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The nuclear matrix elements for two-neutrino double-beta (2νββ) and zero-neutrino double-beta
(0νββ) decay of 76Ge are evaluated in terms of the configuration interaction (CI), quasiparticle
random phase approximation (QRPA) and interacting boson model (IBM) methods. We point out
deficiencies in all of these models, and suggest ways that some of them can be corrected. The
final results are obtained from the CI method corrected for configurations admixtures involving
orbitals outside of the CI configuration space by using results from QRPA, many-body-perturbation
theory, and the connections to related observables. The CI two-neutrino matrix element is reduced
due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-
Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to
particle-particle correlations that are connected with the odd-even oscillations in the nuclear masses.
The CI zero-neutrino matrix element for the light neutrino contains both types of correlations that
approximately cancel each other. The uncertainty from short-range-correlations is also considered.

PACS numbers: 23.40.Bw, 21.60.Cs, 23.40.Hc, 14.60.Pq

Many properties of the active neutrinos are measured,
but it is not yet established whether they are Dirac
or Majorana type particles and their absolute masses
are not known. Left-right symmetric extensions to the
standard model provide an explanation for the non-zero
masses of the left-handed light neutrinos and also pre-
dict the existence of right-handed heavy neutrinos [1].
Neutrinoless double-beta (0νββ) decay of nuclei provides
unique information and constraints on these neutrino
properties [2–6]. The ββ decay process and the asso-
ciated nuclear matrix elements (NME) have been inves-
tigated by using several approaches including the quasi-
particle random phase approximation (QRPA) [4], [7–29],
the configuration interaction (CI) model [30–38], the in-
teracting boson model (IBM) [39–41], the generator coor-
dinate method [42], and the projected Hartree-Fock Bo-
goliubov model [43].
Assuming contributions from the light left-handed

(ν) neutrino-exchange mechanism and the heavy right-
handed (N) neutrino-exchange mechanism, the decay
rate of a neutrinoless double-beta decay process can be
written as [4], [36]
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where G0ν is the phase space factor [44], [45], M are the
nuclear matrix elements (NME), and η are combinations
of the neutrino masses [36], [4].
Since the experimental decay rate is proportional to

the square of the calculated nuclear matrix elements, it is
important to calculate these matrix elements with good
accuracy to be able to determine the absolute scale of
neutrino masses. However, the theoretical methods used
give results that differ from one another by factors of up
to 2-3. It is important to understand the nuclear struc-
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FIG. 1: (color online) The ββ decay of 76Ge. The top part
shows the conversion of two neutrons (blue on the left) into
two protons (red on the right) in 2νββ decay. The bottom
part shows the 0νββ decay where a virtual neutrino is ex-
changed.

ture aspects of these matrix elements and why the models
give differing results. This paper is part of a larger the-
oretical effort to address the theory recommendations of
the Report to the Nuclear Science Advisory Committee
on Neutrinoless Double Beta Decay [46].

From an experimental point of view 76Ge is one of the
most investigated ββ decay candidates. The two modes
of ββ decay are shown in Fig. 1. The experimental half-
life for the standard 2ν decay is T 2ν

1/2 = 1.50(10)× 1021



2

yr with a resulting NME of M2ν = 0.140(5) MeV−1

[47]. 76Ge is the only isotope for which an observa-
tional claim for neutrinoless double-beta decay has been
made with T 0ν

1/2 = 1.2 × 1025 yr [48], [49]. GERDA-

II [50] and MAJORANA DEMONSTRATOR [51], the
second generation of the germanium-based experiments,
are in progress. The most sensitive limits on 0νββ de-
cay half-lives obtained from germanium-based experi-
ments are those of the Heidelberg-Moscow experiment
[52], the International Germanium experiment [53], and
the GERDA-I experiment [54]. The combination with
the results from these experiments yields T 0ν

1/2 > 3× 1025

yr (90% C.L.) [54].
In this paper we discuss the NME for the ββ decay of

76Ge obtained with the CI, QRPA and IBM-2 methods.
We will show that all of these methods have deficiencies.
Some of the deficiencies can be addressed with many-
body perturbation theory (MBPT) approaches, and con-
nections to other observables.
The nuclear matrix elements can be presented as a sum

of Gamow-Teller (MGT ), Fermi (MF ), and Tensor (MT )
matrix elements (see, for example, Refs. [35], [55]),

M = MGT −

(

gV
gA

)2

MF +MT , (2)

where gV and gA are the vector and axial constants, cor-
respondingly. We use gV = 1 and gA = 1.27. The Mα

are matrix elements of scalar two-body potentials. The
Gamow-Teller has the form VGT (r, A, µ) σ1 ·σ2 τ−1 τ−2 and
the Fermi has the form VF (r, A, µ) τ

