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An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics
on a lattice at unphysically large pion masses. The theory is calibrated at leading order to two
available data sets on two- and three-body nuclei for two pion masses. At those pion masses
we predict the quartet and doublet neutron-deuteron scattering lengths, and the alpha-particle
binding energy. Formπ=510 MeV we obtain, respectively, 4anD = 2.3± 1.3 fm, 2anD = 2.2± 2.1 fm,
and Bα = 35± 22 MeV, while for mπ=805 MeV 4anD = 1.6± 1.3 fm, 2anD = 0.62± 1.0 fm, and
Bα = 94± 45 MeV are found. Phillips- and Tjon-like correlations to the triton binding energy are
established. We find the theoretical uncertainty in the respective correlation bands to be independent
of the pion mass. As a benchmark, we present results for the physical pion mass, using experimental
two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the
structure of the triton and alpha particle are discussed.

I. INTRODUCTION

The vast number of phenomena of the nuclear chart
depend on a relatively small set of quantum chromody-
namics (QCD) parameters — in the low energies relevant
for nuclear physics, a mass scale MQCD associated to the
strong coupling constant, the masses mq of the two light-
est quarks, the electromagnetic coupling strength, and
the vacuum angle. Lattice QCD (LQCD) is a numer-
ical framework which enables us, at least in principle,
to relate nuclear and QCD parameters, once effects due
to finite lattice spacing and size are removed. The last
few years have witnessed significant progress in predict-
ing the properties of light nuclei with nucleon number
A ≤ 4, but at relatively large quark masses and neglect-
ing time-reversal and isospin violation. (See Ref. [1] for
a review and a list of relevant references).

Increasing A at fixed quark masses presents significant
difficulties because the noise-to-signal rate increases ex-
ponentially. Although there seem to be ways around this
problem [1], large A also requires that longer distances
be covered by the lattice, since the nuclear volume in-
creases with A. As in other areas of physics, it is prof-
itable to change to a more effective description, in this
case to an effective field theory (EFT) involving nucle-
ons as degrees of freedom. Because an EFT is based on
the most general Hamiltonian with the appropriate sym-
metries, it is guaranteed to produce S-matrix elements
consistent with the S matrix of the underlying theory
[2], here QCD. After matching the EFT amplitudes to
the LQCD-calculated quantities at small A, one can de-
scribe the longer-distance dynamics involved in larger-A
systems within the EFT [3], which is considerably simpler
than doing so directly within LQCD.

Most LQCD results so far concern binding energies,
but reactions convey much more information and will
command increasing attention in the years to come. Un-

fortunately, as discussed in Ref. [4], which also summa-
rizes the progress in this field, volume artifacts are more
pronounced. EFT quite naturally accounts for scatter-
ing states, and allows bound states and scattering to be
treated on equal footing. Here we elaborate on the find-
ings of Ref. [3] for A ≤ 4 and extend, for the first time,
LQCD predictions to reactions involving nuclei. As an
example, we consider neutron-deuteron (nD) scattering
at low energies, where the two S-wave channels — with
total spin s = 3/2 (quartet) and s = 1/2 (doublet) —
are most important.

The noise-to-signal rate in LQCD also increases with
decreasing mq. Results obtained with unphysical mq can,
in principle, be extrapolated to the physical point in a
systematic way using chiral effective field theory (χEFT),
as long as pion masses are within the radius of conver-
gence of the latter. From χEFT with up to one nucleon
— that is, chiral perturbation theory (χPT) — one ob-
tains themq dependence of, for example, the average pion
mass (mπ) [5], and of the nucleon (mN) and Delta (m∆)
masses [6]. The mq dependence of some few-nucleon ob-
servables has also been estimated [7], but unfortunately
significant uncertainties still exist due to subtleties in the
proper accounting of renormalization-group (RG) invari-
ance in this non-perturbative context [7–9].

The average pion mass mπ is commonly used as a mea-
sure for the detuned value of the average quark mass.
At present, LQCD can be carried out in the meson and
single-hadron sector down to values of mπ close to phys-
ical, where the low-lying mass spectrum is reproduced
within theoretical error bars (see Ref. [10] for a sta-
tus report). Comparison with LQCD data suggests that
χPT converges for pion masses no larger than about 500
MeV [11]. In contrast, the quark masses employed in
current nuclear LQCD are likely beyond reach of χEFT.

As proposed in Ref. [3] and elaborated here, the EFT
that describes existing light-nuclear LQCD data need
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not include pions explicitly. In fact, it has been un-
derstood for over fifteen years that even at the physical
pion mass light nuclei are well described by pionless EFT
(π/EFT), an EFT with non-relativistic nucleons interact-
ing through contact forces with an increasing number of
derivatives — each with a strength parameter or “low-
energy constant” (LEC) — which contribute at increas-
ing orders. In two-nucleon scattering, π/EFT reproduces
[12–15] the effective range expansion (ERE): scattering
lengths at leading order (LO), effective ranges at next-to-
leading order (NLO), etc. It thus also gives two-nucleon
binding momenta in the 3S1 and 1S0 with corresponding
accuracy. More importantly, π/EFT offers a consistent
extension of the ERE to other systems [16]. For exam-
ple, S-wave nD scattering in the quartet channel can be
very accurately postdicted [16–20] once the two-nucleon
LECs have been fixed in the two-nucleon system. In the
doublet channel, in contrast, RG invariance requires that
the three-body force with no derivatives appear already
at LO, with isospin-symmetric corrections starting be-
yond NLO [19, 21–28]. Current evidence from the RG
in the four-body system suggests that there is no four-
body force up to NLO [29–32]. The existence of a sin-
gle three-body parameter up to NLO, which determines
the three- and higher-body spectra, leads to many cor-
relations among few-body observables at fixed two-body
input. Examples are the so-called Phillips [33] and Tjon
[34] lines obtained in plots of the doublet nD scattering
length [23, 24] and alpha-particle binding energy [30, 32]
as functions of the triton binding energy. Higher partial
waves in three-nucleon scattering [20, 35], four-nucleon
scattering [36], and even 6Li [37] can also be reasonably
well described in π/EFT.

We will show that an analogous approach to describe
light nuclei is equally useful at larger mπ. Using higher-
than-physical mq not only increases mπ, but also changes
the nucleon mass mN and the masses of all other hadrons.
We will argue on the basis of scales inferred from LQCD
data that nucleons are sufficient for momenta up to mπ,
with neither explicit pions nor other baryons. Whether
it is indeed mπ (instead of, say, m∆ − mN) that deter-
mines the convergence rate of the theory used here is
the subject of an upcoming investigation. At each value
of mπ a pionless EFT exists with specific values of the
LECs; we refer to π/EFT with varying mπ as π↗EFT in
the following. Until nuclear LQCD calculations are ex-
tended to include time-reversal and isospin violation, mπ

is the only QCD parameter determining nuclear proper-
ties. Existing data at mπ = 805 [38] and 510 [39] MeV
give A ≤ 4 binding energies that are much larger than
in the real world and increase with the pion mass. The
dineutron is bound, which could signal qualitative new
features in lattice worlds. An obvious question is the
extent to which properties of π/EFT survive in π↗EFT,
where all scales change.

In Ref. [3] the binding energies of nuclei with
A ≤ 6 were studied in LO π↗EFT using as input the
LQCD data for dineutron, deuteron and triton/helion at

mπ = 805 MeV [38]. The alpha-particle binding energy
provided a consistency check between π↗EFT and LQCD
data, and the A = 5, 6 binding energies obtained with
π↗EFT can be viewed as an extrapolation of LQCD.
Here, we extend π↗EFT to the mπ = 510 MeV LQCD
data [39] and to a broader range of observables including
scattering amplitudes.

The methods of π/EFT have for some time been de-
ployed in the study of reactions directly on the lattice
[4, 40]. Both two-nucleon elastic scattering [41] and neu-
tron radiative capture on the proton [42] have been con-
sidered directly on the lattice. Our strategy is, instead, to
analyze reactions outside the lattice box with π↗EFT once
its LECs have been determined from binding energies
at LO and, eventually, also two-nucleon scattering ob-
servables at NLO. We exploit the dramatic advances in
the development of the so-called ab initio methods that
have taken place in nuclear physics over the same period
in which π/EFT was formulated. In particular, here we
employ the effective-interaction hyperspherical-harmonic
(EIHH) method [43–45], and the refined resonating-
group (RGM) method [46]. Although these methods have
been developed for traditional nuclear potentials, they
can be adapted to pionless EFT, as already done for
π↗EFT in the EIHH [3] and π/EFT in the RGM [32, 36].

