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The Nilsson mean-field plus extended-pairing model for deformed nuclei is applied to describe
the ground-state properties of selected rare-earth nuclei. Binding energies, even-odd mass differ-
ences, energies of the first pairing excitation states, moments of inertia for the ground-state band
of 1927164 154-166y1, and 196168 are calculated systematically in the model employing both
proton-proton and neutron-neutron pairing interactions. The pairing interaction strengths are deter-
mined as a function of the mass number in the isotopic chains. In comparison with the corresponding
experimental data, it is shown that pairing interaction is crucial in elucidating the properties of both
the ground state and the first pairing excitation state of these rare-earth nuclei. With model pa-
rameters determined by fitting the energies of these states, ground-state occupation probabilities
of valence nucleon pairs with angular momentum J = 0,1, - - , 12 for even-even *71%2Yb are cal-
culated. It is inferred that the occupation probabilities of valence nucleon pairs with even angular
momenta are much higher than those of valence nucleon pairs with odd angular momenta. The
results clearly indicate that S, D, and G valence nucleon pairs dominate in the ground state of

these nuclei.

PACS numbers: 21.60.Fw, 21.60.Cs, 27.30.4+t

I. INTRODUCTION

Nuclear pairing correlations, as an important part of
the residual interactions necessary to augment any nu-
clear mean-field theory, represent one of the main and
longstanding pillars of current understanding of nuclear
structure [1]. For example, the pairing interaction of
the nuclear shell model plays a key role to reproduce
ground-state and low-energy spectroscopic properties of
nuclei, such as binding energies, odd-even effects, single-
particle occupancies, excitation spectra, and moments of
inertia, etc. [2-4]. Bohr, Mottelson, Pines, and Belyaev
were the first to introduce the Bardeen-Cooper-Schrieffer
(BCS) theory for superconductivity in condensed matter
[5] to descriptions of pairing phenomena in nuclei [2, 6],
which provides a simple yet clear picture that demon-
strates the importance of the pairing interaction in nu-
clei. However, as an approximate theory, both the BCS
and the more refined Hartree-Fock-Bogolyubov (HFB)
methods suffer from serious drawbacks in nuclei due to
the fact that the number of valence nucleons under the
influence of the pairing force is too few to be treated
by such particle-number non-conserved (quasi-particle)
approximations. A remedy in terms of particle number
projection complicates the algorithms considerably, often
without yielding a better description of higher-lying ex-
cited states that are a natural part of the spectrum of the
pairing Hamiltonian [7-9]. Alternatively, shell model cal-
culations provide successful descriptions but face a com-
binatorial growth of model space sizes, and hence, for
heavy nuclei, truncation schemes are normally needed
and applicability is often limited by existing computer
resources. The Projected Shell Model (PSM) provides
a way to overcome this difficulty [10]. By using the

PSM scheme, it is shown that the projected BCS vac-
uum for a well-deformed system is very close to the SU(3)
dynamical symmetry limit of an S-D pair fermion sys-
tem [11]. On the other hand, the tremendous success
of the interacting boson model (IBM) [12] suggests that
s- and d- pairs play a dominant role in the spectroscopy
of low-lying excitations [13, 14]. It is shown that, by
using the exact solutions of the standard pairing model
(Richardson-Gaudin method [15]), the angular momen-
tum distributions of the Richardson pairs in the ground
state of the deformed " Yb nucleus can be used to clar-
ify the microscopic foundation of the IBM — these distri-
butions, however, are strikingly different from the ones
obtained in the BCS ground state [16].

More recently, the Nilsson mean-field plus extended-
pairing model has been proposed to describe deformed
nuclei [17], which includes pairing interactions among va-
lence pairs in different orbits up to infinite order. It has
been shown in our recent work that the extended pairing
model can be regarded as the standard pairing Hamilto-
nian at a first-order approximation, namely, only the low-
est energy eigenstate described by the Racah quasi-spin
formulism of the standard pure pairing interaction part
is taken into consideration, and the results thus display
similar pair structures as the ones found in the low-lying
states of the standard pairing model [18]. The advantage
of the model lies in the fact that it can be solved more
easily than the standard pairing model. Though solu-
tions of the standard pairing model can now be obtained
more easily by using the extended Heine-Stieltjes poly-
nomial approach [19], the extended pairing model has
been proved to be more efficient, especially when both
the number of valence nucleon pairs and the number of
single-particle orbits are large, which, therefore, is more



suitable to be used for rare-earth nuclei [20]. While so far,
the calculations for rare-earth nuclei employ a frozen-pair
approximation [20], a more realistic approach for system-
atically understanding the ground-state properties is yet
to be deliberated.

