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For the first time, the tilted axis cranking covariant density functional theory with pairing cor-
relations has been formulated and implemented in a fully self-consistent and microscopic way to
investigate the evolution of the spin axis and the pairing effects in rotating triaxial nuclei. The
measured energy spectrum and transition probabilities for the 135Nd yrast band are reproduced
well without any ad hoc renormalization factors when pairing effects are taken into account. A tran-
sition from collective to chiral rotation has been demonstrated. It is found that pairing correlations
introduce additional admixtures in the single-particle orbitals, and, thus, influence the structure of
tilted axis rotating nuclei by reducing the magnitude of the proton and neutron angular momenta
while merging their direction.
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I. INTRODUCTION

Similar to rotational bands observed in molecules, the
most common collective excitation in nuclei corresponds
to a rotation about the principal axis of the density dis-
tribution with the larger moment of inertia. The rotation
is collective since a large fraction of the angular momen-
tum is generated through small contributions from many
nucleons. It is well known that nuclear deformation and
superfluidity play vital roles in generating angular mo-
mentum [1]. The substantial deformation of the overall
density distribution specifies the orientation of a nucleus
and, thus, the rotational degree of freedom. Meanwhile,
its superfluid behavior is required by the fact that the
observed collective moment of inertia is usually much
smaller than the rigid-body estimate.
Unlike molecules, nuclei can rotate about an axis tilted

with respect to the principal axes of the density distri-
bution [2] due to the fact that a nucleus is composed of
nucleons carrying a quantized amount of angular momen-
tum. This is the so-called tilted axis rotation which was
first proposed within the mean-field tilted axis cranking
(TAC) approach [3, 4]. The tilt of the rotational axis
is closely related to the interplay between collective and
single-nucleon motions. Therefore, the two elements, de-
formation and superfluidity, are not only crucial in gen-
erating the magnitude of the spin but also its orientation.
A variety of discrete symmetries for rotating nuclei can

be obtained by combining the deformation and the spin
orientation, and this gives rise to a variety of new phe-
nomena. Among the latter figure, the magnetic and anti-
magnetic rotation in nearly spherical nuclei [2, 5, 6], the
high-K bands giving rise to K isomerism [7] in axially
deformed nuclei, etc. For triaxial nuclei, specifically, the
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rotational axis may lie outside the three principal planes
of the ellipsoidal shape. This forms the so-called aplanar
rotation and causes nuclear chirality [8], a mode that has
attracted significant attention due to its importance on
the subatomic physics scale [2, 9]. For axially deformed
nuclei, the rotational axis always lies in the plane defined
by the symmetry axis and the one perpendicular to it.
In contrast, planar triaxial solutions can be found in the
three distinct principal planes. This also leads to many
new interesting modes such as chiral vibration [10, 11]
and transverse wobbling [12–14]. Furthermore, a rotat-
ing triaxial nucleus allows more degrees of freedom for
the evolution of the spin axis. This makes it all the more
interesting to investigate, for example, a transition from
planar to aplanar rotation; i.e., from chiral vibration to
static chirality [10, 11, 15], and a transition from one pla-
nar rotation to another; this has not been studied in any
detail so far.

In contrast to the well-known impact of pairing on
principal axis rotation [16], its influence on a tilted axis
rotor is still far from being understood. In particular,
because it affects both the collective and valence nu-
cleon motions, it should be expected that pairing cor-
relations may reorient the spin axis in tilted rotation.
So far, most calculations are based on single-particle
potentials combined with the pairing plus quadrupole-
quadrupole model [4]. Therefore, self-consistent meth-
ods based on more realistic two-body interactions are re-
quired for a more fundamental investigation, including
all important effects such as core polarization and nu-
clear currents [17–19]. Such calculations are more chal-
lenging, but are feasible in the framework of both rel-
ativistic [20–22] and nonrelativistic [17, 23, 24] density
functional theories (DFTs). However, pairing correla-
tions have not been taken into account in any of these
studies. For many years, the computed bandhead ener-
gies and magnetic dipole transition probabilities B(M1)
had to be renormalized by ad hoc factors to reproduce
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the data [20, 22, 25], leading to a long-standing question
about whether the inclusion of pairing correlations would
improve the agreement between data and calculations.
The focus of the present research is two-fold: 1) the

