupied, we expect the $\pi f_{5/2}$ state below $\pi p_{3/2}$. This is analogous to ⁸⁵Ga [7] and to the chain of copper isotopes $(^{71,73,75,77}\mathrm{Cu})$, where the corssing of the $\pi f_{5/2}$ state below $\pi p_{3/2}$ occurs between $^{73}\mathrm{Cu}$ and $^{75}\mathrm{Cu}$ [21–23]. The (5/2) assignment for the ground-state of ⁸⁷As is consistent with an apparent β -n feeding of the 4⁺ state in ⁸⁶Se. This $I^{\pi}=4^{+}$ state can be fed by neutrons emitted with angular momentum l=1 through the intermediate $I=7/2^{-1}$ and $5/2^-$ states in ⁸⁷Se populated in the Gamow-Teller decay of 87 As. However, the $(3/2)^-$ assignment for the ground state of ⁸⁷As cannot be ruled out, hence we tentatively assign $I^{\pi} = (5/2, 3/2)^{-}$ to the ⁸⁷As ground-state, see Fig. 3.

The low-energy excited states in the N=53 isotone ⁸⁷Se are expected to have positive parity from the level systematics of N=53 $^{85}_{32}$ Ge [7] and $^{89}_{36}$ Kr [24] isotones. The recent study of the yrast structure in this nucleus by Rząca-Urban et al. [9] tentatively assigns $(3/2^+)$ and

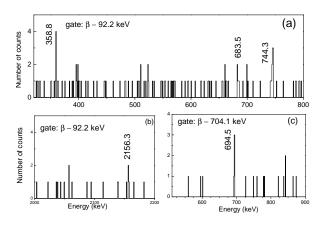


FIG. 2. The β -gated γ -ray spectra in coincidence with the 92 keV (a,b) and 704 keV (c) transitions. The 92 keV γ and 704 keV lines correspond to the β - γ decay and β -n- γ decay of ⁸⁷As, respectively.



FIG. 3. Partial experimental decay scheme of 87 As. The Q_{β} and S_n energies are taken from [17]. See text for details.

 $(5/2^+)$ to the ground state and first excited state in ⁸⁷Se, respectively. The population of the same levels in the β -decay of either the $5/2^-$ or $3/2^-$ ground state of ⁸⁷As is possible through *first-forbidden* beta transitions. Such scenario is not uncommon in this region of the chart of nuclei, in particular in the case of the β -decay of ⁸⁵Ga to ⁸⁵Ge [7].

Comparing the level structure of the N=53 ⁸⁷Se (see Fig. 3) and ⁸⁵Ge [7], we propose $I^{\pi}=(3/2^{+})$ for the 451 keV excited state in ⁸⁷Se. No candidate level could be identified for the $1/2^{+}$ state dominated by the $\nu s_{1/2}$ orbital. According to β -decay selection rules, we don't expect a substantial direct feeding of such $1/2^{+}$ level from a $5/2^{-}$ ⁸⁷As ground state, while the first-forbidden beta transition between the alternative ground state $J^{\pi}=3/2^{-}$ and $1/2^{+}$ could occur. The $\nu s_{1/2}$ state in ⁸⁷Se can be populated in β -n decay of ⁸⁸As, similarly to the $1/2^{+}$ level in ⁸⁵Ge₅₃ fed in the β -n decay of ⁸⁶Ga [25], but not

TABLE I. Relative γ -ray intensities (I $_{rel}$) for the β and β ndecays of 87 As normalized to the 704-keV transition.

E	level	E_{γ}	I_{rel}	⁸⁷ As
(l	κeV)	(keV)		decay channel
92.	2(3)	92.2(3)	93.7(5.2)**	β
451.	0(5)	358.8(5)	$1.5(0.3)^*$	β
775.	7(5)	683.5(5)	$2.4(0.5)^*$	β
836.	5(5)	744.5(5)	5.6(0.4)	β
224	9(1)	2156(1)	$3.5(1.2)^*$	β
704.	1(3)	704.1(3)	100.0(9.0)	$eta \mathrm{n}$
1398.	6(5)	694.5(5)	18.0(8.0)	$eta \mathrm{n}$
1567.	4(5)	863.3(5)	12.0(1.0)	$eta \mathrm{n}$
1398.	6(5)	1399(1)	14.9(1.2)	$\beta \mathrm{n}$

^{*} The intensities are taken from $\beta-\gamma$ and $\beta-\gamma-\gamma$ coincidence spectra.

populated in $\beta\gamma$ decay of ⁸⁵Ga [7].

We have performed shell-model (SM) calculations of the N=53 isotones ⁸⁷Se, ⁸⁵Ge and ⁸³Zn with residual interaction derived from N3LO chiral interactions [26, 27] and a valence space containing all active orbitals outside the ⁷⁸Ni core (see [28, 29] for details). The results are compared to experimental data, where available, in Fig. 4. The similarity of the level structure for these three isotopes points to the fact that these states are dominated by the neutron configurations, with protons acting as spectators.

