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Background: Nuclear pasta phases, present in the inner crust of neutron stars, are associated
with nucleonic matter at sub-saturation densities arranged in regular shapes. Those complex phases,
residing in a layer which is approximately 100 m thick, impact many features of neutron stars.
Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite 3D
boxes assuming periodic boundary conditions (PBC). The resulting solutions are affected by spurious
finite-size effects.

Purpose: In order to remove spurious finite-size effects, it is convenient to employ twist-averaged
boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice QCD applica-
tions. In this work, we study the effectiveness of TABC in the context of pasta phases simulations
within nuclear density functional theory.

Methods: We perform Skyrme-Hartree-Fock calculations in three dimensions by implementing
Bloch boundary conditions. The TABC averages are obtained by means of Gauss-Legendre integra-
tion over twist angles.

Results: We benchmark the TABC for a free nucleonic gas and apply it to simple cases such as
the rod and slab phases, as well as to more elaborate P-surface and gyroidal phases.

Conclusions: We demonstrate that by applying TABC reliable results can be obtained from
calculations performed in relatively small volumes. By studying various contributions to the total
energy, we gain insights into pasta phases in mid-density range.

PACS numbers: 26.60.Gj,21.60.Jz,02.60.Lj,71.10.Ca

I. INTRODUCTION

Nuclear matter as present on earth in the center of
atoms is almost isotropic with a central density of ρsat ≈
0.16 fm−3, the nuclear saturation density. This changes
drastically in astrophysical environments such as neutron
stars or core-collapse supernova. In particular, in the
inner crust of neutron stars at sub-saturation densities
0.1ρsat < ρ < 0.8ρsat, nucleonic matter is expected to
form complex structures commonly referred to as “pasta”
phases [1, 2]. Because of low proton fractions and macro-
scopic dimensions, pasta phases represent a unique envi-
ronment, which is not present on earth and cannot be
recreated in the laboratory.

The occurrence and topology of pasta structures can
have multiple influences on the properties of a neutron
star and the evolution of a supernova. Not only it affects
the neutrino transport [3–6], but also the neutron star
cooling [7] and r-mode instabilities in rotating neutron
stars [8, 9].

Nuclear pasta simulations can be divided into two cate-
gories. The first group represents semi-classical methods;
it includes approaches such as the classical molecular dy-
namics [10], Thomas-Fermi approach [11–13], and quan-
tum molecular dynamics (QMD) [14–18]. The second
family includes quantum-mechanical simulations based
on nuclear density functional theory [19], such as Hartree-
Fock (HF) calculations (with or without BCS pairing)

[20–27]. While current advanced QMD calculations can
be performed with hundreds of thousands of nucleons in
3D boxes greater than 100 fm in size, self-consistent HF
calculations are still limited to ∼2,000 fermions in box-
sizes of the order of 20 fm.

Since the large-scale QMD simulations yield periodic
pasta phases, it is reasonable to assume periodic bound-
ary conditions in HF calculations. In most applications,
the HF wave functions are also constrained to be periodic.
This can lead to severe restrictions: Firstly, the solution
has no chance to develop disorder on a scale larger than
the box length [28]. This can only be remedied by us-
ing much larger volumes. Secondly, the periodic ansatz
for the wave functions is fairly restrictive, because the
most general solutions for a periodic potential are Bloch
waves, which differ by a phase when moving to a neigh-
boring box. If strictly periodic wave functions are con-
sidered, spurious finite-size (or shell) effects appear due
to the quantization of waves in the box. A method to
remove the spurious finite-volume corrections is to em-
ploy twist-averaged boundary conditions, where the ob-
servables are obtained by averaging over different Bloch
phases (or twist angles) [29–31]. A method based on
TABC (sometimes referred to as ‘integration over bound-
ary conditions’) has been applied to circumvent the need
for large-volume boxes in the context of many-electron
systems [29–31], nucleonic matter [32], and lattice QCD
[33, 34]. It was also used to describe the crust in neu-
tron stars within mean-field models [35, 36] and Quan-
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FIG. 1. (Color online) Nuclear pasta shapes analyzed in this
work: (a) rod with L = 16 fm, A = 150; (b) slab with L =
16 fm, A = 294; (c) P-surface L = 22.03 fm, A = 762; and (d)
gyroid L = 26.01 fm, A = 1254 in a cubic lattice. Dark red
corresponds to ρ = 0.14 fm−3 and green to ρ = 0.04 fm−3

tum Monte Carlo approach [37]. The aim of this work is
to apply TABC to self-consistent HF pasta calculations
to assess the final-volume effect on previous results ob-
tained with PBC [25–27] and estimate the realistic box
sizes with TABC for future applications.