In this paper, we use the Nilsson mean-field plus
extended-pairing model with both proton-proton and
neutron-neutron pairing interactions to investigate Er,
Yb, and Hf isotopes in the rare-earth region. Bind-
ing energies, even-odd mass differences, energies of the
first pairing excitation states and the moments of iner-
tia of these nuclei are calculated. The results indicate
that the extended pairing model is helpful to understand
the structural properties of these deformed nuclei in the
low-energy regime. We especially focus on analyzing the
ground-state occupation probabilities of valence nucleon
pairs with various angular momentum quantum numbers
(J =0,1,...,12) for even-even nuclei. We study which
pairs — in terms of their J angular momentum — are im-
portant in the ground state and whether S and D pairs
indeed dominate in the ground state of these nuclei, as
implied in the IBM. Moreover, we intend to provide a rea-
sonable range of pair interaction strength in the model by
comparing our model calculations with the corresponding
experimental data.

II. THE EXTENDED PAIRING MODEL

The Nilsson mean-field plus standard-pairing Hamilto-
nian for a deformed nucleus is given by

H =

P P
€Ny — Gst Z b-irbj, (1)
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where p is the total number of Nilsson levels (orbits) con-
sidered, G, >0 is the overall pairing strength, €; are
the single-particle energies obtained in the Nilsson model,
nj = a;Qj a;0; —I—a;Qj ajq, is the fermion number operator
for the j-th Nilsson level, and b;‘ = azﬂi ajﬁi [b; = (bI)T =
a;0,0:0,] are pair creation [annihilation] operators, where
Q; is the quantum number of the third component of the
total angular momentum in the intrinsic frame for the -
th Nilsson single-particle state, while €; denotes the time
reversal state. The Hamiltonian of the extended pairing
model [17] is given by
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where G >0 is the overall pairing strength. Besides the
Nilsson mean field and the standard pairing interaction
(1), the Hamiltonian (2) also includes many-pair hopping
terms that allow nucleon pairs to simultaneously scatter
(hop) between and among different Nilsson levels, which
is thus simply exactly solvable. Due to the Pauli principle
and the particle number conservation, the infinite sum
in (2) naturally truncates, namely, p < [p/2], where
[x] denotes the integer part of .. Tt is also clear that each
term of the form b;‘ e b; that enters into the eigenstates
of (2) should have different indices ¢ # --- # j. Let
|71, -, jm) be the pairing vacuum state that satisfies

biljis .-y Jm) =0 (3)

for 1 < ¢ < p, where each of the m levels, ji,j2,. .., Jm,
is occupied by a single nucleon. Following the algebraic
Bethe ansatz used in [21], one can write a k-pair eigen-
state as
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where CZ-(fi)T”ik are expansion coefficients that need to be
determined. It is assumed that the levels j1, j2, ..., Jm
should be excluded from the summation in (4). The ex-
pansion coefficient Ci(fi)z B
as

i, can be expressed very simply
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where x(¢) is a parameter that needs to be determined.
In the seniority-zero cases, for example, directly applying
the Hamiltonian (2) on the k-pair state (4) yields that
for the mean-field part of (2)
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and for the rearranged extended pairing part of (2)
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By combining Eqs. (6) and (7), the k-pair eigenenergies
of (2) are given by

¢ 2
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where x(¢) should satisfy
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in which x(© is the ¢-th solution of (9). Similar results
for even-odd systems can also be derived by using this
approach except that the index j of the level occupied
by the single nucleon should be excluded from the sum-
mation (4) and the single-particle energy €; contributing
to the eigenenergy from the first term of (2) should be
included in (8). Extensions to many broken-pair cases
are thus straightforward.

