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The Ecm
r = 458 keV resonance in 22Ne(p,γ)23Na is an ideal reference resonance for measurements

of cross sections and resonance strengths in noble gas targets. We report on a new measurement of
the strength of this resonance. Data analysis employed the TFractionFitter class of ROOT combined
with Geant simulations of potential decay cascades from this resonance. This approach allowed
us to extract precise primary branching ratios for decays from the resonant state, including a new
primary branch to the 7082-keV state in 23Na. Our new resonance strength of ωγ(458 keV) =
0.583(43) eV is more than 1-σ higher than a recent high-precision result that relied on literature
branching ratios.

PACS numbers: 25.40.Lw,26.20.Cd,27.30.+t

I. INTRODUCTION

Measurements of weak resonant or direct-capture re-
actions often use the strengths of well-known resonances
as a “standard” from which the absolute cross-section
scale can be determined. The Ecm

r = 458 keV reso-
nance in the 22Ne(p,γ)23Na reaction (Ex = 9252.1 keV,
Sp = 8794.11(2) keV [1]) is an ideal standard reso-
nance for noble gas targets. Such a reference is im-
portant because of interest in the reactions that pro-
duce and destroy sodium in massive asymptotic giant
branch stars. The sodium abundance is governed by the
20Ne(p,γ)21Na, 22Ne(p,γ)23Na, and 23Na(p,γ)24Mg reac-
tions, all of which have significant uncertainties at the
energies of interest [2]. An improved determination of
ωγ(458 keV) will thus facilitate more accurate measure-
ments of the first two reactions.

The strength of this resonance has been reported mul-
tiple times in the literature [3–5], including the recent,
high-precision measurement by Ref. [6]. This measure-
ment relied on literature branching ratios, sources for
which are limited to the results of Refs. [3, 4], which were
reported without uncertainties. In particular, Ref. [6]
adopted a ground-state branching ratio of B(R→0)=
0.465(23), deduced from a weighted average of the val-
ues reported in Refs. [3, 4] and their resulting resonance
strength was inversely proportional to this branching ra-
tio. In this work we report on a new measurement of
branching ratios for the decay of the 458-keV resonance
and use this information to determine a revised resonance
strength. Changes from the previously accepted values
include a newly discovered branch to the 7082-keV state
in 23Na as well as a decrease of approximately 10% in
the ground state branching ratio used in Ref. [6]. These
results were obtained using Geant version 4.9.6 [7] sim-
ulations of potential decay cascades from the 9252-keV
resonant state in 23Na combined with a fit to the mea-
sured γ-ray spectrum determined using the TFractionFit-
ter [8] class of ROOT [9]. The overall impact of these new
branching ratios is an increase in the resonance strength

of Ref. [6] by 11.3% (or about 1.2 σ). This increase ex-
tends to all higher-lying resonances in the 22Ne(p,γ)23Na
reaction.

II. EXPERIMENTAL PROCEDURE

Data for this work were taken with the 1-MV JN van
de Graaff accelerator at the Laboratory for Experimental
Nuclear Astrophysics (LENA) [10], located at the Trian-
gle Universities Nuclear Laboratory (TUNL). The JN ac-
celerator can provide proton beams in the energy range
of ∼ 200 keV – 1 MeV, with a maximum intensity of
about 120 µA and a typical energy spread of 1–3 keV.
The energy calibration was established to <1 keV by us-
ing well-known resonances of the reactions 18O(p, γ)19F,
26Mg(p, γ)27Al, and 27Al(p, γ)28Si [10].
A target of 22Ne implanted into a tantalum target