Thus, we show that π/EFT remains useful in nuclear
systems with A ≤ 4 and extrapolate LQCD data to ob-
servables that might not be as easily obtained in the
lattice. This is analogous to the use of π/EFT correla-
tions [47, 48] to infer values of poorly measured observ-
ables in the real world. If and when scattering observ-
ables are determined directly on the lattice, our predic-
tions will be a further test of the consistency between
π↗EFT and LQCD, establishing the validity of a theory
with only contact interactions over a range of mπ from
140 MeV up to 805 MeV. Such a consistency would pro-
vide a benchmark for the extension of this method to
the less-understood χEFT, once LQCD data reaches suf-
ficiently small pion masses.

We summarize the article as follows. In Sec. II we
discuss the degrees of freedom and breakdown scale of
π↗EFT for mπ up to ∼ 800 MeV. Still in Sec. II, we
present the LO Hamiltonian and the regulator we use in
calculations, which employ the computational tools in-
troduced in Sec. III: the EIHH and RGM methods. In
Sec. IV, we determine the LO LECs from the LQCD data
for A ≤ 3 in the alternate reality assessed via LQCD at
various mπ. With the Hamiltonian thus calibrated, we
calculate in Sec. V the alpha-particle binding energy, es-
tablish the heavy pion Phillips and Tjon lines, and pre-
dict the doublet and quartet neutron-deuteron scattering
lengths 2anD and 4anD. As we conclude in Sec. VI the
procedure is analogous to the development of π/EFT over
the last decades, namely, a calibration of a small set of
parameters to data in order, first, to obtain predictions
of low-energy observables and, second, to explain corre-
lations amongst them.
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II. PIONLESS EFFECTIVE FIELD THEORY

At physical mπ, pionless EFT with nucleons as the
sole degrees of freedom has proved useful for light nu-
clei in the low-momentum regime — see Refs. [49, 50]
for reviews and Ref. [51] for a pedagogical introduction.
Its organizational scheme (“power counting”) is based on
two basic scales: the breakdown scale Qhigh estimated as
mπ and an unnaturally small scale ℵ related to the in-
verse of the two-nucleon scattering lengths 1,3aNN in the
singlet/triplet channels.

For external relative momenta k . mπ/2, the deuteron
and the virtual singlet bound state are the only singular-
ities of the two-body scattering amplitude. All mesons
and excited baryons are short-range effects. The ampli-
tude from a Lagrangian built of derivative contact op-
erators made of nucleon fields can be matched to all
orders of the ERE. Matching the LO amplitude to the
ERE results in a Cs,t ∝ 4π(1,3aNN)/mN ∼ 4π/(mNℵ)
scaling of the non-derivative four-nucleon contact term.
As the scattering lengths 1,3aNN are large relative to the
pion range 1/mπ for both NN S-wave channels, a refined
power counting is required [12, 13] that goes beyond naive
dimensional analysis. Of course, care has to be taken that

the necessary regularization and the inclusion of higher-
order contributions do not introduce poles within the ra-
dius of convergence. As long as those singularities are
beyond the pion threshold, mπ, π/EFT converges for two-
nucleon processes at momenta Q < Qhigh, including the
3S1 (deuteron) and 1S0 poles [14, 15]. In LO the two
LECs Cs,t suffice.

Extending π/EFT to systems with more nucleons re-
quires understanding how ℵ enters the LECs of multi-
nucleon interactions. The fact that the non-derivative
six-nucleon contact interaction is needed to define
the EFT at LO [21, 22] implies its LEC scales as
Dd ∼ (4π)2/(mNℵ4). In contrast, the apparent lack of
similar RG enhancements in other contact interactions
suggests they appear only in higher orders.

As π/EFT is applied beyond the deuteron, one needs to
account for effects of the Coulomb force among protons.
The importance of Coulomb effects is characterized by
a ratio αmN/Q, where α is the fine-structure constant.
Although crucial for very low-energy proton-proton [15]
and proton-nucleus scattering, the Coulomb interaction
should be subleading in relatively deep ground states
such as helion and alpha particle, where binding mo-
menta are much larger than αmN .

At LO, the π/EFT Lagrangian can be written as

LLO = N†

(
i∂0 +

~∇2

2mN

)
N +

Cs
8

(
NTσ2σiτ2N

)† (
NTσ2σiτ2N

)
+
Ct
8

(
NTσ2τ2τaN

)† (
NTσ2τ2τaN

)
+Dd(N

†N)(N†N)(N†N), (1)

where N is a bi-spinor in both spin and isospin spaces,
and σi (τa) are the spin (isospin) Pauli matrices, the
index i (a) running over spin (isospin) vector components
of the projection operators on the spin singlet (triplet)
state. Higher orders contain terms with more derivatives
and/or nucleon fields, including those necessary to ensure
Lorentz invariance (in a Q/mN expansion).

Somewhat surprisingly, π/EFT seems to converge for
triton and helion [23, 24, 26], and even for the more-
bound alpha particle [30, 32]. At the physical point,
π/EFT is useful even at LO to explain features like correla-
tions amongst three-body observables (the Phillips line)
and between three- and four-body data (the Tjon line),
with just the neutron-proton scattering lengths 1,3anp

as input. With an additional condition which conven-
tionally fixes either the triton binding energy BT or the
neutron-deuteron doublet scattering length 2anD, a few
four-nucleon observables — e.g., the binding energy of
4He [30, 32], and the neutron-triton and proton-helion
scattering lengths [36] — have been found to agree with
data within the expected uncertainty margin. The only
exception so far seems to be the resonance location in
the 0− neutron-triton channel, which was found to be
cutoff, and thus renormalization-scheme dependent [52].

The origin of this pathology is unknown. LO results for
6Li [37] do not allow conclusions about the range in A
where π/EFT converges.

With the usefulness at physical mπ thus established,
we follow an analogous approach at heavier mq. Avail-
able lattice data [10] identifies the pion, still, as the light-
est meson and the Delta as the lowest excited state of the
nucleon. However, the ratios between the nucleon, pion,
and Delta masses change, see Table I. Also, nuclei be-
come increasingly more bound.

The relevant momentum is very clear in the two-
nucleon system, from either the inverse scattering lengths
or the two-nucleon binding momentum estimated from
the average two-nucleon binding energy. At all pion
masses it is much smaller than the nucleon mass, meaning
nucleons are nonrelativistic, and even than the pion mass
itself, ensuring pions can be integrated out. However, in
contrast to the physical world, mπ > m∆ −mN ≡ δ∆ for
the two lattice simulations, and hence one might wonder
if the Delta should not be included as an explicit degree
of freedom.

The reason the Delta can still be integrated out is, of
course, that in a nonrelativistic theory the relevant quan-
tity for convergence is momentum, not heavy-particle
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TABLE I. Relevant scales for a low-energy nuclear effective field theory. Physical data in the first column is relevant for π/EFT,
lattice data summarized in the second and third for π↗EFT. All numbers are given in MeV.

pion mass mπ 139.5± 0.1 [53] 511± 2 [39] 806± 1 [38]

nucleon mass mN 939± 1, 938± 1 [54] 1320± 3 [39] 1634± 18 [38]

Delta-nucleon mass difference δ∆ = m∆ −mN 292± 1 [55] ≈ 200 [56] ≈ 180 [56]

dineutron binding energy Bnn — 7.4± 2 [39] 15.9± 4 [38]

deuteron binding energy BD 2.22 [57] 11.5± 2 [39] 19.5± 5 [38]

triton binding energy BT 8.482 [58] 20.3± 4.5 [39] 53.9± 10.7 [38]

inverse singlet scattering length 1a−1
np −8.31 [59] n.a. 84.7± 18 [41]

inverse triplet scattering length 3a−1
np 36.4 [59] n.a. 108± 13 [41]

Delta effective momentum
√

2mNδ∆ 741 890 767

two-nucleon binding momentum
√
mN(Bnn +BD)/2 46 112 170

triton-to-deuteron binding ratio BT/BD 3.82 1.8 2.8

mass. In this case, it is the “Delta effective momen-
tum”

√
2mNδ∆, which remains above, or at least near,

the pion mass. That
√

2mNδ∆ is the relevant scale was
shown explicitly in Ref. [60] for the two-nucleon 1S0

channel. In this case, the lowest accessible state with
excitations has two Deltas, and in addition to Cs two
other non-derivative contact interactions need to be in-
cluded: two-nucleon/two-Delta and four-Delta. Under
the assumption that all three LECs are of a similar size
C0, they scale as [60]

C0 =
4π

mN

(
1a−1

NN +
√

2mNδ∆

)−1

≈ (234 MeV)−2 (2)

at mπ=140 MeV. Because the inverse value of the singlet
scattering length for mπ=805 MeV, displayed in Table I,
is about 10 times larger in magnitude than its physi-
cal analog, the ensuing size of C0 would decrease and
allow for higher typical momenta in the two-nucleon am-
plitude. However, the Delta effective momentum is still
several times larger than the inverse scattering length.
Operators in a Deltaful, pionless theory should then show
similar scaling behavior as for physical pion mass, where
the Delta can be integrated out. Removing the Delta
generates an effective range not accounted for in LO, but
this contribution is characterized by the Delta effective
momentum, which does not seem to be smaller than the
inverse pion mass.

