
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Electroexcitation of the Δ(1232)3/2^{+} and
Δ(1600)3/2^{+} in a light-front relativistic quark model

I. G. Aznauryan and V. D. Burkert
Phys. Rev. C 92, 035211 — Published 30 September 2015

DOI: 10.1103/PhysRevC.92.035211

http://dx.doi.org/10.1103/PhysRevC.92.035211


Electroexcitation of the ∆(1232)3
2

+
and ∆(1600)3

2

+
in a light-front relativistic quark

model

I.G. Aznauryan1, 2 and V.D. Burkert1

1 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
2 Yerevan Physics Institute, 375036 Yerevan, Armenia

The magnetic-dipole form factor and the ratios REM and RSM for the γ∗N → ∆(1232) 3
2

+

transition are predicted within light-front relativistic quark model up to photon virtuality Q2 =

12 GeV2. We also predict the helicity amplitudes of the γ∗N → ∆(1600) 3
2

+
transition assuming

the ∆(1600) 3
2

+
is the first radial excitation of the ground state ∆(1232) 3

2

+
.

PACS numbers: 12.39.Ki, 13.40.Gp, 13.40.Hq, 14.20.Gk

I. INTRODUCTION

One of the longstanding and intriguing problems of
hadron physics is the identification of the states that can
be assigned as the first radial excitations of the nucleon

and ∆(1232)32
+
. It is well recognized that the crucial role

in the identification of the Roper resonance N(1440)12
+
as

a predominantly first radial excitation of the three-quark
(3q) ground state belongs to the measurements by the
CLAS collaboration [1–6] that resulted in the determi-
nation of the electrocouplings of this resonance with the
proton in a wide range of Q2 = 0.3 − 4.2 GeV2. Com-

parison of the γ∗p →N(1440)12
+

transition amplitudes
extracted from these data [7, 8] with the predictions of
the LF relativistic quark models (LF RQM) [9, 10] pro-

vided strong evidence for the N(1440)12
+
as a member of

the multiplet [56, 0+]r, with additional non-3-quark con-
tributions needed to describe the low Q2 behavior of the
amplitudes.

Our goal in this paper is computation of the γ∗N →
∆(1600)32

+
transition amplitudes in the LF RQM. Com-

parison of the results obtained in the quark model with
the amplitudes that are expected to be extracted from ex-
perimental data will provide important test for the com-

monly expected asignment of the ∆(1600)32
+
as the first

radial excitation of the ∆(1232)32
+
. Very recently, the

CLAS data on the differential cross sections of exclusive
process ep → eπ+n were reported in the range of Q2 =
1.8 − 4 GeV2, and the invariant mass range of the π+n
final state W = 1.6−2.0 GeV [11]. These data combined
with the earlier CLAS data [6] on the cross sections and
longitudinally polarized beam asymmetries for this reac-
tion in the lower mass range W = 1.15 − 1.69 GeV and
at close values of Q2 allowed the extraction of the elec-

troexcitation amplitudes of the resonances N(1675)52
−
,

N(1680)52
+
, and N(1710)12

+
in the third resonance re-

gion. The isotopic pairs of the resonances from this

region: ∆(1600)32
+

and N(1720)32
+
, ∆(1620)12

−
and

N(1650)12
−
, and ∆(1700)32

−
and N(1700)32

−
, could not

be separated from each other using data from a single
isospin channel. Currently new data are in preparation

by the CLAS collaboration for the ep → epπ0 process in
the same kinematics region as the data in the ep → enπ+

channel [6, 11], as well as at lower Q2. The two-channel
analysis will allow the extraction of the electroexcitation
amplitudes of all resonances from the third resonance re-

gion including the ∆(1600)32
+
.

The approach we use is based on the LF dynamics and
is formulated in Refs. [12, 13]. In numerous applications
(see Refs. [10, 14] and references therein), this approach
was utilized for the investigation of nucleon form factors
and electroexcitation of nucleon resonances.