III. BINDING ENERGIES AND EVEN-ODD
MASS DIFFERENCES

As for any valence-shell model, the total energy of the
ground state of a nuclear system is given by,
Ep = B 4 Ep(v) + Ep(r), (10)
where Egore) is the energy of the ground state of the core,
taken to be 132Sn in this study (reasonably approximated
by a constant and given by the experimental binding en-
ergy of 1¥28n), and E(v) and Ep(n) are the lowest ener-
gies of the mean field and the residual pairing interaction
for valence neutrons and protons, respectively, calculated
either from (1) in the standard pairing model or from (2)
in the extended pairing model, while the interaction be-
tween protons and neutrons is neglected in the present
study. The neutron single-particle energies in (1) and (2)
are expressed as ¢ () = €;(v) —eo(v) —e(v), and similarly
for proton single-particle energies ¢; (), where €; are the
single-particle energies derived from the Nilsson model
for open shell, ¢ is the single-particle energy of the last
Nilsson level filled by the core particles, which determines
the zero-point energy in the Nilsson model for the valence
particles, and € (> 0) is the average binding energy per
particle (neutron or proton), and is approximately taken
to be a constant.
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We consider a valence model space consisting of the
sixth major shell with 22 Nilsson levels (orbits) for va-
lence neutrons and 16 levels for valence protons. Hence,
in our calculations, the total number of Nilsson levels is
p = 22 for valence neutrons. Similarly, the total number
of Nilsson levels for valence protons is p = 16. Finally,
the odd-even mass difference is given by

P(A)=Ep(A+1)+ Eg(A—1)—2Eg(A), (11)
where Ep(A) is the energy of the ground state of a nu-
cleus with mass number A.

For each isotopic chain, by fitting to the experimental
values of the binding energies, the odd-even mass dif-
ferences, and the energies of the first pairing excitation
states, the neutron G(v) and proton G(w) pairing in-
teraction strengths and the average binding energy per
particle €(v) and () used in the extended pairing model
are thus determined. The pairing interaction strengths
G(v) and G(m) fitted for these isotopes are shown in
Fig. 1. In addition, the best-fit parameter values for e
are, e(v) = 7.78 MeV and e(r) = 5.82 MeV for Er iso-
topes, €(v) = 8.04 MeV and e(m) = 5.74 MeV for Yb
isotopes, and €(v) = 8.28 MeV and €(7) = 5.00 MeV for
Hf isotopes.

To estimate the deviation between the predicted and
experimental binding energies in a chain of isotopes, we
use a root-mean-square deviation measure

o =13 (ER, - E;’jﬁ)Q /N]%, (12)
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where Eg’; , is the theoretical value of the ground-state
energy, E is the corresponding experimental value, N
is the total number of nuclei in a chain fitted and the
summation runs over all nuclei fitted in a chain. Namely,
for the energy deviation, we obtain: ¢ = 0.704 MeV for
the Er isotopes, 0 = 0.819 MeV for the Yb isotopes, and
o = 0.442 MeV for the Hf isotopes.

The even-odd mass differences P(A) of the three chains
of isotopes are calculated according to Eq. (11). These
quantities are more sensitive to pairing correlations as
compared to binding energies. As shown in Fig. 2, the
even-odd mass differences of the three chains of isotopes
are very close to the corresponding experimental data.



As shown in Fig. 1, the proton pairing interaction
strength G(7) exhibits almost no change with mass num-
ber A because, for nuclei in an isotopic chain, the num-
ber of valence protons remains the same, and also, the
proton-neutron interaction is neglected. In contrast, the
neutron pairing interaction strength G(v) changes no-
ticeably with increasing number of valence neutrons due
to the fact that the pairing strength G in the extended
pairing model is strongly dependent on the number of
valence nucleon pairs [17, 18]. According to [18], if only
the first few eigenstates are considered, the pair struc-
ture of these states in the extended pairing model and
the standard pairing model are similar, especially in the
ground state. Moreover, when the number of pairs k or
pairing interaction strength G is small, the difference be-
tween the two models is negligible. The parameter G in
the extended pairing Hamiltonian (2) and the parameter
G in the standard pairing Hamiltonian (1) satisfy the
following relation [18]:

(p— k)k!

G:
p!

(p— k+ 1)kG.,. (13)

The value of G in the extended pairing Hamiltonian (1)
fitted for each nucleus shown in Fig. 1 and the corre-
sponding value of G4 in the standard pairing Hamilto-
nian (2) obtained according to Eq. (13) is shown in
Table I. Though the value of G shown in Fig. 1 seems
small in the extended pairing model, the corresponding
values of G4 in the standard pairing are reasonable as
shown in Table I.