This argument can be generalized to other channels
[61] where

√
2mNδ∆ is replaced by

√
mN∆r, with ∆r the

difference between the mass of the state containing the
nucleon excitation(s) and 2mN. Since lattice results sug-
gest that the lowest state with a single excitation in-
volves the Roper resonance, whose mass is somewhat
larger than the Delta, one does not expect a significant

decrease in convergence rate by keeping only the nucleon
explicit in the EFT.

Therefore, we formulate π↗EFT as an EFT formally
equivalent to π/EFT, but with different scales and values
for the LECs. The breakdown or high-momentum scale
Qhigh is assumed to be the smallest of mπ and

√
mN∆r.

The low-momentum scale Qlow is set by the binding mo-
menta of the nuclei we consider and by the external mo-
menta in the reactions we are interested in. We expand
all observable in powers of Qlow/Qhigh. Eventually, an
NLO calculation will yield an estimate on the conver-
gence rate and thereby the breakdown scale of π↗EFT.
The Lagrangian in LO is given by Eq. (1), in which four
mπ-dependent parameters enter: the nucleon mass mN

and the LECs Cs,t and Dd.

For the calculation of few-body observables we solve
the Schrödinger equation in configuration space. The
potential is the sum of all irreducible contributions
to the A-body scattering matrix from the Lagrangian.
This amounts at LO to the sum of three tree-level
diagrams with vertex factors Cs,t and Dd. The in-
finities resulting from the zero-range contact interac-
tions are here regularized via Gaussian regulator func-
tions, Λ3 exp(−Λ2r2

ij/4)/(16π3/2) for two nucleons i, j

and Λ6 exp[−Λ2(r2
ik + r2

jk)/4]/(64π3) for three nucleons
i, j, k, where Λ arbitrarily separates states included ex-
plicitly as propagating degrees of freedom from states
accounted for implicitly in the LECs. If it is smaller
than the breakdown scale it produces larger errors than
the truncation of the EFT Lagrangian (Sec. V A 2 exem-
plifies ramification of a violation of this condition). The
resulting Schrödinger equation for the A-body wave func-
tion Ψ and the corresponding energy E takes the form

−∑
i

∇2
i

2mN

+
∑
i<j

1

2
[C1,0 + C0,1 + (C1,0 − C0,1)σi · σj ] e−

Λ2

4 r2
ij +

∑
i<j<k

∑
cyc

D1e
−Λ2

4 (r2
ik+r2

jk)

Ψ = EΨ. (3)
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Here, a factor from the regulator was absorbed into the
bare couplings of Eq. (1):

C0,1(Λ) =
Λ3

16π3/2
Cs(Λ), (4)

C1,0(Λ) =
Λ3

16π3/2
Ct(Λ), (5)

D1(Λ) =

(
Λ3

8π3/2

)2

Dd(Λ). (6)

As in any EFT, the bare LECs depend on Λ so as to guar-
antee that observables do not. The Λ-dependent LECs
are determined from input data in Sec. IV, after we dis-
cuss the solution of Eq. (3) in the next section.

III. TOOLBOX

To solve the Schrödinger equation we have utilized two
computational methods: EIHH and RGM. Hereafter, we
present a short description of both methods.

A. The Effective-Interaction Hyperspherical
Harmonics Method

The hyperspherical coordinates are the D-dimensional
generalization of the 3-dimensional spherical or polar co-
ordinates. As such they allow the description of the A-
body wave function in terms of a single length variable,
the hyper-radius ρ, and (D − 1) hyper-angular variables
Ω [62, 63]. Removing the center-of-mass coordinate, the
A-body dynamics can be described by A− 1 Jacobi vec-
tors η1, ..., ηA−1, therefore D = 3A− 3.

The nice feature of these coordinates is that, in per-
fect analogy to the two-particle case, the kinetic energy
operator T of the A-particle system splits into a hyper-
radial and hyper-centrifugal terms, with a hyperspherical
angular momentum operator K̂ that depends on Ω. The
resulting A-particle Hamiltonian reads

H [A] = − 1

2mN

(
∆ρ −

K̂2

ρ2

)
+ V [A](ρ,Ω) , (7)

where ∆ρ is the hyper-radial Laplacian.
The hyperspherical harmonics (HH) Y[K] are the A-

body generalization of the spherical harmonics. As
such they are the eigenfunctions of K̂2 with eigenvalues
K(K+3A−5). They form a complete set of hyper-angular
basis functions. Choosing a complementary set of hyper-
radial basis states Rn(ρ), the A-body wave function can
be expanded in the form

Ψ(ρ,Ω) =
∑
n[K]

Cn[K]Rn(ρ)Y[K](Ω) (8)

with coefficients Cn[K]. The nuclear wave function Ψ
must be complemented by the spin-isospin parts, and the

whole function must be antisymmetric. The construction
of antisymmetric HH spin-isospin basis states is a non-
trivial task, which, however, has been solved in Refs. [64,
65].

To accelerate the convergence rate of the HH expan-
sion, Eq. (8), we construct an effective interaction (EI)
using the Lee-Suzuki similarity transformation [66]. Ap-
plying the this method to the HH basis we identify the
model space P with all the A-body HH states such that
K ≤ Kmax, and the complementary space Q = 1− P as
the rest of the Hilbert space. The Lee-Suzuki method
then gives a recipe to construct a similarity transfor-
mation such that the spectrum of the resulting effective
P -space Hamiltonian, H [A]eff = T + V [A]eff , coincides
with the spectrum of H [A]. Finding V [A]eff , however, is
as difficult as solving the original problem, and therefore
we do not search for the total EI, but for a partial EI
constructed through the solution of the simpler two- and
three-body problems.

The resulting EI is tailored to our HH model space,
and constrained to coincide with the bare one when en-
larging the model space. This EIHH method [43–45] has
been successfully applied to the study of bound states
and reactions for nuclear systems with 3 ≤ A ≤ 7.

B. The Refined Resonating-Group Method

In contrast to the EIHH method where the few-body
wave function is expanded over a complete set of states,
the RGM is a variational approach that utilizes an over-
complete set of states (for its original formulation, see
Ref. [67, 68]; for the refinement and implementation,
Ref. [46]). To construct these states, the RGM considers
all possible channels {[c]}, where each channel consists of
a specific spin-isospin configuration Ξ[c], a set of Jacobi
vectors η1, . . . ,ηA−1, and the angular momentum quan-
tum numbers `1, . . . , `A−1 associated with these vectors.
The orbital functions are given by the ansatz

Rn[c](η1, . . . ,ηA−1) =

A−1∏
j=1

η
`j
j Y`jmj

(η̂j)e
−κnjη

2
j , (9)

where Y`m are the spherical harmonics, and κnj are a set
of width parameters used to expand the wave function,
i.e., the sum over the channels includes an expansion of
each radial dependence in Gaussians with widths {κnj}.

The few-body wave function is then a linear combina-
tion of an antisymmetric product of a spin-isospin chan-
nel state and the orbital function, coupled to yield the
desired total angular momentum quantum numbers JM ,

ΨJM = A
∑
n[c]

Cn[c]

[
Rn[c]⊗Ξ[c]

]JM
. (10)

The sum over channels allows the consideration of all pos-
sible spin-isospin configurations or clusters Ξ[c]. In prac-
tice, however, our implementation omits channels that
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have negligible contribution to the wave function. For
example, the ansatz for the alpha-particle wave function
includes triton-proton, helion-neutron, and deuteron-
deuteron spin-isospin configurations. The conceivable
two-neutron–two-proton arrangement was found to con-
tribute less than 100 keV to Bα and therefore is not in-
cluded in the variational ansatz.

Thus, the RGM method includes three intertwined
expansions: i) the cluster or resonating-group expan-
sion, which defines the spin-isospin configuration and the
Jacobi coordinates; ii) the partial-wave expansion; and
iii) the expansion in Gaussian functions. Convergence is
assessed along each of those “axes”. First, the thresh-
olds of a system serve as guidance for the initial choice of
resonating groups. Second, contributions from sublead-
ing partial waves are considered. For s-wave nuclei, and
central forces, ` > 0 configurations do not have to be
included due to the cluster expansion. Consequently, at
this order of our EFT we consider only ` = 0 terms in our
description of the light, A ≤ 4 nuclei. Third, the set of
Gaussians is extended and scaled until this modification
of the model space does not affect binding energies by
more than 1%.