In this work we study the electroexcitation of the

∆(1600)32
+
in parallel with that of the ∆(1232)32

+
, where

we complement the results obtained earlier in Ref. [14] by
computing all three form factors that describe the tran-

sition γ∗N → ∆(1232)32
+
. In Refs. [15, 16] it was shown

that there are difficulties in the utilization of the LF ap-
proaches for hadrons with spin J ≥ 1. In the approach of
Ref. [13], these difficulties limit the number of transition

amplitudes that can be investigated for the ∆(1232)32
+

and ∆(1600)32
+
. Reliable results can be obtained only

for two of the three transition form factors. They are
based on the utilization of longitudinal components of

the electromagnetic current J0,z
em . For the ∆(1232)32

+
,

the results obtained for two transition form factors have
been presented in Ref. [14]. In the present work, we
complement these results by calculating the third tran-
sition form factor using Jx

em + iJy
em. As was shown in

Ref. [13], these results are less reliable, as the matrix el-
ements of transverse components of the electromagnetic
current can contain contributions that violate impulse
approximation, i.e. contributions of diagrams containing
vertices like γ∗ → qq̄. Similar problem exists in the LF
RQM of Refs. [9, 16], where the requirement of rotational
covariance can not be satisfied without introducing two-
and three-body current operators. For this reason, the
results for the electroexcitation amplitudes for the reso-
nances with spins J = 3

2 are presented in Ref. [9] along
with curves which nearly show possible uncertainties that
can be caused by the violation of the rotational covari-
ance. When presenting our results we also demonstrate
the uncertainties that can arise due to the inclusion of the
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transverse components of the electromagnetic current.
An important aspect in the comparison of the transi-

tion amplitudes obtained in theoretical approaches with
the amplitudes extracted from experimental data is their
sign (see, for example, Ref. [17]). The results on the
γ∗N → N∗ transition amplitudes extracted from experi-
mental data contain an additional sign related to the ver-
tex of the resonance coupling to the final state hadrons.
In the electroproduction of pions on nucleons this is the
relative sign between the πNN∗ and πNN vertices. For
the Roper resonance, this sign was found in Refs. [9] and
[10] using, respectively, the 3P0 model and the approach
based on PCAC in the way suggested in Ref. [18]. The
results obtained in both approaches are consistent with
each other. In Sec. II, we determine the relative signs
of the vertices πNN , πN∆(1232), and πN∆(1600) using
the approach based on PCAC.
Our goals and the ranges of Q2, where we make predic-

tions, for the resonances ∆(1232)32
+
and ∆(1600)32

+
are

different. For the ∆(1600)32
+
, we make predictions that

are of interest to reveal the nature of this resonance us-
ing the existing and future CLAS data at Q2 < 4 GeV2.

For the ∆(1232)32
+
, our goal is to make predictions up to

12 GeV2. These results will be important for the inter-

pretation of future data on γ∗p → ∆(1232)32
+

that are
expected with the Jefferson Lab 12 GeV upgrade.
In Sec. II we present the LF RQM formalism to com-

pute the γ∗N → ∆ transition amplitudes. The results
for both resonances are presented and discussed in Sec.
III and summarized in Sec. IV.

II. THE γ∗N → ∆ TRANSITION AMPLITUDES

IN LF RQM

The γ∗N → ∆(1232)32
+

and γ∗N → ∆(1600)32
+

am-
plitudes have been evaluated within the approach of Ref.
[13] where the LF RQM is formulated in the infinite mo-
mentum frame (IMF). The IMF is chosen in such a way,
that the initial hadron moves along the z-axis with the
momentum P → ∞, the virtual photon momentum is

kµ =
(

M2
−m2

−Q2

⊥

4P ,Q⊥,−M2
−m2

−Q2

⊥

4P

)

, the final hadron

momentum is P′ = P+ k, and Q2 ≡ −k2 = Q2
⊥
; m and

M are masses of the nucleon and ∆, respectively. In
this frame, the matrix elements of the electromagnetic
current for the γ∗N → ∆ transition have the form:

< ∆, S′

z |Jµ
em|N,Sz > |P→∞

= 3eQa

∫

Ψ′+(p′a, p
′

b, p
′

c)Γ
µ
aΨ(pa, pb, pc)dΓ, (1)

where Sz and S′
z are the projections of the hadron spins

on the z-direction. In Eq. (1), it is supposed that the
photon interacts with quark a (the quarks in hadrons are
denoted by a, b, c), Qa is the charge of this quark in units
of e (e2/4π = 1/137); Ψ and Ψ′ are wave functions in
the vertices N(∆) ↔ 3q; pi and p′i (i = a, b, c) are the

quark momenta in IMF; dΓ is the phase space volume; Γµ
a

corresponds to the vertex of the quark interaction with
the photon:

xaΓ
x
a = 2pax +Qx + iQyσ

(a)
z , (2)

xaΓ
y
a = 2pay +Qy − iQxσ

(a)
z , (3)