The experimental level pattern in ⁸⁵Ge and ⁸⁷Se is well reproduced in the shell model calculations. The first $5/2^+$ and $3/2^+$ states, dominated by a $\nu d_{5/2}$ orbital, are generating the ground-state and first excited state within the first 100 keV. A lifetime of ~ 600 ps was calculated for this transition, which includes a hindrance factor of $3{\cdot}10^{-3}$ W.u. [31–35] creating a relatively long lifetime for this M1 transition. The measurement of this $\tau \sim 600$ ps is well within the experimental reach of a fasttiming techniques [36] and worth measuring to verify the expected M1 character of the 92 keV transition. The next excited state, expected to have a large $\nu s_{1/2}$ component, is not populated in the beta-decay of ⁸⁵Ga and 87 As. However, the $(3/2^+)$ state was observed at about 0.4-0.5 MeV in both ⁸⁵Ge and ⁸⁷Se. These three levels are followed by several positive parity states around 1 MeV excitation energy. The states at the excitation energies above 4 MeV (i.e. above S_n) in ⁸⁵Ge and ⁸⁷Se are most likely populated by allowed Gamow-Teller β transitions competing with first forbidden decays. Lower beta end-point energies are compensated by larger matrix elements of allowed beta transitions, creating observable beta-feeding to the high energy levels which results

^{**} $\alpha_{tot}(M1)=0.13$ is included in I_{rel} calculation [30].

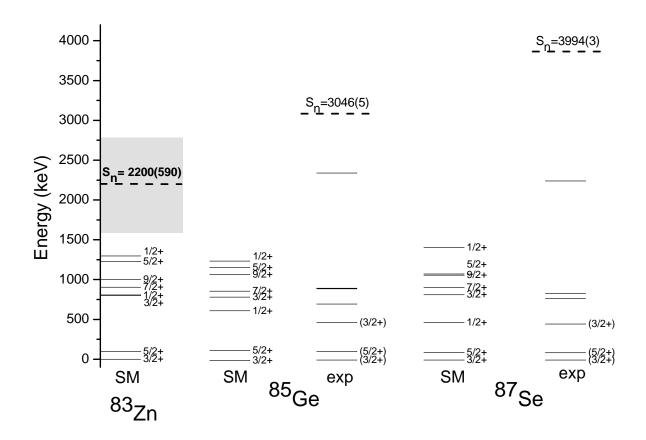


FIG. 4. Experimental and shell-model predictions of low energy excited states in even-Z, N=53 isotones. Data from the present work and from [7, 38] All energies are in keV. See text for details.

into population of ground- and excited states in the respective β -delayed neutron daughters [37]. The intensity pattern of β -delayed gamma transitions is similar in both ⁸⁵Ga and ⁸⁷As decays, with intense lines around 0.1 MeV, 0.4 MeV, and 0.7-0.8 MeV.Therefore, a similar level structure and similar gamma de-excitation properties are expected for the more exotic N=53 isotone ⁸³Zn, see Fig. 4. If we were to populated ⁸³Zn excited states in the β -decay of ⁸³Cu, the levels fed by allowed decays are likely neutron-unbound. The detection of the Gamow-Teller strength pattern in ⁸³Cu decay would require β -delayed neutron energy measurements [39, 40]. The low-energy structure of ⁸³Zn could be detected either in ⁸³Cu first forbidden β decay or in ⁸⁴Cu β -delayed neutron- γ measurements.

V. SUMMARY

We have investigated the β and β -n decay of ⁸⁷As and identified new transitions in the N=53 ⁸⁷Se and N=52

⁸⁶Se daughter nuclei. The ground state configuration of ⁸⁷As is consistent with $5/2^-$, however the $3/2^-$ cannot be completely ruled out by our data. The spin and parity values were tentatively assigned to the low-energy states as $(3/2^+)$, $(5/2^+)$ and $(3/2^+)$ in ⁸⁷Se, respectively. The comparison of the experimental decay-schemes of ⁸⁷As \rightarrow ⁸⁷Se and ⁸⁵Ga \rightarrow ⁸⁵Ge with shell-model analysis allowed us to predict the main features of β - γ and β -neutron- γ decays of the still unknown nuclei ⁸³Cu and ⁸⁴Cu populating low-energy states in ⁸³Zn.

