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Abstract

High-momentum distributions and short-range correlation probabilities in the deuteron are stud-

ied with a variety of modern potentials based on chiral effective field theory up to fifth order in

the chiral expansion. Conventional (meson-exchange and phenomenological) interactions are also

considered. Predictions are examined in the context of short-range correlation probabilities as

extracted from analyses of inclusive electron scattering data, with a discussion on whether modern

interactions can be reconciled with the latter.
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I. INTRODUCTION

High-momentum components in the nuclear wave function and in momentum distribu-

tions are a reflection of short-range correlations (SRC) in nuclei. The presence of high-

momentum components is mainly due to the repulsive short-range central force and the

tensor force.

Although high-quality meson-theoretic interactions continue to be employed in contem-

porary calculations of nuclear structure and reactions, since the 1990’s there exists a gen-

eral understanding that chiral effective field theory (EFT) [1, 2] is a superior framework.

First, chiral EFT has a firm connection with quantum chromodynamics (QCD) through the

symmetries of low-energy QCD. Second, it allows for a systematic expansion which makes

possible a quantification of the theoretical error. At each order of chiral perturbation theory

(χPT), the uncertainty associated with a particular prediction can be controlled and quan-

tified. For these reasons, nuclear chiral effective theory is becoming increasingly popular as

a model-independent approach.

The NN potentials constructed within chiral EFT are generally softer than “conven-

tional” potentials, which makes them computationally more amenable to nuclear structure

calculations. Also, potentials with a low resolution scale, obtained through a unitary trans-

formation (that is, through renormalization group (RG) methods [3]) applied to a “harder”

interaction, are very popular for many-body calculations. The resulting “low-k” potentials

are equivalent to the original ones for all physical purposes, although essentially void of high

momentum components.

On the experimental side, inclusive electron scattering measurements at high momentum

transfer, on both light and heavy nuclei, have been analyzed with the purpose of extracting

information on short-range correlations [4–6]. In a suitable range of Q2 and xB, the cross

section is factorized in order to single out the probability of a nucleon to be involved in

SRC, either two-body or three-body. When extended to nuclear matter, this probability

is equivalent to the “wound integral”, which measures the amount of correlations in the

so-called defect function [7]. Information about two-body correlations can also be obtained

in coincidence experiments involving knock-out of a nucleon pair with protons [8] or elec-

trons [9–12].

Nuclear scaling and the plateaus seen in inclusive scattering cross section ratios [4] are
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due to the dominance of SRC for momenta above approximately 2 fm−1. In the same region,

the momentum distribution in a nucleus relative to the one in the deuteron becomes almost

flat, so that those distributions simply scale with A.

The discussion around some of these measurements which is presently going on in the

literature is quite intriguing. The probabilities mentioned above are a manifestation of

the off-shell nature of the potential, which cannot be determined uniquely from NN elastic

data and is not an observable. Interactions may differ dramatically in their off-shell behavior

while remaining phase-equivalent. The most striking example is provided by the RG-evolved

potentials mentioned above, where the high-momentum structures of the original and the

RG-evolved potential are obviously not the same.

Naturally, a low-resolution scale will impact the ability to resolve high momentum regions.

With regard to this point, it has been noted that, if a unitary transformation is applied to

both wave functions and operators, one regains the invariance of the cross section, as one

should [13], thus attaining a consistent description of short- and long-range physics. This

has been addressed recently by Neff et al., who show how the short-range information can

be recovered by transforming the density operators [14].

On the other hand, chiral potentials such as those developed in Refs. [15–17] are not

low-momentum interactions in the sense of a Vlow−k. In this paper, I examine those from

the point of view of SRC. To broaden the discussion, I start with an analysis of SRC and

conventional (that is, non-chiral) NN potentials, including high-precision potentials from

the 1990’s as well as a phenomenological one. I then move to a similar analysis with chiral

interactions.

The deuteron is taken as a sample system. It is useful to recall that the high-momentum

part of the momentum distribution shows similar features in nuclei with A=2 to 40 [18].

Thus, the deuteron offers representative features. Furthermore, deuteron SRC probabilities

are a crucial element in the estimation of SRC probabilities in heavier nuclei as obtained in

Ref. [4].

The central point of this paper are the momentum distribution and the probability of

SRC calculated up to 5th order of chiral effective theory. Working with the A=2 system,

one can go to any order of chiral EFT where NN potentials are available, without the

need to worry about the corresponding three-nucleon forces (3NF). Although 3NF at N3LO

and N4LO have been worked out [19–21], their application in few- and many-body systems
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TABLE I: Probabilities of SRC and D-state probabilities for the potentials considered in Fig. 1.

Model a2N (d) PD

CD-Bonn 0.032 0.0485

AV18 0.042 0.0578

Nijmegen II 0.041 0.0565

still presents considerable challenges and requires unavoidable omissions/approximations.