Γ0
a = Γz

a = 2P, (4)

where xa is the fraction of the initial hadron momentum
carried by the quark.
Let qi (i = a, b, c) be the three-momenta of initial

quarks in their c.m.s.: qa + qb + qc = 0. The sets of
the quark three-momenta in the IMF and in the c.m.s.
of the quarks are related as follows:

pi = xiP+ qi⊥,
∑

i

xi = 1. (5)

According to results of Ref. [13], the wave function Ψ
is related to the wave function in the c.m.s. of quarks
through Melosh matrices [19]:

Ψ = U+(pa)U
+(pb)U

+(pc)ΨfssΦ(qa,qb,qc). (6)

Here we have separated the flavor-spin-space (Ψfss) and
spatial (Φ) parts of the c.m.s. wave function. The Melosh
matrices are

U(pi) =
mq +M0xi + iǫlmσlqim
√

(mq +M0xi)2 + q2
i⊥

, (7)

where mq is the quark mass and M0 is invariant mass of
the system of initial quarks:

M2
0 =

(

∑

i

pi

)2

=
∑

i

q2
i⊥ +m2

q

xi
. (8)

In the c.m.s. of quarks:

M0 =
∑

i

ωi, ωi =
√

m2
q + q2

i , qiz + ωi = M0xi. (9)

For the final state quarks, the quantities defined by
Eqs. (5-9) are expressed through p′i, q

′
i, and M ′

0. The
phase space volume in Eq. (1) has the form:

dΓ = (2π)−6 dqb⊥dqc⊥dxbdxc

4xaxbxc
. (10)

To study sensitivity to the form of the quark wave func-
tion, we employed two forms of the spatial wave function:

Φ
(1)
N(∆) = N

(1)
N(∆)exp(−M2

0/6α
2
1), (11)

Φ
(1)
∆r

= N
(1)
∆r

(β2
1 −M2

0 )exp(−M2
0 /6α

2
1) (12)

and



3

Φ
(2)
N(∆) = N

(2)
N(∆)exp

[

−(q2
a + q2

b + q2
c)/2α

2
2

]

, (13)

Φ
(2)
∆r

= N
(2)
∆r

[

β2
2 − (q2

a + q2
b + q2

c)
]

exp
[

−(q2
a + q2

b + q2
c)/2α

2
2

]

, (14)

that were used, respectively, in Refs. [12, 13] and [9]. The
parameters N and β are determined by the conditions:

∫

Φ2
N(∆,∆r)

dΓ = 1,

∫

ΦN(∆)Φ∆r
dΓ = 0. (15)

To distinguish between ground state ∆(1232) and the
∆(1600), considered as the member of the multiplet
[56, 0+]r, we have used in Eqs. (11-15) notations ∆ and
∆r.

Other parameters of the model, namely, the quark
mass mq and the oscillator parameter α, were found in
Ref. [14] from the description of nucleon form factors up
to Q2 = 16 GeV2. For the spatial wave functions (11)
and (13), they have, respectively, the following form:

α1 = 0.37 GeV, m(1)
q (Q2) =

0.22GeV

1 +Q2/56GeV2 , (16)

α2 = 0.41 GeV, m(2)
q (Q2) =

0.22GeV

1 +Q2/18GeV2 . (17)

For both resonances, the results for the transition am-
plitudes obtained with the wave functions (11,12) and
(13,14) and corresponding parameters (16) and (17)
turned out very close to each other.

Electroexcitation of the states with JP = 3
2

+
on

the nucleon is described by three form factors G1(Q
2),

G2(Q
2), and G3(Q

2), which we define according to Refs.
[17, 20] in the following way:

< ∆, JP = 3
2

+|Jµ
em|N >≡ eūν(P

′)γ5Γ
νµu(P), (18)

Γνµ(Q2) = G1Hνµ
1 +G2Hνµ

2 +G3Hνµ
3 , (19)

Hνµ
1 = k/gνµ − kνγµ, (20)

Hνµ
2 = kνP′µ − (kP′)gνµ, (21)

Hνµ
3 = kνkµ − k2gνµ, (22)

where u(P) and uν(P
′) are, respectively, the Dirac and

Rarita-Schwinger spinors. These form factors have been
found through the matrix elements (1) using the rela-
tions:

1

2P
< ∆,

3

2
|J0,z

em |N,
1

2
> |P→∞ =

− Q√
2

[

G1(Q
2) +

M −m

2
G2(Q

2)

]

, (23)

1

2P
< ∆,

3

2
|J0,z

em |N,−1

2
> |P→∞ =

Q2

2
√
2
G2(Q

2), (24)

< ∆,
3

2
|Jx

em + iJy
em|N,−1

2
> |P→∞ =

Q3

√
2
G3(Q

2). (25)

The relations between form factors G1(Q
2), G2(Q

2),

and G3(Q
2) and the γ∗N → ∆(32

+
) helicity amplitudes

and the Jones-Scadron form factors GM (Q2), GE(Q
2),

and GC(Q
2) [21] are given in the Appendix.

In the approach based on PCAC, the relative signs
of the πNN , πN∆(1232), and πN∆(1600) vertices are
determined according to Refs. [10, 15] by the relative
signs of the following expressions:

INA ≡
∫

(mq +M0xa)
2 − q2

a⊥

(mq +M0xa)2 + q2
a⊥

ΦN (M2
0 )ΦA(M

2
0 )dΓ,

(26)
where A denotes the states N , ∆(1232), and ∆(1600).
Numerical calculation of INN , IN∆(1232), and IN∆(1600)

with the wave functions (11-14) gives positive relative
signs for the πNN , πN∆(1232), and πN∆(1600) ver-
tices.

III. RESULTS

A. The ∆(1232) 3
2

+
resonance

We present the results for the ∆(1232)32
+

in terms of

the γ∗p → ∆(1232)32
+

magnetic-dipole transition form
factor in the Ash convention [22] (Fig. 1) and the ratios

REM ≡ ImE
3/2
1+ /ImM

3/2
1+ and RSM ≡ ImS

3/2
1+ /ImM

3/2
1+

(Fig. 2). These observables are commonly used to

present the results on the ∆(1232)32
+
extracted from ex-

perimental data on the electroproduction of pions on nu-

cleons. The γ∗p → ∆(1232)32
+

magnetic-dipole form
factor in the Ash convention is related to the Jones-
Scadron form factor defined in the Appendix as follows:

GM,Ash(Q
2) =

GM (Q2)
√

1 + Q2

(M+m)2

. (27)

The ratios REM and RSM are related to the Jones-
Scadron form factors by:
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REM = −GE

GM
, RSM = −GC

GM

K

2m
, (28)

where K is the virtual photon 3-momentum in the c.m.s.
of the reaction γ∗N → πN :

K ≡
√

Q+Q−

2M
, Q± ≡ (M ±m)2 +Q2. (29)

As it was mentioned in the Introduction, in the ap-
proach that we utilize [13], the results are reliable that are
obtained through longitudinal components of the elec-
tromagnetic current J0,z

em , i.e. the results for the form
factors G1(Q

2) and G2(Q
2) (23,24). These results have

been presented and discussed in Ref. [14]. In this paper,
we complement the results for G1(Q

2) and G2(Q
2) by

calculating the third transition form factor G3(Q
2) using

Jx
em + iJy

em (25). This allows us to present the predic-
tions in a more convenient way in terms of GM,Ash and
REM and RSM . In order to demonstrate the sensitivity
of GM,Ash, REM , and RSM to the inclusion of the trans-
verse components of the electromagnetic current, we also
present in Figs. 1,2 results that correspond to the values
of G3(Q

2) taken with ±50% deviation from the values
obtained using the relation (25).
It is known that at relatively small Q2, nearly massless

pions generate pion-loop contributions that significantly

alter three-quark contribution to γ∗p → ∆(1232)32
+
It is

expected that the corresponding hadronic component, in-
cluding contributions from other mesons, will be rapidly
losing strength with increasing Q2. From the description
of the data on pion electroproduction on proton within
dynamical reaction model [34, 35], it follows that the con-
tribution associated with the meson-baryon contribution

to γ∗p → ∆(1232)32
+

(dashed-dotted curve in Fig. 1)

can be neglected above Q2 = 4 GeV2. Therefore, the

weight of the 3q contribution to the ∆(1232)32
+
:

|∆(1232) >= c∆|3q > +..., (30)

was found in Ref. [14] from the description of the form
factors G1(Q

2) and G2(Q
2) at Q2 > 4 GeV2:

c∆ = 0.53± 0.04. (31)

The uncertainty of c∆ is caused mainly by the systematic
uncertainties of the data on GM,Ash(Q

2) at these Q2. We
have used the value of c∆ from Eq. (31) to find the three-
quark contributions to GM,Ash(Q

2) and REM and RSM ,
that are presented in Figs. 1,2.
From the discussion above, it follows that at Q2 <

4 GeV2, meson-baryon contributions alter the three-

quark contribution to γ∗p → ∆(1232)32
+
. With this, for

the magnetic-dipole form factor, these contributions defi-
nitely result in better agreement with experiment [34–38].