backing was fabricated using the Eaton Ion Implanter
located at the University of North Carolina at Chapel
Hill. An ion implantation energy of 100 keV was used,
yielding a target thickness of approximately 20 keV at the
resonance energy. The 22Ne:Ta stoichiometry of the tar-
get used for this work was measured to be approximately
1:4 using the 458-keV resonance in 22Ne(p,γ)23Na. The
proton beam entered the target chamber through a cop-
per tube, extending to less than 1 cm from the surface of
the target. The copper tube was cooled by a LN2 reser-
voir to trap potential target contaminants. To minimize
target degradation from beam heating, the target was
cooled using chilled, deionized water and the beam was
rastered into a beamspot ∼ 12 mm in diameter. In order
to suppress the emission of secondary electrons from the
target, permanent magnets were positioned at the end of
the tube along with an electrode biased to -300 V. This
formed a Faraday cup for measuring beam current. Total
beam charge accumulated on target amounted to ∼ 0.01
C. The yield on the 458-keV resonance in 22Ne(p,γ)23Na
was measured before and after data acquisition to ensure
that the target did not degrade.
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Data were collected with a 135% coaxial HPGe de-
tector placed 1.1 cm from the target. A laboratory
energy of Ep = 494 keV was used, which was slightly
above the maximum yield of the resonance, and beam
currents were held to ≈ 4 µA. Both of these experi-
mental parameters were intended to keep the dead time
to below 5%. The resonance strength reported in this
work depends only on the results of Ref. [6] and the pri-
mary branching ratios reported in Sec. III, which are
independent of the beam energy offset from the max-
imum resonance yield. The HPGe detector has been
thoroughly characterized through extensive simulation
studies using Geant (version 4.9.6) and measurements
of both radioactive sources, such as 56Co, 22Na, 54Mn,
137Cs, and 60Co, and of the 14N(p,γ)15O, 18O(p,γ)19F,
23Na(p,γ)24Mg, and 27Al(p,γ)28Si reactions[2, 11–13].
The critical dimensions used in the simulations were ob-
tained from a CT scan of the detector [14].

III. DATA ANALYSIS AND RESULTS

The traditional means of analyzing γ-ray spectra in-
volves integrating photopeaks corresponding to transi-
tions of interest. Along with external backgrounds, es-
cape peaks and Compton events associated with these
transitions are treated as backgrounds that could obscure
weak transitions. However, the majority of events de-
tected reside in the Compton continuum and could in
principle be used to extract decay strengths, provided
that the response of the detector can be accurately mea-
sured or simulated. This approach uses the TFraction-
Fitter [8] class of ROOT [9] and was recently applied
to HPGe spectra in Refs. [15, 16]. A similar technique
was also applied to NaI spectra in Ref. [17]. The no-
tation in the following description varies slightly from
Ref. [15] to improve consistency with the original work
by Ref. [8]. A complete, detailed description of this data
analysis method will be provided in a forthcoming pub-
lication [18], which shall serve as the primary reference
for this analysis method.
Individual Geant [7] simulations were generated for

each possible nuclear decay cascade from the 9252-keV
state in 23Na populated by the 458-keV resonance in
22Ne(p,γ)23Na. Every Geant simulation used in this
work was calculated with version 4.9.6. All secondary
decays from lower lying excited states in 23Na were in-
cluded in each decay cascade template using the branch-
ing ratios listed in Ref. [1]. Given that the resonance
spin is JR = 1/2, transitions to all lower lying excited
states with J = 1/2, 3/2, or 5/2 were considered here,
but only those with a non-zero contribution were kept
for the final fit to the data. In this manner, we could
potentially identify transitions that escaped prior detec-
tion. This resonance spin also implies that all primary
γ-rays are emitted isotropically. Angular distributions
and direction-direction correlations for all secondary γ-
rays were calculated according to Ref. [19] using the level

spin assignments of Ref. [1] and were included in all sim-
ulations used here. A rigorous investigation of the agree-
ment between simulated and experimental spectra in re-
gards to the the shape, magnitude, and position of each
γ-ray peak was carried out in order to obtain an accurate
simulation of the experimental data.

Each simulation was then used as a “template” for a fit
to the experimental data spectrum. The fit also included
simulations of beam induced backgrounds, such as those
arising from the 12C(p,γ)13N and 11B(p,γ)12C reactions,
as well as the measured room and cosmic-ray background.
The TFractionFitter [8] class of ROOT [9] was used to
vary the intensity of each template within each bin to
obtain a maximum likelihood fit to the data. In the fol-
lowing, we summarize the discussion of this technique
found in Ref. [8]. If we assume that every spectrum has
n bins, indexed by i, and that the fit includes m tem-
plates, indexed by j, then the likelihood function that
was maximized is given by

ln (L ) =

[

n
∑

i=1

di ln fi − fi

]

+





n
∑

i=1

m
∑

j=1

aji lnAji −Aji



 ,

(1)
where L is the likelihood, di and aji are the counts in bin
i from the data and from template j, respectively, and
the parameter Aji is the predicted number of counts in
bin i from template j. The parameter fi is the predicted
number of counts in bin i from the fit to the data, given
by

fi =
m
∑

j=1

pjAji. (2)