In addition, since the quantum number of the angular
momentum projection along the third axis in the intrin-
sic frame is considered to be a conserved quantity, the
excited states determined by the model can be regarded
approximately as pairing excitation states with the same
spin and parity as those of the ground state of a nu-
cleus. The first pairing excitation states as calculated in
the model are provided in Table II and are compared to
experiment. As shown in Table II, there are some devia-
tions between the theoretical results and the experimen-
tal data. One possible cause for such deviation is due to
the fact that the proton-neutron quadrupole-quadrupole
interaction is neglected in the model.

IV. MOMENT OF INERTIA

The moments of inertia of the even-even nuclei in the
three isotopic chains considered here and the even-odd
differences of the moments of inertia of 157 ~164Yb in the
framework of the extended pairing model are also calcu-
lated. According to the Inglis cranking formula [24], the
moment of inertia of a nucleus is calculated by

- 2h2z| "'Jr/ g (14)
— 20

where J,/ is the total angular momentum along the in-
trinsic 2’ axis, |n) is the n-th excited state, and E,, is the
corresponding excitation energy. In principle, the sum-
mation in (14) should run over all excited states. As a
good approximation, only the pairing case and one bro-
ken pair case are taken into account in our calculations.
This approximation is justified since excited states with
two or more broken pairs lie much higher in energy above
the ground state and their contribution to the moment
of inertia (14) is negligible [25]. The matrix elements of
Jz used in (14) for both even-even and odd-A nuclei are
provided in Appendix A.

In this paper, the moments of inertia of the even-even
nuclei considered are all calculated. However, only the
moments of inertia of odd Yb nuclei are calculated be-
cause either the spin or the first excited level energy in
the ground-state band in odd Er or odd Hf nuclei is not
available experimentally. The difference of the spins of
adjacent levels in the ground-state band with bandhead
spin (2 satisfies AT = 1 in '61YD, of which the experimen-
tal value of the moment of inertia is obtained according
to Eq. (B3) shown in Appendix B, while the difference
of the spins of adjacent levels in the ground-state band
with bandhead spin ) satisfies AI = 2 in '63:165Yh, of
which the experimental values of the moments of inertia
are obtained according to Eq. (B4) provided in Appendix
B. The level energies of these isotopes are all taken form
[26]. For 157Yb and 59Yb, the total spin I of the first ex-
cited state in the ground-state band is also not observed
experimentally. Hence, the experimental moments of in-
ertia of 157Yb and '%°YD are absent.

The calculated moments of inertia and the correspond-
ing experimental data for the even-even nuclei in the
three isotopic chains are shown in Fig. 3. It shows that
the results obtained from the Nilsson mean-field plus
extended-pairing model are in excellent agreement with
the corresponding experimental data. For comparison,
the moments of inertia obtained by the Inglis formula
from the Nilsson mean-field without pairing interaction
are also provided, though the difference in calculated mo-
ments of inertia with and without pairing interaction has
been well known [27, 28].

Similar to the definition of the odd-even mass differ-
ence, the relative odd-even difference of the moments of
inertia may be defined as [28]

53 S(A) — LS(A+1) + (A —1)]

IS S(4) -
Po=5l,7 1S (A-l-l)—l—J(A—l)]

, (15)

where A is the mass number and 3 [S(A+1)+S(A—1)] is
the average of the ground-state band moments of inertia
of the neighboring nuclei.

The theoretical and experimental values of the moment
of inertia & for both even-even and odd-A Yb nuclei are
shown in Fig. 4(a). The relative odd-even differences
of the moments of inertia Py for Yb are shown in Fig.
4(b). Clearly, the theoretical values of the moment of



inertia are in a good agreement with the corresponding
experimentally deduced values for even-even nuclei, while
there are small deviations between the theoretical and
experimental moments of inertia for odd-A nuclei,

V. GROUND STATE OCCUPATION
PROBABILITIES OF VALENCE NUCLEON
PAIRS WITH VARIOUS ANGULAR
MOMENTUM QUANTUM NUMBERS

In this section, we calculate the ground state occupa-
tion probabilities of valence nucleon pairs with various
angular momentum quantum numbers for even-even nu-
clei in the extended pairing model. Our aim is to identify
angular momentum values of valence pairs that are im-
portant in the ground state of these nuclei.