−

1 τ−2 , where τ− are
the isospin lowering operators. The neutrino potentials
depend on the relative distance between the two decaying
nucleons, r, the mass number A, and the closure energy µ
[37]. The radial forms are given explicitly in [35]. For the
heavy-neutrino exchange, the potential does not depend
on µ. For the light neutrino matrix element the closure
approximation is good to within 10% [38].
The operators for MGT are given to a good approxima-

tion by f(r) σ1 · σ2 τ−1 τ−2 , where f(r)2ν = 1 (in closure),
f(r)0ν = a/r and f(r)0N = b δ(r) where the constants a
and b depend on A, µ and the SRC. The results discussed
below follow from the expansions of the many-body ma-
trix elements for these three operators in terms of the
particle-hole (ph) in 76As or particle-particle (pp) inter-
mediate states in 74Ge [56].
The 2ν tensor NME is zero and the Fermi NME is

zero since isospin is conserved. For 0ν and 0N the Fermi
and tensor parts are both relatively small, and we define
a correction factor for these given by RGT = M/MGT ,
where M contains all three terms of Eq. 2. The CI
calculations give R0ν

GT = 1.10(3). Larger values of 1.23 for
QRPA [16] and 1.33 for IBM-2 [39] were obtained with
the older calculations. But more recently, it was found
that the 2ν Fermi matrix element was not zero because
isospin was being treated incorrectly in QRPA [25] and
IBM-2 [41]. After this was corrected the new M2ν

F values
are now zero in all methods. The new results for R0ν

GT

are 1.10 [25] and 1.19 [29] for QRPA, and 1.04 [41] for
IBM-2. Taking these results into account we adopt a
correction factor from the tensor plus Fermi contributions
of R0ν

GT = 1.12(7). The ratio for the heavy neutrino is
1.20 for CI, 1.26 for QRPA [29] and 1.00 for IBM-2 [41].
The adopted correction factor is R0N

GT = 1.13(13).
In the following we first focus on results for MGT . At

the end, the total matrix element M will be obtained
from MGT via a product of correction factors R given by
M = [MGT (CI)][RV ][RS ][RGT ]. RGT is defined above.
We start with the use of short-range correlations (SRC)
[55] based on the CD-Bonn potential [57]. At the end
we will give a value and error for the correction to this,
RS , based on a range of assumptions about the SRC.
RV represents the correction coming from a “vertical”
expansion of the CI model space that includes the effect
of orbitals below and above those in jj44. RV is the main
focus of this paper.
The model space for CI and IBM-2 is jj44 that consists

of the four valence orbitals 0f5/2, 1p3/2, 1p1/2 and 0g9/2
for protons and neutrons. The model space for QRPA
are the 21 orbitals with oscillator quanta N ≤ 5 where
N = 2n+ ℓ for protons and neutrons. The QRPA results
are also given when the evaluation of the NME are re-
stricted to jj44 and to fpg (jj44 plus 0f7/2 and 0g7/2).
In addition to our own CI calculations with the JUN45
[58] and jj4bpn [59] Hamiltonians, we will show results
from the gcn28:50 Hamiltonian [60] for 2ν [61], 0ν [33]
and 0N [62].
The method and parameters used for the QRPA cal-

culations [63] are similar to those used in [25]. For the
particle-particle channel in order to restore the isospin
symmetry, we follow the formalism introduced in [23],
[25], by separately fitting the T = 0 and T = 1 parts
of the interaction. For the T = 1 part, gT=1

pp = 0.985 is

taken to give M2ν
F = 0. For the T = 0 particle-particle

channel, two parameter sets were used: (a) gT=0
pp = 0.673

reproduces the experimental value for M2ν
GT , and (b)

gT=0
pp = 0.643 gives a value for M2ν

GT that is a factor of

(1/0.75)2 larger than experiment, anticipating that there
may be MBPT corrections beyond QRPA that could re-
duce the strength to low-lying states.
Results for the 2νββ NME are shown in Fig. 2. This

NME is completely determined by Jπ
ph = 1+ intermedi-

ate states in 76As. In CI the summation over interme-
diate including the energy denominator (Eq. 2 in [61])
is obtained with the strength-function method [64]. The
IBM-2 result is not shown because it uses an approxi-
mation for the NME based on the closure result for the
operator σ1 · σ2 τ−1 τ−2 together with average closure en-
ergies from other methods (Eq. 16 in Ref. [41]). Ex-
periment is reduced by a factor of about R2ν