The parameters pj are defined by

pj =
Adata

total

Asim
j

Fj , (3)

where Adata
total and Asim

j are the total area of the data spec-
trum and of template j, respectively. The Fj are the
fractions of Adata

total accounted for by a particular template
as determined by the fitting procedure. Note that the Fj

sum to 1. The goal is to determine the Fj or, equiva-
lently, the pj.
The first term in the likelihood function described by

Eq. 1 takes into account the random, statistical nature
of experimental data. This term alone is used in the
common “binned maximum likelihood” fit. The second
term takes into account the fact that Monte Carlo gen-
erated template histograms also display similar random,
statistical fluctuations and is essential when determining
a maximum likelihood fit using Monte Carlo input.
By defining the parameters ti such that

ti = 1−
di
fi

& Aji =
aji

1 + pjti
. (4)
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Equations 2 and 4 can be used to derive the relation

fi =
di

1− ti
=

m
∑

j=1

pjaji
1 + pjaji

, (5)

which can be rewritten as

m
∑

j=1

pjaji
1 + pjaji

−
di

1− ti
= 0. (6)

Assuming a set of pj values, Eq. 6 was used to iteratively
solve for the n parameters, ti, via the Newton-Raphson
method. Once a set of ti values was established, the MI-
NUIT package [20] was used to determine new values for
each pj value in this iterative calculation for a maximum
of Eq. 1. Iterations of Eqs. 1 and 6 continued until a
satisfactory numerical precision was reached for the final
set of pj values, thereby yielding the desired quantities,
Fj .
The branching ratios were determined not by Fj , but

by the ratio

B(R → Ej) = Ndata
j /Ndata

R , (7)

where the primary decay transition described by tem-
plate j is initiated via a primary decay from R, the res-
onant state, to the state in 23Na with energy Ej . The
quantity Ndata

j is the number of resonant excitations pro-
duced in the target that decay through cascade j (or
equivalently, the partial number of reactions correspond-
ing to a particular decay cascade) and Ndata

R is the total
number of resonant excitations observed in the data. The
quantity Ndata

j can be obtained from Nsim
j , the num-

ber of simulated excitations for cascade j, and Fj via
Ref. [15], Eq. 3.

Ndata
j =

Adata
total

Asim
j

FjN
sim
j , (8)

where Asim
j is the total number of counts in simulated

spectrum of cascade j and Adata
total is the same quantity for

the measured spectrum. Finally, Ndata
R can be obtained

from

Ndata
R =

m
∑

j=1

Ndata
j . (9)

There is no need to subtract background since the Fj

take the background template into account. Also, coinci-
dence summing is automatically included in the Geant

simulations, obviating the need for summing corrections.
In general, Ndata

R can then be used to derive the reso-
nance strength (in the case of a resonant reaction), or
the cross section (in the case of a non-resonant reac-
tion). By analyzing data in this manner, the statistics
of the entire spectrum were considered. This is a signif-
icant advantage as, for example, the simulated 458-keV
22Ne(p,γ)23Na resonance ground-state photopeak is only
∼5% of the whole simulated spectrum.

The 22Ne(p,γ)23Na data spectrum used in this work is
shown in Fig. 1 along with the final fit to the data and
selected templates from which the fit was determined.
The data are shown in black with the fit in green. The
room background template is shown in red and the two
strongest resonant state decay templates are shown in
blue. All resonance primary peaks are indicated with
blue arrows. A total of 15 templates were used during
the final minimization process, translating to 15 total si-
multaneously fit pj values. These correspond to the room
background template, 4 beam-induced background tem-
plates, and 10 resonant decay templates. Although the
R→3848 transition is allowed on the basis of spin consid-
erations, there was no evidence in the data for this tran-
sition and since the fit would not converge with this tem-
plate included, this transition was not considered during
the fitting procedure.

The resulting branching ratios are shown in Tab. I
along with those reported previously in Refs. [3, 4]. By
not limiting our analysis to only the decays already
known in the literature, it was possible to detect a new
decay branch to the 7082-keV state in 23Na. The ex-
istence of this transition is verified in Fig. 2 through a
comparison of the measured yield across the 458-keV res-
onance of the 2170-keV primary γ-ray emitted during the
R→7082 transition to that of the well-known 6270-keV
γ-ray emitted during the R→2982 transition. Black cir-
cles and red diamonds show the 6270 and 2170-keV γ-ray
yields, respectively. The yield scale for red or black data
points is indicated by the y-axis of the same color. The
shape and position of the 6270-keV γ-ray yield curve is
reproduced by that of the 2170-keV γ-ray. All other γ-
rays analyzed in this work have been reported previously
in Refs. [3, 4] and correspond to known decays from the
resonant state.