With the RGM, we also calculate scattering observ-
ables. To solve the few-body problem with the RGM for
a range of cutoff (Λ as introduced above to obtain the
regularized Eq. 3) values, i.e., to approximate a wave
function with structure around ηj ≈ Λ−1, the variational
basis has to be either very large — leading to numerical
instabilities— or tailored to each Λ — requiring a conver-
gence check with regards to all parameters of the basis
set.

Our variational approach is analog to Kohn-Hulthèn’s
method [69] which minimizes a functional parameter-
izing the reactance matrix, corresponding to Ricatti-
Bessel asymptotic solutions for uncharged particles and
Coulomb functions for charged fragments. We use in- and
out-going waves as boundary conditions (spherical Han-
kel functions h±), because this method turned out to be
more accurate in practice. Specifically, for two-fragment
scattering with an incoming channel c we denote the rel-
ative intercluster Jacobi coordinate by ηc and make the
ansatz

Ψ = A

−h−c (ηc) +
∑
c′

Scc′h
+
c′(ηc′) +

∑
n[c]∈C

Dn[c]Rn[c]

 ,

(11)
with variational parameters Scc′ (the S matrix) and
Dn[c]. If either target or projectile are compound ob-
jects, e.g., the deuteron in Sec. V A, their wave functions
are predetermined via the ansatz in Eq. (10) and mul-
tiplied with the asymptotic solutions h± of the relative
motion. For small distances ηc, the interaction between
nucleons of different fragments is non-zero and the full
scattering wave function will differ from the asymptotic
form as given by the first two terms in Eq. (11). This
difference is described by the third term in Eq. (11).
Convergence and stability are assessed with respect to

the subset C which is taken from the full set of channels.
It is sufficient to include those n[c] in C which are non-
zero for ηc ≈ Λ−1 and, as Gaussians, square-integrable.
For ηc � Λ−1, this expansion should be zero, i.e., Ψ is
identical to the asymptotic solution. The Kohn-Hulthèn
variational condition expressed in terms of the scattering
matrix is

δ {〈Ψ| (H − Ec.m.)|Ψ〉 − iScc} = 0 , (12)

where Ec.m. is the center-of-momentum energy. This
condition yields optimal values for Scc′ and Dn[c].
Here the channel index c discriminates between dif-
ferent two-body fragmentations, e.g., neutron/deuteron
or neutron/neutron-proton singlet, and angular momen-
tum. Using an appropriate decomposition of the Hamil-
tonian (for the latest summary and references to the orig-
inal work see Ref. [70]), the variational coefficients Scc′ ,
Dn[c] can be expressed in terms of integrals of the short-
ranged part of the potential. Therefore, an accurate ex-
pansion of the asymptotic solution is required for a finite
range. In practice, we minimize

I(ε) =

∫ ∞
0

dη

h±c (η)−
∑
n[c]

Cn[c]Rn[c]

2

ηe−εη
2

, (13)

to approximate the Hankel or Coulomb functions. Fi-
nally, we obtain scattering lengths from the phase shift
δ(Ec.m.) at a finite Ec.m. through

a(Ec.m.) = − 1

k cot δ(Ec.m.)
. (14)

As the scattering length is defined for Ec.m. = 0, the un-
certainty due to this approximation has to be assessed.
In this work, we extracted a at 0.001 MeV, used 10-13
Gaussians to expand the deuteron and singlet neutron-
proton fragment in the three-body scattering calcula-
tions, and adapted the Hankel functions with a weight
ε = 0.03 fm−2.

To conclude, we summarize the convergence check:

• First, we determine appropriate Gaussian basis
for the fragments by fixing the number of Gaus-
sians and optimize their widths via a genetic algo-
rithm [71].

• Second, we diagonalize the Hamiltonian, Eq. 3,
in the scattering basis. This basis uses a different
coupling scheme which adopts the one implied in
Eq. (10) for each fragment. The total fragment
spins are coupled to a channel spin which forms,
with the orbital angular momentum on the relative
coordinate ηc between the fragments, the total J .
We enlarge C until the lowest eigenvalues reproduce
the thresholds defined by the ground states of the
fragments and the bound states of the compound
system of the two fragments, if there is a bound
state in the channel (the triton in Sec. V A).
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FIG. 1. (Color online) Dependence of the alpha-particle binding energy Bα (in MeV) calculated with the EIHH method on
the maximal hyper-angular eigenvalue Kmax. Results are shown for a π↗EFT interaction with Λ = 2 fm−1 at mπ= 140 MeV
(a), 510 MeV (b), and 805 MeV (c). The horizontal green line represents the corresponding RGM result.

• Third, we take

lim
ε→0

I(ε) and lim
E→0

a(E) (15)

in Eqs. (13 and (14). While taking both limits, we
identify a plateau in the predicted scattering length
for ε < Λ2 and Ec.m. < 0.0001 MeV.

After these steps, we deem the basis large enough for
an accuracy that is then dominated by the higher-order
contributions of the EFT expansion.

C. Comparison

With EFT parameters calibrated as described below,
we compared the results for BT and Bα of the RGM with
the corresponding EIHH values to test the accuracy of
the resonating-group expansion. As an example, we show
in Fig. 1 the convergence of EIHH calculations to the
RGM results for Bα at a cutoff Λ = 2 fm−1. For all
three pion masses, the EIHH converges with Kmax to
the respective RGM value.

For subsequent calculations the RGM was chosen to
minimize computing time.

IV. CALIBRATION

Through Eq. (3), all LO predictions depend on three
LECs CS,T (S, T = 0, 1 or 1, 0) and D1, besides
the nucleon mass. Lattice data are available for the
two- and three-body binding energies (Bnn, BD, BT) at
mπ= 510 MeV [39] and at mπ= 805 MeV [38]. At
mπ= 805 MeV [41], the singlet and triplet scattering
lengths (1anp,

3 anp) and effective ranges are also avail-
able . We fit CS,T to the two-nucleon binding energies
in the singlet and triplet channels (Bnn, BD) by solving
the Schrödinger equation via the Numerov algorithm.
The D1 term is fixed through BT using the RGM. For
comparison, we also consider the physical pion mass,
mπ=140 MeV, where we fit the experimental singlet scat-

tering length, in addition to experimental deuteron and
triton binding energies.

These renormalization conditions determine the Λ de-
pendence of the LECs. The values of the bare LECs
for cutoffs Λ = 2, 4, 6, 8 fm−1 are given in Table II. and
a graphical representation of the fit results is given in
Fig. 2. The input to calibrate the values at the physical
pion mass (black squares in Fig. 2), namely the deuteron
binding energy and the singlet neutron-proton scattering
length, are known accurately. Thus we abstain from a
display of the sensitivity of those values to the uncer-
tainty in the input. For the unphysical pion masses, the
uncertainty in the input data is significant. For each
cutoff, we thus obtain LECs not only for the central val-
ues but also for the boundaries of the two- and three-
body binding energies. In the case of D1, we fix the
two-nucleon LECs to their central values when varying
BT within its error margins. The widths of the blue
(mπ=805 MeV) and red/gray (510 MeV) bands in Fig. 2
represent how input-data uncertainty translates into cou-
pling strength uncertainty.

Some aspects of the cutoff dependence of the LECs
shown in Fig. 2 can be understood from general argu-

ments. For a non-derivative four-nucleon LEC C (mul-
tiplied by Λ3/(16π3/2) as in Eqs. (4) and (5)) which
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FIG. 2. (Color online) Dependence on the cutoff Λ (in MeV) of the LO LECs of π↗EFT: mNΛ−2C1,0 (a), mNΛ−2C0,1 (b),
and mNΛ−2D1 (c). The squares (mπ=140 MeV), circles (510 MeV), and pentagons (805 MeV) represent values fitted to the
central values of the shallowest two-nucleon S-matrix poles in the singlet and triplet channels. D1 is adjusted to the triton as
the ground (full circles, gray shading) or (for mπ=510 MeV only) first-excited (empty circles, red shading) three-nucleon state.
The shaded uncertainty is obtained by varying the input data within its margin of error.