The manuscript has been organized as follows. In
Sec. II we describe our implementation of nuclear den-
sity functional theory and twist-averaged boundary con-
ditions. The results of benchmarking calculations for free
Fermi gas are given in Sec. III together with results for
the rod and slab phases, and triply periodic minimal sur-
face (TPMS) shapes: P-surface and gyroid (see Fig. 1).
We summarize our results and present the outlook for
the future in Sec. IV.

II. METHODS

A. Skyrme-Hartree-Fock

To calculate the pasta structures, we use the Skyrme-
HF method, solving the Schrödinger equation for the
many-body system in a single Slater determinant ap-
proach. For this purpose we utilize the 3D code Sky3D
[38], which solves the self-consistent HF equations with
a damped gradient iteration method on an equidistant
grid with no symmetry restrictions. The code, extended
to the case of TABC, uses the finite Fourier transform
method for spatial derivatives. We have tested that grid
spacings between 0.9 fm and 1.05 fm yield stable results

and this is what is used in this work.
To calculate the mean field, we use the Skyrme energy

density functional [19]:

ESk =
∑
T=0,1

(
CρT (ρ0)ρ2

T + C∆ρ
T ρT∆ρT

+ CτT ρT τT + C∆J
T ρT∆JT

)
, (1)

written in terms of the local isoscalar (T = 0) and isovec-
tor (T = 1) densities and currents ρT (particle density),
τT (kinetic density), and JT (spin-orbit current). The
coupling constants of the functional correspond to the
Skyrme parametrization SLy6 [39], as in our earlier work
[25–27]. The energy density functional is supplemented
by the kinetic energy and Coulomb terms.

A uniform electron background is added to ensure
charge neutrality of the system. Electron screening is
not included, as its influence should be very small for the
box lengths used [40]. We consider nuclear matter with
a proton fraction of XP = 1/3 to facilitate comparison
with earlier calculations.

The computational cost of calculations strongly de-
pends on the number of nucleons and grid size. The
main time of the calculation is consumed by the diago-
nalization of the HF Hamiltonian and the wave function
orthonormalization. Thus, constraining the total aver-
age density is very time-consuming and small systems
are preferable, at least for the purpose of benchmarking.

B. Twisted Average Boundary Conditions

According to the Floquet-Bloch theorem, the single-
particle (s.p.) wave functions for a particle in a periodic
potential are given by:

ψαq(r) = uαq(r)eiqr , (2)

where α is a discrete label of the wave function, q is
the wave vector that determines the boundary condition,
and uαq(r) is a periodic function of r. The wave vector
can be replaced by three twist angles θi = qT i (i =
x, y, z), where T i = Liei are the lattice vectors with the
unit vectors ei. The Bloch waves corresponding to PBC
represent a particular case of q = θ = 0.

The general Bloch boundary conditions can be written
as:

ψαθ(r + T i) = eiθiψαθ(r). (3)

The s.p.wave functions ψαθ(r) defining the HF densities
and fields are eigenstates of of the HF Hamiltonian ĥθ
corresponding to the boundary condition (3):

ĥθψαθ(r) = εαθψαθ(r). (4)

In the TABC method, the expectation value of an ob-
servable Ô is obtained by averaging over the twist angles:

〈Ô〉 =

∫
d3θ

π3
〈Ψ∗θ|Ô|Ψθ〉, (5)
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FIG. 2. (Color online) Relative finite-size correction for the
kinetic energy of free symmetric nucleonic matter versus the
total nucleon number A at kF ≈ 1.32 fm−1 computed with
PBS and TABS. The TABS averaging was carried out with
2, 4, and 10 GL quadrature points in each direction.

where Ψθ is the HF product wave function. In Eq. (5),
the angles θi change between zero (PBC) and π (anti-
PBC), as the time-reversal symmetry is assumed [31].
In practical calculations discussed in this study, the in-
tegrals over the Bloch phases are computed by means
of Gauss-Legendre (GL) quadrature with NGL=4 points,
unless stated otherwise.