Beyond this, the most notable difference between the
present results and those of Refs. [3, 4] is the decrease
in the R→0 branching ratio by approximately 10–13%.
This is the strongest of transition from the 9252-keV
state and is also the branch used in the high-precision
ωγ(458 keV) measurement of Ref. [6]. In that work,
their calculated ωγ(458 keV) was inversely proportional
to B(R→0); a 10% decrease in B(R→0) induces an ap-
proximately 11.3% change in their ωγ(458 keV). Addi-
tionally, the technique used by Longland et al. [6] was
independent of systematic effects associated with target
stoichiometry, charge integration, or absolute detector ef-
ficiency. For this reason, we have chosen to correct their
result by replacing their assumed ground-state transition
branching ratio with our present measurement. Thus,
we recommend ωγ(458 keV) = 0.583(43) eV. The per-
cent uncertainty in this resonance strength has also been
reduced from 9.7% in Longland et al. [6] to 7.3% uncer-
tainty reported here. It should be noted that this res-
onance strength is indeed consistent with our measured
yield and assumed stoichiometry.
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IV. VALIDATION OF THE TECHNIQUE AND

COMPARISON WITH PREVIOUS RESULTS

A. Experimental Yield Calculations

Our technique can be tested by extracting experimen-
tal yields in the traditional fashion of integrating pho-
topeaks corresponding to the individual primary transi-
tions. The total yield of the reaction as determined from
the strength of a particular primary transition, j, assum-
ing a certain set of branching ratios, k, can be written as
[19]:

Yj,k =
1

NB

{

Nγ

ηpW

[

fSC

B

]

k

}

j

, (10)

where NB is the total number of bombarding particles
and Nγ is the peak intensity of a primary γ-ray of in-
terest. The parameters B and ηp are the branching ra-
tio and full-energy peak efficiency, respectively, while W
describes the angular distribution of the γ-ray being an-
alyzed. The quantity fSC is a γ-ray intensity correc-
tion factor that takes coincidence-summing effects into
account. This factor includes the effects of direction-
direction correlations between γ-rays and is expanded
upon in Sec. IVB. With the exception of NB, all of
these quantities are specific to the particular transition,
j, and only fSC and B are specific to the chosen branch-
ing ratio set, k. However, Yj,k should be independent
of the primary transition photopeak being analyzed. In
other words, if the relative branching ratios of the set
k are correct, then the experimental photopeak analysis
of each primary transition j should result in the same
Yj,k and be mutually consistent. Therefore, we chose to
probe the accuracy of the present branching ratios as well
as those of of Piiparinen et al. [3] and Meyer et al. [4] by
analyzing the consistency of Yj,k as calculated for every
observed primary transition. Changes in the calculated
Yj,k are almost entirely the result of changes between the
present branching ratios and those of Refs. [3] and [4].
The angular distribution factor, W , was equal to 1 for

every primary transition because the 9252-keV resonant
state in 23Na excited by this Ecm

r = 458 keV resonance
has spin JR = 1/2. The quantity NB was equal to ∼ 0.01
C for every Yj,k calculation. The photopeak intensity,
Nγ , was different for each primary γ-ray, but remained
constant with respect to the branching ratio set being
analyzed. Geant simulations of the Ge detector used
in this work have been shown to reproduce experimen-
tal full-energy peak efficiencies to within 3-5% [2, 11–13].
Therefore, simulated ηp values at the primary γ-ray en-
ergies using mono-energetic Geant simulations of the
detector geometry were used in Eq. 10.