TABLE II. The LO LECs CS,T and D1 [GeV] for real (mπ =
140 MeV) and lattice (mπ = 510, 805 MeV) nuclei for vari-

ous values of the momentum cutoff Λ [fm−1]. D
(∗)
1 yields the

triton as the ground (excited) state.

mπ Λ C1,0 C0,1 D1 D∗
1

140 2 −0.142 −0.106 0.068 -

4 −0.505 −0.435 0.677 -

6 −1.09 −0.986 2.65 -

8 −1.90 −1.76 7.82 -

510 2 −0.145 −0.130 0.157 −0.120

4 −0.438 −0.412 0.907 −0.441

6 −0.889 −0.853 3.21 −0.855

8 −1.50 −1.45 9.44 −1.27

805 2 −0.148 −0.138 0.071 -

4 −0.405 −0.388 0.354 -

6 −0.789 −0.766 1.00 -

8 −1.30 −1.27 2.22 -

determines a scattering length a, an expansion in pow-
ers of relative momentum over Λ of the loop integrals
appearing in the T matrix gives [13]

mNΛ−2C(Λ) = θ0 +
θ1

aΛ
+O

(
(aΛ)−2

)
, (16)

where θi are regulator-dependent numbers of O(1) that
depend neither on a nor on mN, and thus also not on mπ.
This large-Λ behavior is apparent panels (a) and (b) of
Fig. 2, where we display mNΛ−2CS,T rather than CS,T .
As we can see, all curves approach a limit θ0 ' −0.7, at a
rate that depends on a. The different sign of the scatter-
ing length in the singlet channel for physical mπ results
in a different approach to the asymptotic value compared
to the other channels and pion masses, where relatively
shallow bound states exist.

We can also gain some insight into the cutoff depen-

dence of D1. In the absence of a three-nucleon force, the
triton spectrum depends sensitively on Λ, indicating a
lack of renormalizability. The example of mπ = 510 MeV
is shown in Fig. 3. When D1 = 0, the open circles on the
dotted line show an almost exponential dependence of
the ground state on the cutoff. As indicated by the filled
circles on another dotted line, around 1.2 GeV a second
bound-state pole emerges, which also becomes increas-
ingly more bound as the cutoff increases. The pattern
repeats as the cutoff increases further. Renormalizabil-
ity can be achieved with the non-derivative three-body
force [21–23]

mNΛ−2D1(Λ) = F (Λ/Λ∗) , (17)

where Λ∗ is an mπ-dependent parameter that determines
the three-body spectrum and F is a dimensionless func-
tion that depends on the regulator and on which state
is kept at the observed BT. Accordingly, in panel (c) of
Fig. 2 we display mNΛ−2D1.

For all values of mπ we fit D1 to ensure the deep
bound state remains at the observed value of BT, in
which case F increases monotonically with Λ. The re-
sultant values of the LEC define bands which vary signif-
icantly in width with mπ. For mπ=805 MeV (blue band
around pentagons in panel (c) of Fig. 2) and the physical
mπ (black squares), the band width is narrow relative
to mπ=510 MeV (gray band around circles). All three
bands correspond to repulsive interactions. This means
that without a three-nucleon force there is a three-body
state which is more bound than the observed triton. This
state is then “raised” to the triton by the repulsive inter-
action.

Since additional three-body bound-state poles appear
at the two-body threshold with increasing cutoff, it is
possible to renormalize D1 to a shallow state instead. In
this case, F changes. In the example of Fig. 3, we can
fit D1(Λ) so that the first excited state is “lowered” to
the triton level as indicated by the filled circles on a full
line — we label the corresponding values of D1 as D∗1
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in Table II and Fig. 3. In this case, two states remain
bound: the triton and a deep state shown by the empty
circles on full line in Fig. 3, the latter with a binding
energy that goes from 170 MeV at Λ = 400 MeV to
900 MeV at Λ = 1.6 GeV. The increased binding of the
deep state compared to its binding when D1 = 0 shows
that the force is attractive in this range of cutoffs, and it
indeed has an opposite sign to the force that keeps the
ground state at BT, as seen in Fig. 3.

The functional dependence of the three-nucleon LEC
in Fig. 2 is, by construction, identical to that of the bind-
ing energies on the cutoff when D1 = 0. The latter grows
faster than quadratic (upward bending of the black dot-
ted line with empty circles in Fig. 3). This deviation
is consistent with the increase of D1 in Fig. 2 which is
not just quadratic but receives contributions from higher
powers of Λ. For both fitting choices, we find the uncer-
tainty inD1 by taking BT ∈ [15.8, 24.8] MeV (see Table I)
at mπ=510 MeV. It is considerably larger when a repul-
sive three-nucleon force is used, as shown by the width of
the gray band in panel (c) of Fig. 2, which is much larger
than the red band that represents the variation in the
attractive force strength. In contrast to the log-periodic
behavior of the three-body force as a function of the cut-
off found in Refs. [21–23] we find both, the central value
and the uncertainty, to increase monotonically with Λ
for all mπ except for the calibration to the excited state
(empty circles in Fig. 2). No discontinuities at critical
values of Λ are observed because the eigenstate we chose
to fit D1 was always either the ground or the first excited
state. A log-periodic F , as in Refs. [21–23], is found if
the LEC is calibrated always to the shallowest state in

the spectrum. As a consequence, after renormalization
the smallest binding energy is fixed, while states accrete
from very large binding energies at the critical values of
Λ.

The significant difference in uncertainty of the three-
nucleon-force parameter when fitted to the ground or
excited state is related to the functional dependence
of those states on Λ. In the vicinity of a critical Λ
where an additional state enters the spectrum, the eigen-
value of the excited state increases much slower than
that of the ground state (compare slopes of the dotted
lines in Fig. 3). The respective three-nucleon interaction
strength inherits a larger slope if the ground state is fitted
relative to calibrating the excited state. Since both input
and regulator variation represent a change in the renor-
malization scheme, the observed difference in uncertainty
is a consequence of the differences in slope.

Different values of Λ and different regularization
schemes correspond to different models of the short-
distance behavior of the theory. These models might
allow for deeply bound states in the deuteron, triton,
and alpha-particle spectra. A tenet of EFT is that high-
energy, or short-distance, phenomena can be accounted
at each order by the most general interactions consistent
with symmetries and required by RG invariance. In the
specific case, we use this tenet to conjecture that low-
energy observables, such as the nD scattering lengths,
should be independent of whether we fit the triton to the
deepest, second-deepest, ..., or shallowest state. This has
been seen in simple explicit examples, such as Ref. [72],
where invariants of few-body spectra were analyzed with
respect to changes in the short-distance structure of the
employed models. It is not the scope of this work to as-
sess differences between the various schemes, and hence
we employ repulsive three-nucleon forces consistently in
all calculations below.

V. RESULTS

The Phillips [33] and Tjon [34] correlations are non-
trivial features of nuclear physics. Their sensitivity with
respect to mπ is analyzed here. In addition, we consider
the quartet three-nucleon channel which is less sensitive
to the short-distance structure of the interaction, i.e.,
no three-nucleon interaction contributes up to high or-
der. With these predictions, we conclude that key nu-
clear properties are, qualitatively, insensitive to mπ — a
conjecture based on the universal EFT approach. We
compare the results for mπ=510 MeV and mπ=805 MeV
with LO π/EFT results at the physical pion mass to make
similarities and differences explicit.

Besides identifying the peculiarities of large pion
masses, we predict the outcomes of “experiments” in
these hypothetical worlds. As described in the previ-
ous section, for each cutoff, i.e., model for unobserv-
able short-distance structure, π↗EFT differs in its cou-
pling constants. If these models differ in predictions by
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a finite amount, it is this amount that quantifies the the-
oretical error. In the physical world, theoretical error
estimates of this kind were used previously to make pre-
dictions through correlations (see e.g. Refs. [47, 48]).
Since the theoretical error for BT and Bα is large rela-
tive to the experimental one, the Phillips and Tjon lines
at LO in π/EFT do not constrain observables further at
physical mπ. At larger mπ, however, the lattice uncer-
tainty is still significant (see Table I) and, a priori, there
is no reason why π↗EFT should not be able to constrain
observables more tightly through those correlations than
solely by the “experimental” error.

We assess sensitivity of results to higher-order terms in
the EFT expansion by a variation of the cutoff-regulator
parameter in the range Λ ∈ {2, 4, 6, 8} fm−1. This range
includes the critical value for appearance at the physical
pion mass of an excited state, when D1 = 0 (see discus-
sion of Fig. 3 in Sec. IV). For lattice pion masses, the
upper limit is 2-3 times the expected breakdown scale,
where in general we see signs of convergence in observ-
ables. Although we might ideally want even higher cut-
offs at the expense of further computational time, our
estimate of the truncation error is probably not an un-
derestimate because we include cutoff values below the
expected breakdown scale. Such low cutoffs introduce
larger errors than the truncation. A more reliable error
estimate has to await higher-order calculations where the
breakdown scale manifests itself.

A. The Three-Body Sector

The physical nucleon-deuteron system splits into two
significantly different spin channels: doublet (or triton)
with s = 1/2 and quartet with s = 3/2. The former
(latter) supports (does not support) a bound state. In
the doublet channel, an additional counterterm enters at
LO — D1 term in Eq. (3) — while the quartet channel
is renormalized with CS,T , only. The consequences of
the existence of this counterterm also at values of mπ

explored in current lattice simulations are the subject of
the following two sections. Since we include no Coulomb
interactions, our results at physical pion mass apply only
to neutron-deuteron scattering.