III. RESULTS

A. Free particle gas

Following Ref. [32], to test our TABC implementation,
we consider a gas of non-interacting neutrons and pro-
tons with XP = 0.5. The exact solution for the average
kinetic energy can be easily derived from the Fermi gas
model. Here, we take a system with a total density of
ρ = 0.15625 fm−3 (kF ≈ 1.32 fm−1) and an average ki-
netic energy of Ekin,∞ ≈ 21.7786 MeV. For plane waves
in a cubic box L3, the resulting wave numbers are quan-
tized:

ki,n =
2πn+ θi

Li
n = 0,±1,±2, ...,±nmax. (6)

By averaging over θ, we recover a continuous spectrum
of k; hence, the infinite-volume limit should be reached
much faster.

The results are shown in Fig. 2. The finite-volume
corrections for different system sizes are plotted for PBC
and TABS with 2-, 4-, and 10-point GL averaging. The
results show that the finite-size fluctuations are reduced
drastically, even with a very small number of GL inte-
gration points. With a higher number of GL points, a
slightly smoother convergence can be reached. In general,
with the TABC method, one gains an order of magnitude
in precision in this case [32].

The number of calculations quickly grows as Nd
GL,

where d is the dimension of the phase. For majority
of pasta phases, it can be assumed that permutations
of θi give the same result due to symmetry considera-
tions. For d = 3 the number of calculations decreases to
(2N3

GL + 6N2
GL + 4NGL)/12. For the following pasta cal-

culations we set NGL = 4. This means, that we perform
20 calculations for each system with d = 3.

B. Pasta phases

In the following, we apply TABC to actual pasta
phases. To ensure that the calculations converge at de-
sired shapes, we add a guiding potential φp during the
first 200 HF iterations [27]:

φR = −φ0 (cos Y + cos Z) , (7a)
φS = −φ0 (cosZ) , (7b)
φP = φ0 (cosX + cosY + cosZ) , (7c)
φG = φ0 (cosX sinY + cosY sinZ + cosZ sinX) , (7d)

where p ∈ {R,S,P,G} for rod, slab, P-surface, and gy-
roid, respectively, and Xi = 2πxi/Li. The potentials
for P and G shapes are their first-order nodal approxi-
mations [41]. The parameter φ0 > 0 has to be chosen
such that the guiding potential is similar to the resulting
self consistent potential to guarantee a stable and fast
convergence.

1. Rod

The first example concerns the rod phase. The corre-
sponding shape shown in Fig. 1(a) is axially symmetric
around the x-axis. We calculate one rod in a rectangular
box with Ly = Lz = 16 fm. Note that the lowest-energy
rod configuration corresponds to a honeycomb arrange-
ment [12], but the single-rod configuration considered
here serves well as an illustration of TABC. In this exam-
ple, we vary the particle number A and the box length
Lx simultaneously to maintain the density and the dis-
tance from the rods in the neighboring cells. The results
of our calculations are shown in Fig. 3 in the range of
100 ≤ A ≤ 1200.

In the limit of large particle number (or Lx), the en-
ergy per nucleon should be constant, and this limit is
reached for particle numbers below A = 1200. In the
PBC variant, the magnitude of finite-size corrections
manifesting themselves as energy fluctuations in Fig. 3
is large; it reaches ≈ 0.04 MeV/A. It is gratifying to see
that the fluctuations are significantly reduced in TABC.
For A > 200 the magnitude of finite-size effects falls be-
low 0.01 MeV/A. For the potential and kinetic energies
shown in Figs. 3(a) and 3(b), respectively, the spurious
fluctuations are larger; here the TABC method reduces
the finite-size effects below 0.1 MeV/A, while they are as
large as 0.4 MeV/A in the PBC variant.
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FIG. 3. (Color online) The total energy E/A (bottom), ki-
netic energy Ekin/A (middle), and potential energy V/A (top)
per particle for the rod phase of Fig. 1(a) at ρ = 0.0358 fm−3

computed with PBC (solid line) and TABC (dashed line) as
a function of particle number A (or the box length Lx).