For the i-th Nilsson level, the pair creation operators bj
can be expressed in terms of the single-particle creation
operators of the spherical harmonic oscillator shell model,

Z Wi WS (P el g e, o (16)

kG0 = Y
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where p = 7 for protons or p = v for neutrons.
The number of like-nucleon pairs with angular momen-
tum J in the ground state can then be calculated by

P
n; =

0
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which counts the number of like-nucleon pairs with an-
gular momentum J in the ground state. Since both the
proton and neutron sectors are considered in this work,
the ground state occupation probability of valence nu-
cleon pairs with angular momentum J in the model can
be expressed as

n’% +nY
s == (22)

where the total number of pairs is k = k™ + k".

Fig. 5 displays the calculated results for the ground
state occupation probabilities of valence nucleon pairs
with angular momentum J = 0 to J = 12 for %6162y},
It is obvious that the pair occupation probability de-
creases with increasing J and is much higher for even-
J pairs as compared to odd-J pairs. Moreover, among

7/17‘2 k H ZWZ WZ

LQZ, is the single-particle creation operators with

where ¢

definite angular momentum quantum number j;, €2; is the
projection of j; onto the third axis of the intrinsic frame,
and W/, as shown in (A9), are normalized expansion
coefﬁments of the i-th Nilsson state expanded in terms of
a set of spherical shell model states. In addition,

=D iUl T0)B] .0, (17)
Ji

T
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where (5;€,/€;]J;0) is a Clebsch-Gordan coefficient, and
B; i17:0 is the pairing operator with total angular mo-
mentum quantum number J;. Thus, we also have

- Z(jiﬂijgﬁuiO)cLQiclﬁi. (18)
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By substituting (17) into (16), Eq. (16

Jigl

) becomes
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By substituting (19) into (4), the k”-pair eigenstates
of the model can be expressed as

VY Gl Ji0)B] L, 0())[0), (20)
Ji

the occupation probabilities of even-J pairs, those with
J =0, 2, and 4 are the three highest ones. However, the
occupation probabilities of J = 6 and J = 8 pairs, even
those of J = 10 and J = 12 pairs, are non-negligible. Fig.
5 also shows that the above conclusions are independent
of the number of valence nucleon pairs k and, therefore,
hold for any k cases.

Anyway, the results shown in Fig. 5 reveal that, in
the framework of the Nilsson mean-field plus extended-
pairing model, the S, D, and G valence nucleon pairs
dominate in the ground state of these nuclei. The total
occupation probability of S, D, and G valence nucleon
pairs is higher than 60%, while other even-.J pairs also
contribute to the ground state noticeably. In addition,
our analysis shows that the G-pair contribution to the
ground state of these nuclei is also significant. Hence,
the IBM with s-, d-, and g-bosons seems to provide a
reasonable simplified description of the collective motion
of these deformed nuclei [29].



VI. CONCLUSION

In summary, the Nilsson mean-field plus extended-
pairing model for well-deformed nuclei is applied to de-
scribe rare earth nuclei. Binding energies, energies of the
first pairing excitation states, even-odd mass differences,
and moments of inertia of 127164y 154-166y]  and
156=168Hf are calculated systematically in the model with
both proton-proton and neutron-neutron pairing interac-
tions. We find that, for these three chains of isotopes, the
outcomes of the model, with only four adjustable param-
eters (proton and neutron pairing strengths and the av-
erage binding energy per nucleon), reproduce rather well
the corresponding experimental values of binding ener-
gies, even-odd mass differences, and moments of inertia.
The analysis shows that pairing interaction is crucial in
elucidating spectral properties of these nuclei. However,
observed small deviations in the energy of the first pairing
excitation states predicted in the model from the corre-
sponding experimental results may result from the fact
that the proton-neutron quadrupole-quadrupole interac-
tion is neglected.