1. Neutron-deuteron 4S3/2 channel

The phase shifts in the quartet channel can be cal-
culated in LO solely on the basis of two-nucleon input.
In Fig. 4, we show our phase shift results for elastic
nD scattering below 10 MeV, calculated with the RGM.
For all three pion masses, the cutoff variation between
2 fm−1 and 8 fm−1 is shown by green (mπ=140 MeV),

red (mπ=510 MeV), and blue (mπ=805 MeV) bands.
The upper (lower) edge corresponds to 8 (2) fm−1. For
the physical mπ, we compare our results to previous LO
and N2LO π/EFT calculations [18, 22] (black solid and
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FIG. 4. (Color online) Elastic neutron-deuteron scatter-
ing phase shift δ in the spin-quartet 4S3/2 channel (in de-
grees) for various pion masses as function of the center-of-
mass energy Ec.m. (in MeV). The green (mπ=140 MeV), red
(mπ=510 MeV), and blue (mπ=805 MeV) shaded areas are
the LO π↗EFT results of the RGM for a cutoff in the range
[2, 8] fm−1. For the overlapping mπ = 510, 805 MeV un-
certainty bands, the upper (lower) edge, corresponding to
Λ = 8 (2) fm−1, is given by dashed lines. For mπ=140 MeV,
the solid (dashed-dotted) black line represents LO (N2LO)
π/EFT results from the solution of the STM equation [18, 22].

dashed-dotted lines) obtained from the solution of the
Skorniakov–Ter-Martirosian (STM) equations. The dif-
ference between these curves is, of course, a good re-
flection of the uncertainty of the LO calculation at the
physical pion mass. Our result has the correct energy
dependence and lies between the two curves. Our error
band accounts for cutoff variation but not numerical un-
certainty. The latter is included in the postdiction of the
nD scattering length given below. The energy depen-
dence and band widths are similar for the three values of
the pion mass we consider. This suggests an invariance
with respect to mπ of the uncertainty — and therefore
the convergence rate of the EFT.

We extract a scattering length at Ec.m. = 0.001 MeV.
The cutoff dependence is illustrated in panel (a) of Fig. 5.
For all values of the pion mass we observe a nice con-
vergence pattern. Our final values are shown in the first
row of Table III. The errors are the sum of the sensitivity
to higher-order effects assessed with the cutoff variation,
and the numerical uncertainty, which we measured to be
less than 1 fm. They are of similar size for the three pion
masses, as for the phase shifts at higher energies.
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FIG. 5. (Color online) Dependence on the cutoff Λ (in MeV) of the quartet (4anD, (a)) and doublet (2anD, (b)) neutron-
deuteron scattering lengths (in fm), and of the alpha-particle binding energy (Bα in MeV, (c)), for mπ = 140 MeV (black
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The quartet scattering length is an example of what
is sometimes called a low-energy theorem: to a high or-
der it is entirely determined by LECs fixed in other pro-
cesses. The value we obtain for 4anD at physical pion
mass is consistent with the π/EFT postdictions [16] of
4anD = 5.1 ± 0.80 at LO and 4anD = 6.4 ± 0.020 at
N2LO, and with the experimental value [73]. We find a
slow decrease with mπ, but no significant change, which
could have arisen if there were a shallow bound state in
this channel. The ERE should apply below the deuteron
break-up threshold, where the deuteron can be treated
as a single body. We might expect that, barring some
fine-tuning, the size of the ERE parameters is set by the
deuteron break-up threshold. kpn '

√
4mNBD/3. The

numbers in Table III show indeed very good agreement
with the expectation |4anD| = O(1/kpn).

Both the convergence pattern with the cutoff (reflected
in error bands) and the natural size of the resulting ob-
servables suggest that π↗EFT behaves in similar ways to
π/EFT. There is no evidence that observables in this
channel require a different treatment from an EFT point
of view for the larger pion masses, i.e., the same power
counting is applicable.

2. Neutron-deuteron 2S1/2 channel

As precise calculations of the three-nucleon system be-
came possible in the late 1960s, correlations were ob-
served among certain three-body observables calculated
with a variety of potentials fitted to two-nucleon data.
The best-known example is the Phillips correlation [33]
between the doublet scattering length 2anD and the triton
binding energy BT. In π/EFT these correlations are un-
derstood [21, 22] by the fact that, if the two-body input
is fixed, three-body predictions in the doublet channel
still depend on one parameter in LO, which determines
the three-body force in Eq. (1). As this parameter is
varied, three-body observables sensitive to the LO three-

body force all change in a correlated way. π↗EFT, by con-
struction, predicts the correlations, and we establish here
similar higher-order uncertainties for all pion masses.

Fixing the LO three-body parameter to one datum,
other observables are calculated as for the quartet chan-
nel. The cutoff dependence of the doublet neutron-
deuteron scattering length is shown in panel (b) of Fig. 5
in the case where the three-body parameter is determined
by BT, as described in Sec. IV. Again signs of conver-
gence are visible, but not as clearly as for the quartet
scattering length. The lowest cutoff of 2 fm−1 is not
clearly above the breakdown scale at mπ = 805 MeV,
and indeed it generates significant errors. Therefore, for
this pion mass we consider only cutoffs 4 fm or higher in
the following analysis. While calculations at other cutoff
values would be desirable, for values above 4 fm−1 we
can already see a trend towards convergence.

One also expects the values of the doublet scatter-
ing length to be correlated with the triton binding en-
ergy. This is particularly clear when |BT − BD| � BD,
in which case the triton can be described as a neutron-
deuteron bound state and the small binding translates
into 1/2anD � 1. But this correlation is observed also
beyond this region: in Fig. 6, the Phillips correlation
is shown for the three pion masses. As the renormal-
ization condition fixes the binding energy but does not
eliminate a residual cutoff dependence, which can only
be removed by higher-order interactions, the correlation
is manifest as a band of finite width rather than a one-
dimensional line. This width represents the theoretical
error at LO π↗EFT. The bands were mapped out by a
line for each cutoff Λ ∈ {2, 4, 6, 8} fm−1. Each such line
is parametrized by a factor multiplying the three-body
interaction. At mπ=805 MeV, the correlation is about
to break down for the lowest cutoff, Λ = 2 fm−1 (blue
dashed line in Fig. 6), which is another evidence that
this value cannot be considered representative of the EFT
truncation error.

We extract the values for 2anD shown in the second
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TABLE III. Leading-order postdictions (π/EFT) and predictions (π↗EFT) for the quartet and doublet neutron-deuteron scattering
lengths 4anD and 2anD at three pion masses, in comparison with experiment and LQCD. The theoretical uncertainty considers
cutoff variation between 2 fm−1 and 8 fm−1, model-space truncation, and LQCD-input variation.

π/EFT π↗EFT

mπ [MeV] 140 510 805
4anD [fm] 5.5± 1.3 2.3± 1.3 1.6± 1.3
2anD [fm] 0.61± 0.50 2.2± 2.1 0.62± 1.0

experiment [73] LQCD
4anD [fm] 6.4± 0.020 ? ?
2anD [fm] 0.65± 0.040 ? ?
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FIG. 6. (Color online) Correlation between the doublet neutron-deuteron scattering length 2anD (in fm) and the three-nucleon
binding energy BT (in MeV). The green (mπ=140 MeV, (a)) and red (mπ=510 MeV, (b)) shaded areas are the LO π↗EFT results
of the RGM for a cutoff in the interval [2, 8] fm−1. The blue (mπ=805 MeV, (c)) shaded area is the LO π↗EFT results of the
RGM for a cutoff in the interval [4, 8] fm−1, with the cutoff Λ = 2 fm−1 shown as a blue dashed line. For mπ=140 MeV (panel
(a)), experimental data are marked with a red dot and blue dashed lines display LO π/EFT results obtained with the STM
equation for sharp cutoffs of 140 and 900 MeV [19]. The gray shaded area (panels (b) and (c)) marks the lattice uncertainty
in BT. Values for 2anD between the horizontal dashed lines are consistent with all other low-energy data.

row of Table III. In the doublet channel, a too-small
model space can be more easily detected than in the quar-
tet channel from an under- or over-bound triton. As a
consequence, the numerical RGM uncertainty is about
0.1 fm and therefore small relative to higher-order ef-
fects which are taken as the width of the band: 0.26 fm
for mπ=510 MeV, and 0.13 fm for mπ=805 MeV. The
approximately constant width of the Phillips band for
all three mπ suggests invariant higher-order uncertainty
with increasing BT. Since higher-order effects scale with
momenta — those of nucleons increase in the triton as BT

increases — the band should intuitively widen towards
larger BT. In effect, lattice input uncertainty dominates
the theoretical error. For the two unphysical pion masses
(panels (b) and (c)), the gray-shaded areas represent data
uncertainty given in Table I. The intersections of the
edges of the error bands with the correlation bands define
areas (gray areas bounded by horizontal dashed lines) in
the BT −2 anD plane which contains pairs of values that
are consistent with all other data points. The total theo-
retical uncertainty as estimated in Table.III includes the
error in the LQCD input, 1.71 fm for mπ = 510 MeV
and 0.26 fm for mπ = 805 MeV.