Above 4−5 GeV2, we expect that the γ∗p → ∆(1232)32
+

transition will be determined by the three-quark contri-
bution only. Therefore, we consider our results at these

Q2 as predictions for the γ∗p → ∆(1232)32
+

transition
amplitudes obtained within nonperturbative approach.
For the form factor GM,Ash(Q

2), the sensitivity of our
predictions to the possible uncertainties of the form fac-
tor G3(Q

2) seems insignificant. According to our results,
we expect that above 5 GeV2 the behaviour of the ratio
GM,Ash(Q

2)/GD(Q2) will become more flat in compari-
son with that at lower Q2. The similar Q2-dependence
is observed for the proton magnetic form factor [39]. For
the Jones-Scadron magnetic-dipole form factor GM (Q2)
and the proton magnetic form factor GM,p(Q

2), the Q2-
dependences at Q2 = 5− 12 GeV2 practically coincide.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Q2 (GeV2)

G
M

,A
sh

/3
G

D

FIG. 1: The form factor GM,Ash(Q
2) for the

γ∗p → ∆(1232) 3
2

+
transition relative to 3GD:

GD(Q2) = 1/(1 + Q2

0.71GeV 2 ). The full boxes are the
CLAS data extracted in the analysis of Ref. [8], the open
boxes correspond to the data from Ref. [23]. The bands show
the model uncertainties of these data [8, 17]. The thin solid
curve is the result of the global analysis of the Mainz group
[24]. The results from other experiments are: open triangles
[25–27], open cross [28–30], open rhombuses [31], and open
circle [32, 33]. The thick solid curve presents our results. The
dashed curves demonstrate the sensitivity of these results
to the form factor G3(Q

2) (25); they correspond to G3(Q
2)

taken with ±50% deviation from the values obtained using
the relation (25). The dotted curves show the uncertainty
of our results (given by the solid curve) that is caused by
the uncertainty of c∆ (31). The dashed-dotted curve is
meson-baryon contribution from Refs. [34, 35].

For the ratios REM and RSM , the sensitivity of pre-
dictions to G3(Q

2) is more significant. Nevertheless, for
the ratio RSM one can conclude that it will continue to
grow and within the Q2 = 12 GeV2 limit will not reach
the value predicted in pQCD, i.e. RSM → const with un-
defined sign and magnitude. On the other hand, in holo-
graphic QCD in the large Nc limit the RSM ratio is pre-
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dicted at the specific asymptotic value: RSM → −100%
[40]. The data show the correct trend, but are projected
to reach only 40 to 50% of that value at Q2 ≤ 12 GeV2.
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FIG. 2: The ratios REM , RSM for the γ∗p → ∆(1232) 3
2

+

transition. The legend for experimental data and thick solid
and dashed curves is as for Fig. 1.

B. The ∆(1600) 3
2

+
resonance

The results for the resonance ∆(1600)32
+
considered as

the first radial excitation of the ground state ∆(1232)32
+

are presented in Fig. 3 in terms of the γ∗p → ∆(1600)32
+

helicity amplitudes. The predictions of the LF RQM ap-
proach from Ref. [9] are also shown. The common sign
of the amplitudes has been found in our approach and
in Ref. [9] due to additional computation of the rel-
ative signs of the πNN , πN∆(1232), and πN∆(1600)
vertices using different approaches. Both approaches pre-
dict specific behavior of the transverse amplitudes: be-
ing large and negative at Q2 = 0, they change signs at
Q2 = 0.2−0.3 GeV2 and become quite large and positive.
We want to emphasize that our predictions are related

to the |3q > content of the ∆(1600)32
+
. In the rela-

tion similar to Eq. (30) for this resonance, the coef-
ficient c∆r

as well the meson-baryon contributions are
unknown, and only an analysis of the experimental tran-
sition amplitudes can determine the relative strength of
the 3-quark and meson-baryon contributions. We re-
mark that a similar situation occurred with the transi-
tion γ∗p → N(1440)12

+
, where the LF RQM approaches

[9, 10] predicted a very rapid sign change of the transverse
amplitude near Q2 = 0.2 GeV2 to large positive value
with a relatively slow fall-off above Q2 > 1.5 GeV2. The
data showed a larger amplitude at the photon point and
a significant shift of the zero-crossing to higher Q2, which
could be attributed to meson-baryon contributions. The
sign change of this amplitude and its high Q2 behavior
allowed then the identification of the |3q > content of the
state as a radial excitation of the proton [7,8]. For the

∆(1600)32
+
we may expect a similar situation.