Ground-state occupation probabilities of valence nu-
cleon pairs with angular momentum quantum number J
in 16-162Yh are also calculated. The model outcome
suggests that the even-J pair occupation probabilities
are much higher than the odd-J ones. Most importantly,
we find that S, D, and G pairs dominate in the ground
state of these nuclei. Though the ground-state occupa-
tion probabilities of valence nucleon pairs with angular
momentum quantum number J in *67162Yh are calcu-
lated by using the Nilsson plus extended-pairing model,
the results seem independent of the specific pairing model
used. For example, one can also calculate these occupa-
tion probabilities by using the Nilsson mean field and the
standard pairing model, which should yield results sim-
ilar to those shown in this paper. As shown in [16], in
which the Nilsson mean field plus the standard pairing
model was used to analyze the angular momentum de-
composition of only one valence neutron pair, the result
of the case studied and the conclusions made are quite
similar to the ones shown in this work. Hence, the IBM
with s-, d-, and g-bosons seems to provide a reasonable
simplified description of the collective motion of these
deformed nuclei. Our analysis thus provides a fermionic
shell-model reasoning for IBM studies.

In addition, by comparing our model calculations with
experimental data, we provide a reasonable range of
pairing interaction strength G, with which the quan-
tum phase transition and related critical phenomena in-
duced by the competition of the deformed mean-field and
the pairing interaction can further be analyzed as sug-
gested in [30]. Moreover, since the total angular momen-
tum is not conserved in the model and proton-neutron
quadrupole-quadrupole interaction is neglected in this
work, it should be interesting to explore more realistic
situations to take these issues into account. For exam-
ple, the results of this work may be used to investigate

excited states in the model by using angular momentum
projection technique, which will be a part of our future
work.
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Appendix A: THE MATRIX ELEMENTS OF J,/

In the Nilsson basis, J,/ can be expressed as

Jo= >

jBQﬁjﬁ'Qﬂ/

(6| T o Qsr)al o, 5,00, (A1)

For even-even case, when the two valence nucleons are
in the Nilsson states (7,2, j4£2,), the matrix element of
Ju can be written as

(k= 150330, 37 | Jor [k, ¢ = 1;0) =
k
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When the two valence nucleons are in the Nilsson states

(782, 7482 ), the matrix element of J,/ can be written as

<k - 1§</§ijpvj'yQ'y|Jx/|ka< = 1§0> =
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When the two valence nucleons are in the Nilsson states

(7082, j£2), the matrix element of J,/ can be written as

<k - 1§</§ijpvj'yQ'y|Jr/|ka< = 1§0> =
k

SRED S
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For odd-A case, when the three valence nucleons are in
the Nilsson states (7,82, jy, juy), the matrix element



of J,» can be written as
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When the three valence nucleons are in the Nilsson states
(702, 3482, 7u2), the matrix element of J, can be
written as

<k =1, r Qs 5 Q| T |k, = 15 jHQ/ >=

k
> > Olid oty vipirni
p=1 i1 <ia < <ip_1<ipi1<-<ig
x[- Cl(lcl)2 Zp—ljwip+1---ik(< jMQuU:E/ |j79v > 5]‘ij
= < 3o Jar 52y > 65,,5,)8i,5,
+Cl(1<z)2 Zp*ljpip+1“'ik(< jVQ’Y|JﬂC' |ijp > 53‘“%
— < Gl T 7,92 > 65,1, ) 0,
+Ol(1<1)2 dip—1Jpip1-ik (< jPQpUz’ |j#Q,U. > 53‘7%

— <G| T a2 > 85,5,)0i,5, )
(A6)
When the three valence nucleons are in the Nilsson states

(55Qp, 34y, 3,,), the matrix element of J,, can be
written as

-1 C Jp pv]’yQ’yaJ#Q |Jz’|k (=1 qu/ >=

k
p=111<ip< - <ip_1<ipp1<--<ip
(©) ; o

01112 dp—1J~ylp1 1k(< -]# #|J$/|J’YQ'Y>539JL

— < Jp Q| Jur |72y > 6@]‘{)5‘

€
21%2...1p—1Tp+41°"Tk

X[~

tpJy

© 6 ,
_01112 Ap—1Jplp+1 ik (< j'YQ’Y|J1/ |-]PQP > 5J-;LJ-L
- < quuUﬂc’Upr > 6jwjg)5ipjp
© G 6
01112 lpfljuip+1'ik (< JPQP|JII |-]:U'Q:U' > 5.7‘YJL

- < ijWUw’ |jHQM > 6jij)6ipju]'
(A7)

When the three valence nucleons are in the Nilsson
states (7,82, J4§2y, 7uu), the matrix element of J,/ can

be written as

-1 < Jp pa]'wa]uQ |Jm’|k (=1 ]#Q/ >=

i 3

=11 <io < <ip_1<ipp1<--<ig

_C(C)

11%2...