V = 0.45
compared to CI. R2ν

V = M2ν/M2ν(CI) denotes the cor-
rection beyond the jj44 model space, due to a “verti-
cal” expansion that includes correlations from orbitals
below and above the jj44 model space. The QRPA re-
sults for jj44 and pfg show that part of this reduction is
due to the missing spin-orbit partners in the jj44 model
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FIG. 2: (color online) Nuclear matrix elements for 2νββ decay
of 76Ge. The top point in green is the experimental value [47].
The QRPA results are shown for gT=0

pp = 0.673 (red dots)

and gT=0

pp = 0.643 (red crosses). The CI results are shown
for the JUN45 (dot), jj44bpn (cross) and gcn28:50 (triangle)
Hamiltonians.
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FIG. 3: (color online) 0N NME for heavy neutrino decay of
76Ge. See caption to Fig. 2. The QRPA point with the
triangle is from Ref. [29].
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FIG. 4: (color online) 0ν NME for the light-neutrino decay of
76Ge. See captions to Figs. 2 and 3.

space. The particle-hole correlations are dominated by
a strong repulsive interaction in the 1+ channel. Rel-
ative to the non-interacting single-particle distribution,
Gamow-Teller strength is reduced in low-lying states and
shifted into the giant Gamow-Teller resonance. As shown
by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar be-
havior was observed for CI in the case of 136Xe [65].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model space wavefunctions
are important for Gamow-Teller beta decay. The experi-
mental Gamow-Teller strength is observed to be reduced
by a factor of R′

V = 0.5 − 0.6 relative to the CI calcu-
lations in the sd [66] and pf [67] model spaces. Also
the strength extracted from charge-exchange reactions
for the total Gamow-Teller strength up to about 25 MeV
in excitation energy is reduced by this factor relative to
QRPA [68] and the 3(N −Z) Ikeda sum rule [69]. Arima
et al. [70] and Towner [71] have explained this reduc-
tion using MBPT in terms of 2p-2h admixtures into the
model-space wavefunctions. Earlier calculations claimed
that the reduction in GT strength was due to ∆ exci-
tations [72] in the nucleus. However, calculations with
a realistic N∆π interaction vertex have shown that the
influence of ∆ (and other mesonic-exchange currents) is
small [70], [71]. These results are compared to the em-
pirical sd results in Fig. 13 of [66]. In order to conserve
the Ikeda sum rule, the reduction in low-lying B(GT)
strength is associated with a spreading of strength to
high excitation energy [73] that gets removed from the
2ν NME due to the energy denominator in the summa-
tion over intermediate states. In summary, relative to CI
in the jj44 model space, reductions due to a spin-orbit
complete model space, together with 2p-2h admixtures
are required for the 2νββ NME. The observed factor of
RV = 0.45 is consistent with expectations.

The results for 0N (heavy neutrino) are shown in Fig.
3. In addition to our own QRPA results, we show the
QRPA result from [29]. The Jpp intermediate states are
dominated by the 0+ ground state of 74Ge (see Ref. [56]
for details on the analysis). In QRPA the NME in-
creases by a factor of R0N

V = 1.9 as the number of or-
bitals included in the sums increases from jj44 to full
(21 orbitals). This is due to the strong pairing (particle-
particle) part of the Hamiltonians and the resulting in-
crease in the number of coherent pairs contributing to
the 0N NME. The pairing also gives rise to the odd-even
staggering of the nuclear binding energies quantified by
the pairing energies D [74], [75]. For the germanium iso-
topes the experimental pairing energies are a factor of
1.45 larger than that obtained with the first-order expec-
tation value of the CD-Bonn Hamiltonian. Based on the
average of this result and the increase observed in QRPA,
we will use R0N

V = 1.65(25).

The results for 0νββ (light neutrino) are shown in Fig.
4. The largest term in the 0ν NME is from the Jπ

pp = 0+

ground state of 74Ge [56]. In QRPA the NME is nearly
constant as the number of orbitals included in the sums
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increase. Qualitatively this is due to a competition be-
tween the reduction from the particle-hole channel ob-
served for 2ν and the enhancement due to the particle-
particle channel observed for 0N . The connection of the
0ν matrix elements with pairing has been previously dis-
cussed [31]. The new point of our analysis is that the
increase expected from pairing coming from MBPT be-
yond the jj44 model space is cancelled by the reduction
from the ph-type correlations.
Contributions from states with Jpp > 0 cancel part of

the NME from Jpp = 0+. Within jj44 the reduction
is dominated by the Jpp = 2+ states [56]. For the 0ν
NME within jj44, one finds R0ν