B. Coincidence-Summing Corrections

Experimental γ-ray spectra can be significantly altered
by coincidence-summing effects when a close source-

detector geometry is used. This is a common problem
in measurements of small cross sections relevant to nu-
clear astrophysics. The coincidence-summing correction
factor, fSC , was used to correct for this effect. To be
clear, fSC is not used to correct photopeak intensities
for random pulse pileup summing which occurs when γ-
rays from different decay cascades are incident upon the
detector within a narrow time window [21]. Instead, fSC

is used to correct data for events when two or more γ-
rays from the same decay cascade are incident upon the
detector. This can result in a signal corresponding to
the sum of the energy deposited by each individual γ-
ray. If, for example, all incident γ-rays deposit all of
their energy within the detector, an effect referred to as
“summing-in” occurs in which a signal corresponding to
the ground-state transition energy is produced and the
net photopeak intensities of the incident γ-rays are re-
duced by one count each. If, on the other hand, a full
energy deposition of one γ-ray is coincident with a partial
energy deposition of another, then “summing-out” occurs
in which the net photopeak intensity of the first γ-ray is
reduced by one count. Note that direction-direction cor-
relations between γ-rays influence coincidence summing.

In this work a newly developed method of correct-
ing experimental data for coincidence-summing effects
was used. Other methods exist and are summarized in
Ref. [22]. These can be categorized as follows: dedi-
cated computer codes, most of which require input of
full-energy peak and total efficiency data [23–30], recur-
sive algorithms coupled to Monte Carlo simulations for
efficiencies [31], recursive matrix based calculations with
practical approaches for efficiencies [32], and full Monte
Carlo simulations with MCNP, Geant3.21, and Geant4
[7, 33, 34]. In nuclear astrophysics the methods of
Ref. [35] have been used to correct data for coincidence-
summing effects [11, 12, 36]. Additionally, expressions
from Ref. [21] describing detector efficiency as a function
of γ-ray energy and of the distance from the source to the
detector combined with “the Geant4 routine” have been
applied to nuclear astrophysics data in previous reaction
measurements [37, 38].

Geant simulations naturally include coincidence sum-
ming. However, the method used here deconstructs the
Geant output into contributions to the simulated spec-
trum from each individual photon incident upon a sensi-
tive detector region. This is accomplished by filtering the
Geant output according to the information about each
hit in a sensitive detector provided by the Geant frame-
work. In particular, the parent, particle, and process ID
numbers, the time, energy deposition, and position as-
sociated with each hit, and the creation and momentum
direction of particles involved in each hit are required
for this sum correction method. When these parameters
are used to filter Geant simulation data in the proper
manner, the energy deposition attributed to each indi-
vidual photon can be determined and recorded in a sec-
ondary simulation spectrum. This spectrum is free of
coincidence-summing effects. The fSC factors can then
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be calculated according to

fSC = Nγ,SC/Nγ,NSC (11)

where Nγ,SC and Nγ,NSC are the simulated photopeak
intensities from the spectrum that is sum corrected (SC)
and from the spectrum that is not sum corrected (NSC),
respectively.
Note that input of full-energy peak or total efficien-

cies or Q solid angle attenuation coefficients [19] are not
required for this sum correction method. The effects of
these parameters are taken into account during simula-
tion runtime. This method also provides the user with
an entire sum-corrected spectrum that could in princi-
ple be used, for example, to correct escape peaks or
other regions of the spectrum between photopeaks for
coincidence-summing effects. This sum-corrected spec-
trum differs from a simulation spectrum created from
the combination of multiple mono-energetic Geant sim-
ulations in that direction-direction correlations between
γ-rays can be taken into account. Data validating this
sum correction method can be found in the Appendix.
Full simulations of the the 458-keV resonance in the
22Ne(p,γ)23Na reaction were calculated using the present
branching ratios as well as those of Refs. [3] and [4]
for this work. These simulations were corrected for
coincidence-summing effects according to the method de-
scribed above and used to extract fSC factors accord-
ing to Eq. 11 for all primary γ-rays. This allowed each
calculated value of Yj,k to include a uniquely calculated
fSC value according to the primary γ-ray transition and
branching ratio set being analyzed.

C. Results

The parametersNB, ηp, and fSC were assumed to each
have a 3% uncertainty for all calculations. Branching ra-
tios were assumed to have a 5% uncertainty for calcu-
lations using the results of Refs. [3] and [4]. Uncertain-
ties in the present branching ratios are listed in Tab. I.
Uncertainties in Nγ values were calculated from the ex-
perimental spectrum, taking the nearby background into
account, and were statistical in nature.
The results of these experimental yield calculations are

shown in Fig. 3. The dashed line at Yj,k = 1 is shown
to help guide the eye. The two dashed lines above and
below Yj,k = 1 represent a factor of 2 and 3 deviation
from Yj,k = 1. Yields as calculated using the present
branching ratios are shown as blue diamonds while the
results using the branching ratios of Piiparinen et al. [3]
and Meyer et al. [4] are shown as red squares and open
circles, respectively. Note that the R→3848 transition
reported in Ref. [3] was not observed in this work. As
such, the Nγ used for that experimental yield calculation
at the 5404-keV γ-ray energy corresponding to this tran-
sition is consistent with the observed background level in
that region of our data spectrum.