(<
C’Ll’L2 prlip+1~~~ik

ioviyinseein (< Tl T |72y > 85,51
= < 5oQp|Jar |32y > 85,314, 5,

i (< Iy Q[T 5,82 > 0j,. 41,
QulJar1502p > 35,5,)04,5,

~ip—1Jplp41-

= < Ju

iy —1Jplip41t zk(< jPQl)'Jiﬂ, |jMQH > 5jij

= < Gy Q[ 7 > 05,1, ) i)
(A8)

It should be noted that the Nilsson orbits occupied by the
unpaired particles, j,, j, and j, should be excluded in the
summation in (A2)—(A8). In (14), only excited states up
to one broken pair are considered. By substituting these
matrix elements into (14), one obtains a good estimate
of the moment of inertia of a nucleus. This is a reason-
able approximation as long as the quantum number of
the total angular momentum is small. Therefore, (14)
can be also used to calculate the moment of inertia of
a nucleus for the first excited state in the ground-state
band. In order to obtain the matrix elements of J,/, the
i-th Nilsson single-particle states are expanded in terms
of single-particle states |[Nj€;) of the spherical harmonic
oscillator shell model with

i50) = T, WHIN),
i50%) = 30, Wi ()i~

where N is the principal quantum number, which is fixed
according to the major shell used in our calculations, j is
the total angular momentum quantum number, ¢ labels
the 7-th Nilsson level, and W; are expansion coeflicients.
The total angular momentum 75 is obtained by coupling
the orbital angular moment [ with the spin s = 1/2 of a
valence nucleon. For example, since J,, only changes €;,

(Nj'Qi| Jor [N %)

= (JQr £ 1]Jer[74)055: 00, 0,41, (Al0)

where (jQ; £ 1|1 [i%) = /(G £ +1)(j FQ;), the
matrix elements of J,, in the Nilsson basis can be ex-
pressed as

(@5 Qir| T |35 Q5

)= WiWi x
J

h = -
5\/(] + Qi+ 1) F Q)da, 041,

(A11)

which is used in (A2)—(AS).



Appendix B: EXPERIMENTAL VALUE OF THE
MOMENT OF INERTIA

The experimental value of the moment of inertia of a
deformed nucleus is extracted from the rotational spec-
trum, which is assumed to be described by the particle-
rotor model with eigen-energy

E(I)=Eq+

DI +1) 4 0q1 pa(—1) V2T +1/2)]  (B1)
for given total spin I and the quantum number of its third
component in the intrinsic frame €2, and «a is the decou-
pling factor. Within a rotational band, Eq is a constant.
Moreover, since the Inglis formula is derived perturba-
tively, it only applies to excited states with small angu-
lar momentum quantum number. Therefore, according
o (B1), for even-even nuclei, the experimental value of
the moment of inertia is then obtained with
23Exp. 6 6

w CEen-E0p  Een Y
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where E(2]) is the energy of the first 2% excited state
taken from the experimental spectrum. Similarly, for
odd-A nuclei, if an ©Q # 1/2 band is considered, which
is always the case for the ground-state band studied in
this paper, the decoupling term in (B1) is zero. The ex-
perimental value of the moment of inertia can then be
obtained either as

23Exp. 2(Q+1)
2 EBQ+1)-E(Q)

C20+1)
=Eari B

if the difference of the spins of adjacent levels in the
ground-state band with bandhead spin (2 satisfies Al =
1, or as

2%Exp. _ 2(2Q + 3) o 2(2Q + 3)
B2 EQ+2)-EQ)  EQ+2)’

(B4)