We mention that the LF RQM predictions for trans-
verse amplitudes at Q2 = 0 are in good agreement with
experimental data. However, the coefficient c∆r

is un-
known yet. Therefore, we may not conclude that meson-
baryon contributions are small. A crucial test will be
the behavior at low Q2, namely the position of the zero-
crossing, and also the behavior at Q2 = 2 − 4 GeV2,
where we expect that the meson-baryon contributions
can be neglected. Experimental data at Q2 = 2−4 GeV2

will allow us to find the coefficient c∆r
. Then the

real comparison of the quark model predictions for the

γ∗p → ∆(1600)32
+

amplitudes with experimental data
can be made with subsequent conclusions on the meson-
baryon contributions.

IV. SUMMARY

We have employed the LF RQM to evaluate the quark

core contribution to the transition γ∗N → ∆(1232)32
+

and to predict the γ∗N → ∆(1600)32
+

helicity ampli-

tudes assuming the ∆(1600)32
+

is the first radial ex-

citation of the ground state ∆(1232)32
+
. Our previ-

ous evaluation of the 3-quark core contribution to the

∆(1232)32
+
based on the γ∗N → ∆(1232)32

+
data up to

Q2 = 7.5 GeV2 allowed us to make projections into un-
measured territory of Q2 ≤ 12 GeV2. This region may
be covered in upcoming measurements with CLAS12 at
the Jefferson Lab 12 GeV upgrade. The projections are
made for the magnetic-dipole form factor and electric and
scalar quadrupole ratios REM (Q2) and RSM (Q2). For

the ∆(1600)32
+
, the predictions are made in the range

Q2 ≤ 5 GeV2. The predicted very rapid transition from
large negative values at the real photon point to large
positive values with maxima near Q2 = 1 − 2 GeV2 for
the two transverse amplitudes, should be readily accessi-
ble to experimental exploration.
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FIG. 3: Helicity amplitudes for the γ∗p → ∆(1600) 3
2

+
transition. The full triangles at Q2 = 0 are the RPP estimates [41].

The thick solid curve presents our LF RQM predictions. The legend for dashed curves is as for Fig. 1. The dashed-dotted
curves present the predictions from Ref. [9].

VI. APPENDIX. THE RELATIONS BETWEEN

THE γ∗N → ∆( 3
2

+
) FORM FACTORS AND

HELICITY AMPLITUDES

The relations between the form factors G1(Q
2),

G2(Q
2), and G3(Q

2) defined by Eqs. (18-22) and the

γ∗N → ∆(32
+
) helicity amplitudes are following [17, 20]:

A1/2 = h3X, A3/2 =
√
3h2X, S1/2 = h1

K√
2M

X, (A1)

where

h1(Q
2) = 4MG1(Q

2) + 4M2G2(Q
2) +

2(M2 −m2 −Q2)G3(Q
2), (A2)

h2(Q
2) = −2(M +m)G1(Q

2)−
(M2 −m2 −Q2)G2(Q

2) + 2Q2G3(Q
2), (A3)

h3(Q
2) = − 2

M
[Q2 +m(M +m)]G1(Q

2) +

(M2 −m2 −Q2)G2(Q
2)− 2Q2G3(Q

2), (A4)

X ≡ e

√

Q−

48m(M2 −m2)
. (A5)

The Jones-Scadron form factors GM (Q2), GE(Q
2),

and GC(Q
2) [21] are defined by:

GM (Q2) = −Y (
√
3A3/2 +A1/2), (A6)

GE(Q
2) = −Y (A3/2/

√
3−A1/2), (A7)

GC(Q
2) = 2

√
2
M

K
Y S1/2, (A8)

Y ≡ m

e(M +m)

√

2m(M2 −m2)

Q−

. (A9)
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