The geometric standard deviation of the set of experi-
mental yields calculated using the branching ratio set k,
σgeo
k , is given by

σgeo
k = exp















1

N

N
∑

j

ln

(

Yj,k

µgeo
k

)2




1

2











, (12)

where the µgeo
k is the geometric mean and N is the total

number of transitions considered in a particular data set.
This quantity was calculated with each set of Yj,k values
to characterize the consistency of each data set. The ge-
ometric standard deviations of the Yj,k calculated using
the branching ratios of Piiparinen et al. [3] and Meyer et
al. [4], σgeo

Piiparinen(1971) = 1.93 and σgeo

Meyer(1973) = 1.46,

are 77% and 34% higher than that of the Yj,k calculated
using the present branching ratios, σgeo

present = 1.09. Ad-

ditionally, the new branch to the 7082-keV state in 23Na
reported in the present branching ratio set, correspond-
ing to a primary γ-ray energy of 2170-keV, is internally
consistent with the other transitions that we have de-
tected and which were were seen previously.
Finally, it is important to note that the Yj,k determined

from the ground-state transition γ-ray peak on the arbi-
trary yield scale of Fig. 3 are approximately 0.910, 0.939,
and 1.03 when using the branching ratios of Ref. [3],
Ref. [4], and of the present work, respectively. This rep-
resents a yield increase of 13% and 9.8% from Refs. [3, 4]
to the present work. The changes in the yield are not
exactly the same as the changes in branching ratios be-
cause of small (<1%) differences in fSC for the 3 sets of
branching ratios.

V. CONCLUSIONS

Data from the decay of the Ecm
r = 458 keV resonance

in the 22Ne(p,γ)23Na reaction were analyzed using the
TFractionFitter [8] class of ROOT [9]. New branching
ratios have been derived, including a newly discovered
branch to the 7082-keV state in 23Na and a decrease of
10–13% in the ground-state branching ratio versus the
results of Refs. [3] and [4]. We recommend a resonance
strength of ωγ(458 keV) = 0.583(43) eV based on these
results. This is different from the high-precision mea-
surement of Longland et al. [6] by ∼1.2 σ and affects all
higher-lying 22Ne(p,γ)23Na resonances. The uncertainty
in the resonance strength has also been reduced from
9.7% [6] to 7.3%.

Appendix: Coincidence-Summing Correction

Method Validation

The sum-correction method described in Sec. IVB is
unique in that it provides a self-consistent method of
coincidence-summing corrections. In practice, detector
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total and full-energy peak efficiencies and Q solid an-
gle attenuation coefficients are often required as exter-
nal input in order to calculate the necessary coincidence-
summing corrections (see Sec. IVB). With this method
of sum correction all of these parameters are accounted
for within the simulation, thereby eliminating the need
for their external calculation. It is also interesting that
an entire sum-corrected simulation spectrum is produced
with this method. This spectrum could, in principle, be
used to correct escape peaks for coincidence effects as
well. Analysis of these peaks could provide further in-
sight into characteristics of the detector being used. As
this sum-correction method has never appeared in any
published work to date, validation of this method is in
order.

The effects of coincidence summing on experimen-
tal spectra decrease as the distance from the source to
the detector is increased [19]. Thus, we chose to test
the coincidence-summing correction method described
in Sec. IVB with experimental data from the Ecm

r =
259 keV resonance in the 14N(p,γ)15O reaction at mul-
tiple source-to-detector distances. We validate this sum-
correction method by displaying its ability to accurately
sum correct data containing the varying levels of coinci-
dence summing seen at each source-to-detector distance.
The JN van de Graaff accelerator described in Sec. II pro-
vided a proton beam of ∼30 µA at an energy of 282±2
keV in the lab frame for this work. Data were collected
with the 135% relative efficiency Ge detector described
in Sec. II. A target of 14N implanted at an energy of
40 keV into a tantalum target backing was used for data
collection. The target was approximately 12 keV thick
at the resonance energy.