if the difference of the spins of adjacent levels in the
ground-state band with bandhead spin (2 satisfies Al =
2, where E(Q2+1) or E(Q2+2) is the experimental energy
of the first excited state in the ground-state band.
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FIG. 1: Pairing interaction strengths G(v) and G(7) (in MeV)
determined for the extended pairing model for 527 1%4Er,
1547166*Y'b7 and 1567168Hf.
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FIG. 2: Theoretical and experimental even-odd mass differ-
ences (in MeV) for 937163y 155-165y], and 157~ 167Hf, Ex-
perimental values are denoted as “Exp.”, and theoretical val-
ues calculated in the extended pairing model are denoted as
“Th‘”'
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results obtained in the extended pairing model, “Nil.” denotes
theoretical results obtained in the Nilsson mean field without
pairing interaction, and the values denoted by “Exp.” are
extracted from the experimental spectra of these nuclei [26]
according to (B2).
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FIG. 4: (a) Theoretical and experimentally deduced moments
of inertia in A%(MeV) ™! for %571 Yh where “Ext.” denotes
results obtained in the extended pairing model, and “Exp.”
denotes the corresponding values extracted from the experi-
mental spectra of these nuclei [26] according to (B2) for even-
even nuclei and (B3) or (B4) for odd-A nuclei. (b) Relative
even-odd differences of the moments of inertia of **7 164y,
calculated by (15), where experimental data is denoted by
“Exp.” and and theoretical values in the extended pairing
model, are denoted as “Ext.”.
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TABLE I: The pairing interaction strength G(v) (G(7)) (in
MeV) in the extended pairing Hamiltonian (2) and the pa-
rameter Gy (v) (Go(m)) (in MeV) in the standard pairing
Hamiltonian (1) for #2164 Ey, 547166y} and 156168 7qf,

Tables

Nucleus A Gv) Gsa(v) G(m)  Gse(m)
BZ=TIE 152 0.3850 0.3850  0.0099 1.5730
153 0.4600 0.4600  0.0097 1.5444
154 0.0600 0.3300  0.0095 1.5145
155 0.0730 0.4015  0.0093 1.4726
156 0.0124 0.3185  0.0090 1.4348
157 0.0122 0.3131  0.0088 1.3905
158 0.0032 0.3119  0.0085 1.3467
159 0.0037 0.3561  0.0082 1.3083
160 0.0011 0.3217  0.0080 1.2679
161 0.0014 0.4096  0.0077 1.2282
162 0.0005 0.3330  0.0076 1.2150
163 0.0003 0.2414 0.0072 1.1402
164 0.0002 0.3502  0.0069 1.0963
154=166yY, 154  0.3900 0.3900  0.0149 1.7057
155 0.4010 0.4010 0.0145 1.6603
156 0.0590 0.3245 0.0141 1.6176
157 0.0620 0.3410  0.0138 1.5747
158 0.0127 0.3255  0.0133 1.5222
159 0.0135 0.3465  0.0130 1.4821
160 0.0031 0.3013  0.0128 1.4643
161 0.0037 0.3561  0.0121 1.3831
162 0.0010 0.3043  0.0117 1.3396
163 0.00I11 0.3219 0.0113 1.2944
164 0.0004 0.3167  0.0109 1.2492
165 0.0004 0.2926  0.0105 1.2035
166 0.0002 0.3350  0.0101 1.1573
=168 Hf 156 0.1850 0.1850  0.0314 2.0755
157 0.2700 0.2700  0.0304 2.0119
158 0.0520 0.2860  0.0301 1.9923
159 0.0614 0.3377  0.0288 1.9041
160 0.0117 0.3000  0.0279 1.8481
161 0.0127 0.3260  0.0271 1.7941
162 0.0030 0.2888  0.0264 1.7479
163 0.0034 0.3292 0.0256 1.6931
164 0.0010 0.2938  0.0259 1.7132
165 0.0011 0.3219  0.0247 1.6347
166 0.0004 0.3007  0.0231 1.5268
167 0.0004 0.2926  0.0223 1.4784
168 0.0001 0.1523  0.0215 1.4196
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TABLE II: The first pairing excitation energy (in MeV) of
156164y 160-165y} and 196-1681f where the values in the
E™ and E®P columns are the calculated pairing excitation
energies and the corresponding experimental values taken
from [22], respectively (energies not experimentally available

are marked by “—" ).

Nucleus A Spin and Parity E®P E™
T56—T6T 5, 156 07 0.930 1.360
157 %; 0.110 0.444
58 07 0.806 0.836
159 %; — 0.231
160 05 0.894 0.476
161 3, 0.725 0.375
162 07 1.087 1.264
163 5 0.164 0.359
164 07 1246 1.870
T0-165Vh 160 05 1.086 0.791
161 N 0.211 0.386
62 07 0.606 0.487
163 %; 0.871 0.559
164 05 0.976 0.325
165 %; 0.174 0.190
1bbfleHf 166 ()2+ 0.695 0.387
167 5= —— 0.106
168 07 0.942 1.298