VI. ACKNOWLEDGEMENTS

We wish to acknowledge the Holifield Radioactive Ion Beam Facility (HRIBF) staff for their assistance with the experiments and for providing excellent quality neutron-rich radioactive beams. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and this research used resources of the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory, which was a DOE Office of Science User Facility. This research is sponsored by the Office of Nuclear Physics, U. S. Department of Energy and supported under US DOE grants DE-AC05-00OR22725, DE-FG02-96ER41006, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, and DE-FG05-

88ER40407; National Nuclear Security Administration Grant No. DEFC03-03NA00143. K. M. research was performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

- [1] J.S. Thomas et al., Phys. Rev. C 71, 021302 (2005).
- [2] J.S. Thomas et al., Phys. Rev. C 76, 044302 (2007).
- [3] J.A. Winger *et al.*, Phys. Rev. C **81**, 044303 (2010).
- [4] D. Verney et al., Phys. Rev. C 76, 054312 (2007).
- [5] S. Padgett et al., Phys. Rev. C 82, 064314 (2010).
- [6] B. Cheal et al., J. of Phys.: Conference Series, Vol 381 (IOP Publishing, 2012) p. 012071.
- [7] A. Korgul et~al., Phys. Rev. C $\bf 88,~044330$ (2013).
- [8] K. Sieja, T.R. Rodriguez, K. Kolos and D. Verney, Phys. Rev. C 88, 034327 (2013).
- [9] T. Rząca-Urban, M. Czerwiński, W. Urban, A. G. Smith, I. Ahmad, F. Nowacki, and K. Sieja, Phys. Rev. C 88, 034302, (2013).
- [10] C. Mazzocchi et al. Phys. Rev. C 87, 034315 (2013);Phys. Rev. C 87 039902(E) (2013).
- [11] J. R. Beene, D. W. Bardayan, A. Galindo Uribarri, C. J. Gross, K. L. Jones, J. F. Liang, W. Nazarewicz, D. W. Stracener, B. A. Tatum and R. L. Varner, J. Phys. G: Nucl. Part. Phys. 38, 024002 (2011).
- [12] D.W. Stracener, Nucl. Instrum. Methods Phys. Res., Sect. B 204, 42 (2003).
- [13] M. Madurga et al., Phys. Rev. Lett. 109, 112501 (2012).
- [14] https://www.phy.ornl.gov/hribf/equipment/leribss/
- [15] R. Grzywacz Nucl. Instr. Methods in Phys. Res., Sect. B 204, 649 (2003).
- [16] R. Grzywacz, C.J. Gross, A. Korgul, S.N. Liddick, C. Mazzocchi, R.D. Page, K.Rykaczewski, Nucl. Instr. Methods in Phys. Res., Sect. B 261, 1103 (2007).
- [17] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer, Chin. Phys. C 36(12), 1603 (2012).
- [18] E.F. Jones et al., Phys. Rev. C. 73, 017301 (2006).
- [19] M. Czerwiński et al., Phys. Rev. C 88, 044314 (2013).
- [20] C. Mazzocchi et al., Acta Phys. Pol. 46, 713 (2015).
- [21] S. V. Ilyushkin et al., Phys. Rev. C 80, 054304 (2009).

- [22] K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009).
- [23] K. Sieja and F. Nowacki, Phys. Rev. C 81, 061303(R) (2010).
- [24] B. Singh Nuclear Data Sheets 114, 1 (2013).
- [25] K. Miernik et al., Phys. Rev. Lett. 111, 132502 (2013).
- [26] R. Machleidt, arXiv:0704.0807 [nucl-th] (2007).
- [27] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Physics Reports 261, 125 (1995).
- [28] W. Rae, NUSHELLX shell-model code, http://www.garsington.eclipse.co.uk/
- [29] B.A. Brown and W.D.M. Rae, Nuclear Data Sheets 120, 115 (2014).
- [30] http://bricc.anu.edu.au/index.php.
- [31] M. Hirata, Physics Letters B **32**, 656 (1970).
- [32] E. Osnes and C.S Warke, Nuclear Physics, Section A 154, 331 (1970).
- [33] R.N Horoshko, D. Cline, and P.M.S. Lesser, Nuclear Physics, Section A 149, 562 (1970).
- [34] L. Zamick, Physics Letters B **34**, 472 (1971).
- [35] A. de Shalit and H. Feshbach, Theoretical nuclear physics (John Willey & Sons, 1974).
- [36] H. Mach et al. Nucl. Phys. A 523, 197 (1991) and references therein.
- [37] M. F. Alshudifat et al., submitted to Phys. Rev. C.
- [38] http://www.nndc.bnl.gov
- [39] M. Madurga et al., in Application of Accelerators in Research and Industry: Twenty-First International Conference, Fort Worth, Texas, August 2010, edited by F. D. McDaniel and B. L. Doyle, AIP Conf. Proc. No. 1336 (AIP, New York, 2011), p. 586.
- [40] Paulauskas, Stanley Vincent, "Beta-Delayed Neutron Spectroscopy of Fission Fragments Using the Versatile Array of Neutron Detectors at Low Energy.-" PhD thesis dissertation, University of Tennessee, 2013.