The minimum possible source-to-detector distance is
1.1 cm for the experimental setup used here, as described
in Refs. [10–12, 15]. Resonance decay spectra were col-
lected with 0, 5, 10, and 20 cm added to this minimum
source-to-detector distance and total beam charges of
0.064, 0.10, 0.26, and 0.40 C were accumulated at each
distance, respectively. Simulations of each data set were
calculated with Geant, version 4.9.6, using the resonant
state branching ratios of Marta et al. [39]. All γ-ray
angular distributions and direction-direction correlations
were calculated using the level spin assignments found in
Ref. [40] according to the methods described in Ref. [19]
and were included in every simulation. The agreement
between experiment and simulation for data accumulated
at each source-to-detector distance was similar to that
of Fig. 1. Each simulation was fit to its respective ex-
perimental data set to derive Ndata

R at each source-to-
detector distance according to the method described in
Sec. III.

The simulations were used to derive sum-correction
factors for each primary and secondary photopeak ob-
served in the data as detailed in Sec IVB. The full-energy
peak efficiencies for each primary and secondary γ-ray at

each distance were then calculated with [19]

ηp =
NγfSC

BWNdata
R

. (A.1)

Peak efficiencies derived from the data obtained with 0,
5, 10, and 20 cm added source-to-detector distance are
shown from top to bottom in Fig. 4 using diamonds,
squares, circles, and crosses, respectively. Data points
that have been corrected for coincidence-summing ef-
fects are shown as the full, blue data points while the
uncorrected data are shown as open, black data points.
The expected full-energy peak efficiency curve for each
source-to-detector distance was calculated using a series
of mono-energetic γ-ray simulations, shown as dashed
lines in Fig. 4. These expected peak efficiency curves
have been scaled to include an independent, experimen-
tally measured peak efficiency at 1333 keV, calculated
using the sum-peak method [19] with 60Co data taken at
each source-to-detector distance. Although the resonant
state transition to the 5241-keV state in 15O was included
in all simulations, it was not observed above background
in every data set. Therefore, detector efficiencies were
not calculated for γ-ray energies corresponding to that
transition.
The uncorrected data points show evidence of

coincidence-summing effects, especially with 0 cm added
source-to-detector distance. This is most clearly seen
in the ground-state transition data points at 7556 keV.
However, the branching ratio for the ground-state transi-
tion from this resonance is < 2% [38, 39, 41]. The weak-
ness of this branch coupled with the two-γ cascades that
dominate the decay channels from this resonance enhance
the effect of coincidence summing for this data point at 0
cm added distance such that up to ∼80% of the ground-
state transition photopeak is a result of summing-in.
Another way to look at this situation is by consider-

ing the relative probability of capturing the full energy of
both γ-rays of a two-γ cascade relative to that of captur-
ing the full energy of the ground-state transition γ-ray.
At 0 cm added source-to-detector distance, the proba-
bility of detecting the sum energy of the R→6176→0
cascade is ∼5.2% of that for detecting the full energy
of the ground-state transition. In other words, if there
were an equal number of ground-state and R→6176→0
decays with no other possibility for decay from the res-
onant state, then ∼5.2% of the ground state transition
peak would be be the result of summing-in. This rela-
tive probability drops to only ∼0.3% at 20 cm added dis-
tance. However, since the R→6176→0 cascade is actually
about 40 times as likely as the ground state transition,
summing-in is significant even at 20 cm.
It is important to note that coincidence summing was

indeed observed in the data taken with 20 cm added
source-to-detector distance. This is of importance for
the primary branching ratios from this resonance in
14N(p,γ)15O reported in Runkle et al. [41] and Imbriani
et al. [38]. The same HPGe detector used in this work was
also used in Ref. [41]. A source-to-detector distance of
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23 cm was used for branching ratio measurements in that
work under the assumption that there was no coincidence
summing present in the accumulated data. Given that we
observe coincidence summing with the detector at 21.1
cm, it is likely that coincidence summing was, in fact,
present in that data. A 126% relative efficiency HPGe
detector was used in Ref. [38] with source-to-detector
distances ranging from 1.5 to 20.5 cm. Their branch-
ing ratios were determined from a fit to each of four
data sets at varying source-to-detector distances, leav-
ing the branching ratios themselves as free parameters
of the fit. However, given that the ground state branch-
ing ratio reported in Ref. [38] is ∼15% greater than that
reported in Marta et al. [39], coincidence summing may
have had an effect on the results of Ref. [38]. Here we
assume the branching ratios of Marta et al. [39] are free
of coincidence-summing effects.