The calculation at physical mπ (panel (a) in Fig. 6)

serves as a benchmark. The dashed lines represent the
solution of the STM equation at LO in π/EFT when a
sharp cutoff was varied between from 140 to 900 MeV
[19]. Experiment is represented by the red dot. Our
band is consistent with both. The small scattering length
compared to the break-up threshold inverse momentum,
1/kpn ' 2.2 fm, is a sign of a zero of the T matrix near
the nD threshold. As discussed in Ref. [13], such a zero
is located at k2

0 ∼ −2anD k
3
pn with respect to the origin of

the complex relative-momentum plane, when |k0| � kpn

and the deuteron can be treated as elementary. A con-
sequence is a large effective range 2rnD ∼ −(2anD k

2
0)−1

and a small radius of convergence of the usual ERE. Data
suggests |k0| ∼ 20 MeV on the imaginary momentum
axis, and indeed this is what was found by explicit cal-
culation already many years ago [74]. The negative slope
of the Phillips line indicates that, as the three-body force
is changed so that the triton gets more bound, this pole
crosses threshold. The zero remains in the region of va-
lidity of the elementary-deuteron theory for 1 or 2 MeV
around the physical value of BT. In this region a modified
ERE [75] holds [13].

In panels (b) and (c) of Fig. 6) we extend LQCD to
the realm of few-body scattering, which is not as eas-
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ily accessible directly on the lattice. The negative slope
of the Phillips line persists but the line moves up in the
BT−2anD plane, and it gets flatter, as mπ increases. The
“measured” triton binding energy rises monotonously
(Table I), the doublet scattering length first increases
then decreases (Table III). For mπ = 510, 805 MeV,
the accidental zero of the nD scattering amplitude is no
longer clearly present in the region where the deuteron
can be taken as elementary, and no particularly large ef-
fective range is expected.

The increasing 2anD with increasing BT from 140 MeV
to 510 MeV pion mass is opposite to the trend found for
fixed pion mass, as identified above. It is not the triton
binding energy but the triton-to-deuteron binding ratio
shown in Table I which decreases with increasing 2anD.
This ratio is important because it measures the motion
of the “experimental” point in the BT −2 anD plane: BD

influences (together with Bnn) the position of the line,
and BT fixes the position along the line. As the ratio
BT/BD decreases from mπ=140 MeV to mπ=510 MeV
and increases from 510 MeV to 805 MeV pion mass, the
three-nucleon bound state comes closer to and farther
away from the nD threshold.

In particular, the relatively large scattering length
at mπ = 510 MeV reflects a less-bound triton rela-
tive to the neutron-deuteron threshold. Once the er-
rors are considered, BT is just a few of MeV away
from BD at mπ = 510 MeV. In fact, in contrast to
mπ = 140, 805 MeV, the binding momentum of the last
nucleon can be smaller than the deuteron break-up mo-
mentum, κnD '

√
4mN(BT −BD)/3 < kpn, in which case

the ERE is likely to apply. This leads to the prediction

2anD =
1

κnD

(
1 +

2rnD κnD

2
+ . . .

)
. (18)

The first term gives, for the central values of the bind-
ing energies, 2anD = 1.6 fm with a correction of about
50% from the second term if |2rnD| ∼ 1/kpn. This es-
timate agrees with the central value calculated with the
full three-body dynamics given in Table III. Barring sig-
nificant shifts in the central values as lattice errors are
reduced, in this lattice world the triton can be viewed as
a two-body halo system.

It is an open question whether there is a pion mass,
possibly around 510 MeV, where the triton converges to
the deuteron threshold. If there is, we would be wit-
nessing a qualitatively new phenomenon in few-nucleon
physics. The Efimov effect in the three-body system
is a prominent example of universal feature emergent
from the unitary limit in the two-body sector. A pion
mass which produces the analog three-body unitarity,
1/2anD → 0, would be a world where the four-body sys-
tem exhibits an Efimov-type spectrum.

B. The Four-Body Sector

While there is no lattice data on three-nucleon scatter-
ing observables and thus the results presented in the pre-
vious subsection remain to be verified “experimentally”,
i.e., with a direct LQCD calculation, there is data on the
ground-state energy of the four-nucleon system. In this
section, we find the three- and four-nucleon ground-state
energies correlated for all three mπ. At the physical mπ,
the relation is known as the Tjon line [34] which can again
be explained by a variation in the single LO three-body
force parameter.

In Fig. 7, the correlations between the ground-state en-
ergies of the three- and four-nucleon systems are shown.
The different graphs represent results for the three pion
masses. We observe an increase in alpha-particle binding
in step with the increase in triton binding energy, which
is not surprising in pionless EFT because with fixed two-
nucleon input it is the same three-body force that con-
trols the binding of the three- and four-nucleon systems.
The correlation is manifest in a band, not a line, and the
width of the band measures the theoretical uncertainty
assessed via cutoff variation. With the central value ofBT

as input in the three-body force, the dependence on the
cutoff of the alpha-particle binding energy Bα is shown
on panel (c) of Fig. 5. The slope of the correlation lines
— as before, each line is parametrized by a variation of
the D1 three-body interaction strength — further affects
the LO π↗EFT uncertainty. The larger the slope, the
larger the uncertainty in Bα due to the uncertainty in
BT.

For the physical pion mass, our error band does not
agree well with the LO results of Ref. [30] shown in
panel (a) of Fig. 7. In Ref. [30] the alpha-particle
binding energy was found by a solution of the Faddeev-
Yakubovski integral equations with a Gaussian regulator
on the relative incoming (p′) and outgoing (p) momenta,
exp[−(p2 +p′2)/Λ2]. The uncertainty was assessed in [30]
by a cutoff variation Λ ∈ [8, 10] fm−1, thus excluding a
reported stronger cutoff dependence for Λ < 8 fm−1. The
cutoff variation was then deemed small compared to the
higher-order uncertainty estimated by changing the two-
body input: the two curves obtained from BD and 3anp

are represented by the blue lines in Fig. 7. We have simi-
larly examined the input dependence: for Λ = 8 fm−1, we
replaced BD with 3anp and found Bα (upper bound of the
correlation band for mπ=140 MeV, green area, panel (a)
in Fig. 7) larger by 2 MeV. Even with this extended vari-
ation of the renormalization scheme, the two uncertainty
bands do not overlap. In contrast, the current RGM re-
sults for the Tjon correlation band are consistent with the
previous RGM LO-π/EFT calculation of Ref. [32]. The
convergence of Bα to the physical value when the NLO
potential is iterated [32] suggests that in both LO calcu-
lations the theoretical error as shown by the band widths
in Fig. 7 is a lower bound. For our theoretical error esti-
mates, we interpret RGM and Faddeev calculations, i.e.,
different regularizations and model-space cutoffs, as dif-
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FIG. 7. (Color online) Correlation between the three- (BT, in MeV) and four- (Bα, in MeV) nucleon binding energies. The
green (mπ=140 MeV, (a)), red (mπ=510 MeV, (b)) and blue (mπ=805 MeV, (c)) shaded areas are the RGM-LO π↗EFT results
for a cutoff in the interval [2, 8] fm−1. For mπ=140 MeV (panel (a)), the green uncertainty band represents sensitivity to the
cutoff and to the renormalization input (whether BD or 3anp). Experimental data are marked with a red dot, and the blue
dotted (dashed) line represents LO π/EFT results from Ref. [30] using 1anp,

3 anp (1anp, BD) as input. The gray shaded areas
in panels (b) and (c) mark lattice uncertainty in BT and Bα. Values for Bα between the horizontal dashed lines are consistent
with all other low-energy data.

ferent renormalization schemes. For Bα and physical mπ,
the uncertainty is thus given by the spread of results of
both methods (difference between short-dashed blue line
and lower edge of the green band).