pp = {M0ν
GT/[M

0ν
GT (Jpp =

0+)]} = 0.53 for CI [56], 0.90 for IBM-2 [39] and 0.72 for
QRPA. The reason for these differences may be due to
the truncation within jj44 made by IBM-2 and QRPA.
For the 0N NME this ratio is R0N

pp = 0.89 in CI [56];
the cancellation from higher Jpp is much less, and the
result is dominated by the Jpp = 0+ contribution and
its connection to pairing is discussed above. In the jj44
model space the agreement between the 0N NME (Fig.
3) for CI, QRPA and IBM-2 is much better than that for
0ν (Fig. 4) since the cancellation from higher Jpp terms
is small.
Holt and Engel [76] considered the effect of 2p-2h ad-

mixtures beyond the jj44 model space by treating the ef-
fective transition operator in MBPT. They found a 20%
increase of the 0ν NME for 76Ge. Part of these MBPT
contributions go beyond QRPA. At present this is the
best estimate for the correction beyond CI in the jj44
model space. We will use R0ν

V = 1.2(2) with a generously
large value of 20% for its uncertainty.
The results shown above are based on the CD-Bonn

SRC. This is the weakest of several SRC that have been
used [55]. The strongest is the AV18 SRC, and the
UCOM [77] SRC is about half way between. For our final
result we use the average of CD-Bonn and AV18 with an
error that encompasses both. The result is that the 0N
NME are multiplied by R0N

S = 0.80(20) and the 0ν NME
are multiplied by R0ν

S = 0.97(3), where RS is the SRC
correction relative to the CD-Bonn starting point.
Finally, we combine all of the factors discussed above

in the form M = [MGT (CI)][RV ][RS ][RGT ]. Based on
the experimental value for 2ν the NME is,

M2ν = 0.140(5) = [0.31(3)][0.45][1][1]. (3)

The second term is the empirical correction for RV due
to mixing beyond the jj44 model space. The error in
the CI NME reflects the spread obtained with the three
different Hamiltonians used (Fig. 2). For 0N ,

M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80),
(4)

where the CI value is from Fig. 3. The error for 0N is
dominated by the SRC correction. Finally For 0ν,

M0ν = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8), (5)

where the CI value is from Fig. 4. The error for 0ν
is dominated by an estimated uncertainty of 20% in the

correction beyond jj44. Comparison to previous values
must take into account the isospin correction for QRPA
and IBM discussed above, and the choice of SRC (in our
RS factor). The range is from 2.8 for CI [33] to 4.7 for
IBM-2 [41] and 5.3 for QRPA [29]. Our result is in be-
tween these, but it is not an average since we have made
comments on the deficiencies of all of these models. Us-
ing Eq. 1 with the experimental limit of the half-life
(T 0ν

1/2 > 3 × 1025 yr [54]), and the phase space factor

from [44], we obtain | ην | mec
2 < 0.3 eV.

Sometimes the 2ν correction factor (0.45 in this case)
is expressed in terms of an effective gA value (g′A = 0.85
in this case). Since the factor (gA)

4 appears inside the
phase-space factor of Eq. 1, one might think that the
decay rate for 0ν and 0N could be reduced by a factor of
(g′A/1.27)

4 = 0.20 [41], [78]. However, this g′A is only for
a specific operator associated with a specific observable
(2νββ decay) relative to a specific model (CI in jj44 in
this case). The operators involved in 0ν and 0N beta de-
cay are different (short ranged), and corrections beyond
CI cannot be expressed in terms of an overall change in
gA. It is better to express the renormalizations in terms
of factors such as RV that are operator and model space
dependent.

The model-space truncation contributions to Rpp

should be understood. The error for the RGT correc-
tion could be reduced if reasons for the variations within
the models is understood. The error for the RV correc-
tion could be reduced if the MBPT results such as those
in [76] should be expanded to include the renormaliza-
tion of the separate effects in the ph and pp channels in
order to compare to the results found previously relative
to the jj44 model space. This includes the reduction in
Gamow-Teller beta decay strength [70], [71], and the en-
hancements of the pairing strength seen in the D values.
The basic division between CI and its MBPT corrections
from all other orbitals can be checked by no-core and
ab-initio CI in lighter nuclei where they are tractable.
Other methods such as in-medium SRG [79] and cou-
pled cluster [80] can be used in place of MBPT, and at
this level the division between short-range renormaliza-
tion, RS , and long-range renormalization, RV , might be
merged. The CI results for the A = 76 region can be
further checked against spectroscopic observables (occu-
pations number are in good agreement with CI [33]) in-
cluding two-nucleon transfer. Future calculations should
be presented in terms of changes relative to various con-
tributions we have discussed, and evaluations for other
cases of interest [46] should be made.
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