Agreement within uncertainty is, in general, achieved
between the expected efficiency curves at each distance
and the sum-corrected peak efficiency data points for the
same distance. This implies that these data were accu-
rately corrected for coincidence-summing effects, thereby
validating this sum-correction method.
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FIGURES

FIG. 1. (color online) The result of the best fit, shown in
green, to experimental data on the 458-keV resonance in the
22Ne(p,γ)23Na reaction, shown in black, as derived using the
TFractionFitter [8] class of ROOT [9] and the methodology
detailed in the text and in Ref. [15]. Resonance primary peaks
are indicated by blue arrows. The fit was derived considering
Geant [7] simulations of each potential decay cascade from
the JR = 1/2 9252-keV resonant state in 23Na excited by this
resonance to all lower lying states with J = 1/2, 3/2, or 5/2.
Only those with nonzero contributions were kept for the fit
shown here. The two highest branching ratio templates are
shown in blue with the room background spectrum shown in
red. A total of eight other decay cascade templates were used
for the fit shown here. Branching ratios were derived using
the relative contributions of these simulations and are shown
in Tab. I.

FIG. 2. (color online) The experimental yield from the Ecm
r

= 458 keV resonance from the 6270 and 2170-keV γ-rays ob-
served in this work, shown as black circles and red diamonds,
respectively. The yield scale for data points of either color is
given by the y-axis of the same color. The 2170-keV γ-ray cor-
responds to a new primary transition, first identified in this
work, to the 7082-keV state in 23Na while the 6270-keV γ-ray
corresponds to the well-known R→2982 transition. Definitive
identification of the 2170-keV γ-ray as a resonant state decay
in 23Na is provided by the similarity between the measured
yield of these two γ-rays.

FIG. 3. (color online) A plot of Yj , the experimental yield
from the Ecm

r = 458 keV resonance in the 22Ne(p,γ)23Na re-
action, for all primary γ-ray transition peaks. The Yj values
calculated using the branching ratios of Piiparinen et al. [3]
are shown as red squares, those using Meyer et al. [4] are
shown as open circles, and those using the present branching
ratios are shown as blue diamonds. The dashed line at Yj=1
is shown to help guide the eye, while the dashed lines above
and below Yj=1 represent a factor of 2 and 3 deviation from
Yj=1. The geometric standard deviation, σgeo, of each data
set is shown as well. See text for a discussion of the data
shown here.

FIG. 4. (color online) Full-energy peak efficiencies of the
135% HPGe detector used in this work derived from data
on the Ecm

r = 259 keV resonance in the 14N(p,γ)15O reac-
tion. Data were taken with 0, 5, 10, and 20 cm added to the
minimum source-to-detector distance of 1.1 cm, shown above
as the diamond, square, circle, and cross data points, respec-
tively. Data that were sum corrected (SC) and data that were
not sum corrected (NSC) are shown as full, blue and open,
black data points, respectively. Dashed lines represent the
expected full-energy peak efficiency curve of the HPGe detec-
tor at each source-to-detector distance, each of which have
been scaled to include an independent, experimental peak ef-
ficiency measurement at 1333 keV. In general, agreement is
achieved between the sum-corrected data and the expected
peak efficiency curve at each distance.

TABLES

TABLE I. Branching ratios for primary transitions (in %)
from the 458-keV resonance in the 22Ne(p,γ)23Na reaction.
Note that the R→3848 transition was not observed in the
present work. See the text for details.

Transition Present Work Ref. [4] Ref. [3]

R→0 41.77(67) 46.0 48.0

R→2391 4.05(12) 3.7 5.0

R→2640 8.27(18) 8.5 6.0

R→2982 31.73(52) 32.0 39.0

R→3678 4.85(16) 4.1 -

R→3848 - - 2.0

R→3914 0.37(9) 0.7 -

R→4430 1.69(9) 1.8 -

R→5766 2.78(9) 2.4 -

R→6921 2.43(9) 0.8 -

R→7082 2.06(9) - -
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