Calculations in the deuteron are free of those and thus well-controlled. Cutoff dependence

and order-by-order convergence from lowest to 5th order of the chiral expansion is examined.

Some of the questions to be addressed are: To which extent are modern, non-

phenomenological interactions (chiral or not) consistent with the information as extracted

from A(e, e′)X measurements? What does one learn, on fundamental grounds, from the

answer to this question? Are there characteristic differences among particular families of

potentials from which one can obtain physical insight (beyond phenomenological observa-

tions)?

Results and conclusions are summarized in Section III.

II. HIGH-MOMENTUM DISTRIBUTION IN THE DEUTERON

A. Meson theory and phenomenology

This section begins with a step back into the 1990’s by considering three members of

the “high-precision” family of NN potentials, namely CD-Bonn [22], Nijmegen II [23], and

AV18 [24]. The respective momentum distributions in the deuteron, with focus on high-

momentum components, are shown in Fig. 1. ρ(k) is the Fourier transform squared of

the coordinate space wave function. There are noticeable differences between the (softer)

predictions from CD-Bonn and those from the other two potentials, which are essentially

indistinguishable.

To see how these differences carry into the probability of SRC, following Ref. [18] the
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FIG. 1: (Color online) High momentum distributions in the deuteron as predicted by: CD-Bonn

(solid red); Nijmegen II (dotted blue); and AV18 (dashed green).

probability of SRC in the deuteron is defined as

a2N(d) = 4π
∫ ∞
kmin

ρ(k)k2 dk , (1)

where kmin is taken to be 1.4 fm−1 (276 MeV). This definition was adopted in Ref. [4],

where the choice of the lower integration limit is suggested by the onset of scaling of the

cross section, which should signal the dominance of scattering from a strongly correlated

nucleon. In Ref. [4], the ratio of the per-nucleon probability of two nucleon (2N) SRC in a

nucleus relative to 3He is argued to be equal to the ratio of the inclusive electron scattering

cross sections in the appropriate scaling region. The absolute per-nucleon probability in

a nucleus can then be deduced if the absolute per-nucleon probability in 3He is known.

The latter is the product of the absolute per-nucleon probability in the deuteron, stated

as 0.041± 0.008 in Ref. [25], and the relative probability of 2N SRC in 3He relative to the

deuteron. Namely,

a2N(A) = a2N(A/3He)a2N(3He) and a2N(3He) = a2N(3He/d)a2N(d) . (2)
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It can be seen that the values for the deuteron and the ratio of 3He to deuteron contain some

model dependence from theoretical calculations (see Ref. [4] and Refs. [2,6,15,16] therein),

likely to propagate in the predictions for heavier nuclei.

In Table I, I show the probability as defined in Eq. (1) for the interactions used in Fig. 1.

As an additional, related information, I also show the corresponding D-state probabilities.

As expected in light of Fig. 1, there is a significant difference between CD-Bonn and the

other two cases, with the AV18 and Nijmegen II predictions closer to the value used in the

analysis from Ref. [25].

The differences noted above are due to the non-local nature of CD-Bonn, which adopts

fully relativistic momentum-space expressions for the one-pion-exchange. More precisely, the

off-shell nature of CD-Bonn is based upon the relativistic Feynman amplitudes for meson

exchange. This determines well-founded non-localities in the tensor force, whereas Nijmegen

II and AV18 make use of the non-relativistic, static one-pion-exchange which generates a

local tensor force. The characteristically softer nature of a relativistic momentum-space

potential reflected in Table I is a desirable feature for the purpose of applications in nuclear

structure.

This point will be revisited for a more complete discussion after the next section.

B. Interactions based on chiral EFT

In spite of the good theoretical foundation behind meson-exchange Feynman amplitudes,

meson theory does not provide a systematic approach to constructing nuclear forces. As

mentioned in the Introduction, chiral EFT presents the opportunity for such systematic

development.

Crucial for a nuclear EFT are the processes of regularization and renormalization. Con-

cerning the former, all chiral interactions are multiplied by a regulator function which typi-

cally has the form:

f(p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] , (3)

where Λ is known as the cutoff parameter.

Nucleon-nucleon potentials have been developed at different orders and cutoff values [16,

17]. Chiral EFT predictions allow for the quantification of uncertainties that stem from the

truncation error and cutoff variations (as well as additional sources of errors).
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FIG. 2: Momentum distributions in the deuteron predicted with chiral potentials at: LO (dotted);

NLO (dash-double dot); N2LO (dash-dot); N3LO (dash); and N4LO (solid). The cutoff is fixed at

500 MeV.

Consistent with that philosophy, in Fig. 2 I show the momentum distribution in the

deuteron, including five orders of the chiral expansion. The potential at N4LO is a prelim-

inary version of a high-precision nucleon-nucleon potential at fifth order [27]. (Some wavy

structures noticeable in the figure are most likely due to the polynomial nature of the EFT

contacts.) Huge variations can be seen at the lowest orders, particularly from LO to NLO,

and a clear convergence pattern with increasing order.