2. Slab

A similar test can be done for the slab phase of
Fig. 1(b). This shape is translationally invariant along
x and y directions. In the first set of calculations we
keep the box length in the z-direction, Lz = 16 fm, and
vary the box length in the perpendicular directions si-
multaneously with the particle number to maintain the
constant density ρ = 0.0715 fm−3. At this density, the
slab is confined to approximately half the volume of the
box [27].

The results of our test calculations are shown in
Fig. 4. Here the improvement provided by TABC is even
more impressive than for the rod shape, because the 2-
dimensional averaging is more effective. The plateau in
E/A is reached well below A = 660 in TABC. Improve-
ments for T/A and V/A are also significant: the range
of fluctuations is reduced from ≈ 1.1 MeV/A in PBC to
≈ 0.056 MeV/A in TABC.

Another TABC benchmark for the slab phase can be
obtained by varying the box length Lz while keeping per-
pendicular lengths constant, Lx = Ly = 16 fm. Here, the
particle number is adjusted to maintain the thickness of
the slab at ≈ Lz/2. This has already been done in the
PBC calculations of Ref. [27] but the magnitude of finite-
size fluctuations turned out to be so large that the trend
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FIG. 4. (Color online) Similar as in Fig. 3 but for the slab
phase of Fig. 1(b) at ρ = 0.0715 fm−3 as a function of A (or
Lx = Ly).

of the total energy with A was impossible to assess. The
results of TABC are shown in Fig. 5 (solid line).

The results for the total energy are shown in Fig. 5(a).
A clear minimum at Lz ≈ 20 fm and E/A = −10.89 MeV
is found. The reason for this minimum can be understood
by inspecting different contributions to the total energy.
To this end, the total energy has been decomposed into
three parts: the volume energy EV , the surface energy
ES , and the Coulomb energy EC . The volume and sur-
face terms are defined as:

EV = Ekin +
∑
T=0,1

EVSk,T , (8)

ES =
∑
T=0,1

ESSk,T , (9)

where

EVSk,T =
∫
d3r

(
CρT (ρ0)ρ2

T + CτT ρT τT
)
, (10a)

ESSk,T =
∫
d3r

(
C∆ρ
T ρT∆ρT + C∆J

T ρT∆JT

)
. (10b)

As seen in Fig. 5(d), for the small slabs the Coulomb
energy is very low, because the positively charged slabs
and the negatively charged voids where the electron gas
dominates are located very close to each other, and this
results in a cancellation between electrostatic repulsion
and attraction. For large slabs, however, the Coulomb
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repulsion dominates. It appears that this results in an
almost linear behavior of EC as a function of L.
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FIG. 5. (Color online) TABC energies per nucleon versus
the periodic length L of the slab shape (solid line), P-surface
(dashed line) and Gyroid (dotted line) at ρ = 0.0715 fm−3.
Shown are: the total energy (a); surface energy (b); volume
energy (c); and the Coulomb energy (d).

The volume energy shows a decreasing trend with L; it
flattens out for large box lengths. At the limit of L→∞
the volume energy is supposed to reach the value of EV∞ ≈
−12.4 MeV (E/A for nuclear matter with XP = 1/3 at
the equilibrium density of 0.147 fm−3). As illustrated in
Fig. 5(c), EV is not close to this value at L = 26 fm,
because the density within the slab is not yet constant
and surface effects are still important.

The surface energy per nucleon in Fig. 5(b) decreases
as L−1

z = A−1 as the surface area 2LxLy is kept con-
stant and the particle number is proportional to Lz (as
the particle density is fixed). It is seen that the surface
energy provides an appreciable contribution to the total
energy even for the largest box lengths probed in our
calculations. For small slabs, volume and surface terms
dominate the behavior of E/A, as both contributions de-
crease rapidly with L. For large box lengths, the pattern
of E/A is dominated by the Coulomb effect.

3. TPMS

At the same mid-density range where the slab phases
appear, other pasta phases are predicted as well. Those

are triply periodic minimal surface phases, or TPMS.
For TPMS shapes, TABC works even better than for the
slabs, as three-dimensional averaging can be performed.
Here we vary Lx = Ly = Lz simultaneously to maintain a
cubic box. The specific shapes analyzed in this work are
the P-surface shape and the gyroid shown in Figs. 1(c)
and 1(d), respectively. Of particular relevance is the gy-
roid phase [42, 43]. Minimal surfaces are of considerable
interest because of their vanishing mean curvature and
negative Gaussian curvature. They have been found in
multiple soft-matter systems [44–48]. The nodal approx-
imation of the P-surface and the gyroid are shown in Eqs.
(7c) and (7d) setting the right-hand side to zero. These
structures were predicted to appear in nuclear matter in
time-dependent HF simulations [27].