For unphysical pion masses we indicate, as before, the
uncertainty in LQCD energies by gray bands in panels (b)
and (c) of Fig. 7: a vertical band for BT and a horizontal
band for Bα. Values for Bα in an interval bounded by the
intersection of the upper (lower) edge of the π↗EFT un-
certainty band with the right (left) boundary of the band
of LQCD-allowed BT values are indicated by horizontal
dashed lines. This range is slightly larger than the con-
straint already given by “experiment” for mπ=805 MeV,
and slightly narrower for mπ=510 MeV. However, given
the renormalization-input dependence seen at physical
pion mass, we estimate the theoretical uncertainty by
conservatively doubling the width of the RGM correlation
band, plus 2 MeV as an upper bound of the numerical
uncertainty (see Fig. 1 for this estimate), plus the exper-
imental LQCD uncertainties in Bα. At mπ=805 MeV,
we observe an increased uncertainty in Bα for the low-
est cutoff value of Λ = 2 fm−1 as we did for the dou-
blet neutron-deuteron scattering lengths (see discussion
of the mπ=805 MeV results in Figs. 5 and 6). In con-
trast to that three-nucleon scattering observable, the ef-
fect (dashed line, panel (c) in Fig. 7) is expressed only at
BT & 70 MeV and remains small at lower binding ener-
gies. This indicates a significant difference in the rate of
EFT convergence for Bα relative to 2anD.

The results for the alpha-particle binding energy are
summarized in Table IV. The predicted value is taken
as the central value in the uncertainty band. The EFT
results—absolute binding energies and the ratios—are
consistent with experiment at physical pion mass and
with LQCD at higher masses given the uncertainty esti-
mates on both, experimental and theoretical side. One
should keep in mind that the experimental number re-
flects the additional effects of the Coulomb interaction

between protons, which does not enter the LQCD re-
sults. As discussed in Sect. II, Coulomb effects should
be of higher order in the relatively tight helion and alpha-
particle ground states.

As expected, the Bα − BT correlation has a positive
slope for any pion mass. For each correlation band,
we define the slope with a linear regression through the
BT, Bα pairs predicted with π↗EFT for all cutoff val-
ues which are within data uncertainty (gray areas) only.
At physical mπ, our calculation yields a smaller slope
(≈ 3.6) than Ref. [30] (≈ 3.8). With increasing mπ,
the slope is found to decrease, ≈ 2.1 for mπ=510 MeV
and mπ=805 MeV. In other words, the ratio Bα/BT does
change with mπ, consistent with the lattice extractions,
as shown in Table IV.

Since in obtaining the Tjon line the three-body force
is being varied, the structure of the line (slope, curva-
ture, intercept) must depend on the two-nucleon inter-
actions. Indeed, from the ratios listed in Table IV we
infer that whatever leads to the different ratios between
the deeper two-nucleon state — recall that for unphys-
ical masses, the interaction in the 1S0 channel sustains
a bound state, see Table I — and the triton is not the
main factor behind the change in the slope of the Tjon
line. As for the Phillips line, the structure of the Tjon
line depends on both pieces of two-nucleon input. For
example, in Fig. 8, we demonstrate the sensitivity of the
slope of the Tjon line with respect to the pole in the
spin-singlet two-nucleon amplitude. The triplet binding
energy, i.e., the deuteron was held fixed to the lattice
central value at mπ = 510 MeV, BD = 11.5 MeV.
Three cases are shown for Λ = 4 fm−1, corresponding
to different calibrations of C0,1, the LEC controlling the
channel: i) a singlet neutron-proton state with binding
energy of approximately 11.5 MeV, i.e., the deuteron en-
ergy; ii) a shallow bound singlet state of BD ≈ 0.5 MeV;
and iii) an unbound singlet state. Within the considered
range for BT a linear regression to the dependence of
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TABLE IV. Predictions for the four-nucleon binding energy Bα and the universal alpha-to-triton ratio Bα/BT from LO
pionless EFT at three pion masses, in comparison with experiment and LQCD. The theoretical errors include numerical and
EFT uncertainty. The uncertainty in the fractions (lines 2 and 4) adds independent errors in quadrature.

mπ [MeV] 140 510 805

π/EFT π↗EFT

Bα [MeV] 24.9± 4.3 35± 22 94± 45

Bα/BT 2.9± 0.51 1.7± 1.1 1.8± 0.9

experiment LQCD

Bα [MeV] 28.3 43.0± 14.4 107.0± 24.2

Bα/BT 3.34 2.1± 0.85 2.0± 0.6
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FIG. 8. Correlation between the three- (BT, in MeV) and
four- (Bα, in MeV) nucleon binding energies (Tjon line) for
three values of the binding energy of the singlet two-nucleon
state: same as the deuteron binding energy (continuous line,
slope ≈ 1.9); shallower than the deuteron (dashed line, slope
≈ 3.0); and unbound (dashed line, slope ≈ 2.4). Results were
obtained for ten values of the three-body interaction strength
at Λ = 4 fm−1 for BD = 11.5 MeV (mπ=510 MeV).

Bα on BT is appropriate. When the singlet two-nucleon
state is very close to threshold, the slope is found max-
imal, ∆Bα/∆BT ≈ 3.0 (red dashed line in Fig. 8). If
the interaction is tuned away from this critical point, ei-
ther to produce no bound singlet (red dotted line), or
a state with identical binding energy to the triplet (red
solid line), the slope parameter decreases. Näıvely, one
might have expected a monotonic dependence of the slope
on the strength of the two-body attraction. A larger
two-body attraction requires a more repulsive three-body
force to fix the triton. The contribution of this extra re-
pulsion should be stronger in the four-particle system
and hence the latter should not be as deeply bound. The
non-monotonicity found above remains to be explained
in a more general context taking into account the possi-
bility of a four-body Efimov effect mentioned at the end
of Sec. V A 2.

VI. CONCLUSION

We have adapted pionless effective field theory, π/EFT,
to describe LQCD data at unphysical pion masses, dub-
bing it π↗EFT. For the first time predictions were made
for a nuclear reaction, nucleon-deuteron scattering, in lat-
tice worlds where the pion mass is 510 and 805 MeV.
Furthermore, the Phillips and Tjon correlations were ob-
tained at these high pion masses with leading-order un-
certainties of similar size and thus offer no indication of
a significantly different convergence rate of the respec-
tive EFT expansions. The alpha-particle binding en-
ergy was found in good agreement with direct lattice
measurements, which reassures us of the applicability of
π↗EFT. It also strengthens confidence in the LQCD re-
sults [38, 39] themselves, despite the apparent subtlety
in identifying energy plateaus in the data.

Our work thus suggests that π↗EFT applies to light
nuclei independently of the exact LQCD data used as in-
put. The calculations presented here could be repeated
if those values change or if new values of the pion mass
are explored. While this manuscript was being written,
new data have appeared for mπ = 300 MeV [76], which
do not quite fit with the trend of increasing binding with
pion mass but show a pattern of dependence on A similar
to the one found at higher pion masses [38, 39] 1. More
problematic is that another lattice collaboration [77] does
not find bound states over a wide range of pion masses.
Because the latter lattice data are processed through an
(unobservable) potential, uncontrolled errors are intro-
duced. Still, it is prudent to consider the specific num-
bers available from LQCD so far as illustrative only, and
focus instead on the qualitative insights they bring into
nuclear physics [3].

While much of the underlying structure of light nuclei
seems to remain the same at unphysical pion mass, exist-

1 Note that the central values for deuteron and triton energies [76]
suggest a triton with a last nucleon that is even less bound than
at mπ = 510 MeV. From Eq. 18 we then expect 2anD ' 2 fm
with a correction from the effective range of perhaps 40%. Alas,
in this lattice world, too, the large lattice errors do not yet allow
firm conclusions about the two-body halo character of triton.
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ing LQCD data give some hints of subtle changes. In the
studied lattice worlds, the triton and alpha-particle bind-
ing energies are larger than in the real world, but their
ratios to the deuteron binding energy become smaller. In
contrast to the quartet neutron-deuteron channel, where
we detected no qualitative changes, the accidental zero
of the doublet T matrix that exists for physical pion
mass near threshold seems to disappear. It is replaced by
effective-range parameters that suggest a more prominent
neutron-deuteron halo character for the triton. LQCD
data with smaller errors, and at other values of the pion
mass, would allow firmer conclusions about the organi-
zation of nucleons in the triton and its implications for
the alpha particle.

In an upcoming project, we plan to extend our EFT
calculations to NLO. Two independent observables are
needed as input in each two-nucleon S-wave channel, for
example, scattering lengths and effective ranges. These
are already available for mπ = 805 MeV [41]. No new
input is needed for more than two nucleons. The NLO
calculation of Bα should thus allow an assessment of the
convergence rate and breakdown scale of the EFT. In ef-
fect, the accuracy of nucleon-deuteron scattering calcula-

tions would increase. In the longer term, the application
of π/EFT to systems with more than four nucleons could
guide the lattice effort to the relevant few-body observ-
ables to be measured in order to pin down additional
LECs needed to understand nuclear structure.
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