Table II shows the integrated probabilities corresponding to Fig. 2. At the higher, con-

verging orders, the SRC probabilities are not very different from the one predicted by CD-

Bonn. That is, chiral potentials with suitable cutoff can be constructed with excellent fit

to the NN data and off-shell nature similar to the highest-quality non-local meson-exchange

forces.

The truncation error at order n is defined as the difference between the predictions at

orders n + 1 and n. Thus, the error of a2N(d) at N3LO is ±0.004. I have also considered

variations of the cutoff parameter between 500 and 600 MeV. At N3LO, the value of a2N(d)
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TABLE II: Probabilities of SRC and D-state probabilities for the chiral interactions considered in

Fig. 2.

Model a2N (d) PD

LO 0.047 0.0757

NLO 0.015 0.0313

N2LO 0.022 0.0417

N3LO 0.030 0.0451

N4LO 0.026 0.0414

with cutoff of 600 MeV was found to be nearly the same as with 500 MeV. Therefore, cutoff

uncertainty is below the truncation error, and the final result at N3LO can be stated as

0.030±0.004. Concerning the uncertainty of the N4LO result, the prediction for the next

higher order is unknown. Therefore, assuming (pessimistically) the same truncation error

as at N3LO, the prediction at N4LO can be stated as 0.026±0.004.

C. Discussion

The deuteron is the simplest system where off-shell behavior can be explored. Charac-

teristic differences exist between meson-theoretic potentials using fully relativistic one-pion

exchange amplitudes (that is, non-local tensor forces) and those which use static one-pion-

exchange. Off-shell behavior is not observable and thus cannot be uniquely determined by

measurements. The best one can do is to have a good theoretical foundation for it. In meson

theory, this is provided by relativistic meson-exchange amplitudes.

In Section II A it was shown that the SRC probability predicted with CD-Bonn is roughly

25% below the value of a2N(d) cited in Ref. [4] and used to evaluate absolute probabilities

in heavier nuclei. A discrepancy of qualitatively similar nature exists for the wound integral

in nuclear matter. More precisely, conventional non-local potentials are known to predict
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about 10-15% for the wound integral (at normal density) [7], whereas a value of about 25%

is cited from extrapolation to nuclear matter of the empirical information [28]. In fact, the

ratio of the probability for nucleus A to the deuteron, extrapolated to infinite symmetric

matter, is given to be 6.5±1.0 [28]. With the absolute probability for the deuteron taken

equal to 0.04, the value cited above is obtained. However, when the a2N(d)=0.032 value

from CD-Bonn is used, one obtains 20%, and with a2N(d)=0.026 as from the converged

chiral results, a value of 17% is obtained for empirical short-range correlations in nuclear

matter, which is getting closer to the predicted wound integrals.

In summary, the question of consistency between description of short and long range

physics seems to go beyond the (intrinsically) “low-momentum” nature of some potentials.

Instead, it points to non-locality in the tensor force, a feature which has been found since a

long time to be very attractive in nuclear structure. So, this is an issue which has resurfaced

and is being revisited in the light of new experiments. It is important to take a broad view

of it, combining our former and present understanding of microscopic nuclear forces and

their development. Former studies of the differences among predictions of the deuteron and

the two-nucleon correlation function from phase-equivalent NN potentials and the effect of

localizing the one-pion exchange contribution can be found, for instance, in Refs. [29, 30].

III. CONCLUSIONS AND OUTLOOK

The deuteron is a beautifully simple benchmark for theories of nuclear forces. From this

study, one may conclude that predictions of high-momentum distributions in the deuteron

with high-quality non-local meson-exchange forces or state-of-the-art chiral forces are sys-

tematically lower than what is used to extract empirical information for heavier nuclei.

Taking those results into account leads to a better agreement between SRC in nuclear mat-

ter and theoretical predictions. However, the above statement assumes that the ratio of

inclusive cross sections is indeed equal to the ratio of SRC probabilities. One must keep in

mind, though, that cross section ratios may be sensitive to other mechanisms (such as, for

instance, final-state interaction), and may not be identified with the ratio of SRC proba-

bilitities in a quantitative way. In fact, such quantitative association should be taken with

care.

I plan to extend this microscopic analysis to the A=3 system using a broad spectrum of
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interactions as in the present study. I hope this will shed more light on how to reconcile

theory and empirical analyses.

Finally, some caution should be excercised in the interpretation of the empirical informa-

tion discussed above as an experimental constraint on the off-shell behavior.
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