Furthermore, the P-surface, the gyroid surface, and
also the D-Surface (diamond; not discussed here), are
closely related via the Bonnet transformation [49]. Keep-
ing the surface isometric, one can derive the relationship
between the unit cell lattice parameters: LP /LG = 0.812.
The ratio of the surface area for the same lattice param-
eters is AP /AG = 0.758; this can be compared to the
slab in the same cubic box: AP /AS = 1.172 [50]. For
both P- and G-structures, the volume occupied by nu-
clear matter is half of the total volume. Moreover, P, D,
and G are optimal structures with minimal variations of
the Gaussian curvature, and G is the optimal structure
with minimal variations of the structure width [50–52].

The TABC results for the P-surface and the gyroid
are shown in Fig. 5. At low values of L, gyroids and P-
surfaces are not stable at certain ranges of twist angles.
For that reason, we present results only for L ≥ 19 fm.
The largest calculations for the gyroids in the 29 fm box
correspond to 1734 particles. This is close to the limit of
our HF solver Sky3D.

The minimum of the total energy per nucleon is
reached at a box length of 21.65 fm for the P-surface and
at around 28 fm for the gyroid, see Fig. 5(a). The surface
energies in Fig. 5(b) reflect the ratios of the surface areas
for gyroid, P-surface, and slab discussed above. Similar
to the slab case discussed earlier, the surface energy per
particle for P- and G-shapes decreases as L−1, because
the particle number is proportional to L3 while the sur-
face area grows as L2.

Compared to the slab case, the Coulomb energy is
lower for the TPMS at a given box size, because of less
compact distributions. While for the P-surface this is a
minor effect, the Coulomb energy for the gyroid is re-
duced by a factor of ∼2. This is reflected in the behavior
of the total energy in Fig. 5(a): the minima of TPMS are
shifted to higher values of L. However, the electrostatic
repulsion is better compensated by the nuclear energy for
TPMS; hence, the energy minima for P- and G-shapes are
not as deep as in the slab case. It should be noted that
the TPMS minima, especially for the gyroid, are close to
the energy minimum of the slab phase.
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IV. CONCLUSIONS

We implemented the TABC approach into the 3D HF
framework used to simulate pasta phases in the neu-
tron star crust. We demonstrated that by averaging over
Bloch boundary conditions one is able to significantly re-
duce the magnitude of spurious finite-volume effects for
Bloch-Wigner cells containing hundreds of nucleons.

Practical calculations were carried out for asymmetric
matter with Xp = 0.3. We first benchmarked TABC for
the nucleonic gas. The results turned out to be weakly
sensitive to the number of integration points. We found
that taking NGL = 4 Gauss-Legendre points yields stable
results. The TABC method was then tested for the rod
and slab phases, simultaneously varying the box lengths
and the number of particles to keep the average density
constant. For the rod phase, the finite-volume error was
reduced by a factor of more than three, down to ∆E =
0.02 MeV/A. For the two-dimensional slab shapes the
improvements are even more significant.

By eliminating spurious finite-size fluctuations through
TABC, we were able to inspect individual energy contri-
butions from various terms of the energy density func-
tional. This was done by varying the physical length of
the box. We showed that the energy variation primarily
comes from the Coulomb and the surface terms. We have

also demonstrated that, due to its unique geometry, the
gyroid geometry minimizes the Coulomb energy drasti-
cally for a given box length as compared to the slab and
the P-surface phases.

Future applications will include the TABC extension
of the adaptive multi-resolution 3D Hartree-Fock solver
[53] and Hartree-Fock-Bogoliubov TABC applications to
superfluid pasta phases and complex nucleonic topolo-
gies as in fission. The lesson learned form the exer-
cise presented in this study is that high-fidelity results
for pasta phases can be obtained by considering finite-
volume boxes containing up to several thousand parti-
cles. Moreover, TABC calculations are very well suited
to parallel computing as HF computations at different
twist angles can be carried out independently.
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