transition of the spin axis from one principal plane to
another in a triaxial nucleus; 2) the impact of pairing
correlations in a tilted axis rotor. This Letter presents
the first tilted axis cranking covariant DFT with pairing
correlations. The spin axis evolution and the impact of
pairing for a rotating triaxial nucleus have been inves-
tigated in a fully self-consistent microscopic way for the
first time. Covariant DFT [26–28] consistently treats the
spin degrees of freedom, includes the complex interplay
between the large Lorentz scalar and vector self-energies
induced at the QCD level [29]. Moreover, the nuclear
currents which are essential for rotating nuclei, are pro-
vided naturally from the spatial parts of the vector self-
energies.

II. THEORETICAL FRAMEWORK

For a unified and self-consistent treatment of the mean
fields and pairing correlations, one has to solve the full
relativistic Hartree-Bogoliubov (RHB) problem [30] in
the framework of superfluid covariant DFT. The RHB
model contains two average potentials: the mean fields
S(r) and V µ(r) which include all the long range particle-
hole (ph) correlations, and a pairing field ∆(r) which
sums up the particle-particle (pp) correlations. In the
TAC model, these potentials are deformed and the cal-
culations are carried out in the intrinsic frame rotating
with a constant angular velocity vector ω pointing in a
direction which is not parallel to one of the principal axes
of the density distribution:

(

h− ω · Ĵ ∆

−∆∗ −h∗ + ω · Ĵ∗

)(

Uk

Vk

)

= Ek

(

Uk

Vk

)

.

(1)
Here h = hD −λ is the single-nucleon Dirac Hamiltonian

hD = α · (p− V ) + β(m+ S) + V (2)

minus the chemical potential λ, and Ĵ is the total angu-
lar momentum of the nucleon spinors. Uk and Vk are the
quasiparticle Dirac spinors and Ek denotes the quasipar-
ticle (qp) energies. The mean fields S and V µ as well
as the pairing field ∆ are connected in a self-consistent
way to the densities and currents as well as to the pairing
tensor distributions. The iterative solution of these equa-
tions yields expectation values of the angular momentum,
total energies, quadrupole moments, transition probabil-
ities [31], etc. The magnitude of the angular velocity ω

is connected to the angular momentum quantum number
I by the semiclassical relation 〈Ĵ〉 · 〈Ĵ〉 = I(I + 1).
The observed yrast band in the odd-A nucleus

135Nd [32] is investigated in the present work. The
ground band is associated with the νh11/2 one quasi-
neutron configuration [33]. However, above I = 29/2~,

this configuration is further coupled to two aligned
h11/2 protons, thereby resulting in the 3-qp configuration

νh11/2πh
2
11/2. This 3-qp band and its partner have been

interpreted as a pair of chiral bands [11, 15], a property
supported by lifetime measurements [10]. The present
self-consistent investigation includes both the 1-qp and
3-qp bands, and the evolution of the rotational axis will
be analyzed. The point-coupling energy density func-
tional PC-PK1 [34] is adopted in the ph channel, and a
monopole pairing force with constant strength, for neu-
trons Gn = 0.12 MeV fm3 and for protons Gp = 0.13
MeV fm3, determined from the odd-even mass differences
is used in the pp channel. The calculations are free of ad-
ditional parameters.
In this work, we allow only rotations around an axis in

the (x, z) plane. Equation (1) is solved in a 3D Cartesian
harmonic oscillator basis [35] with N =10 major shells.
Parity is the only good quantum number, and the space
of the Hamiltonian matrix is, thus, twice as large as for
the principal axis cranking RHB theory [36]. Therefore,
parallel computations have been implemented to reduce
the required computational time. Another difficulty is
that one has to trace and block the right qp orbitals to
keep the multi-qp configuration unchanged while solv-
ing Eq. (1) iteratively with different λ and ω values.
To achieve this, we first define for each single qp state
the normalized wave functions ψu

k = Uk/
√

(Uk)TUk and

ψv
k = Vk/

√

(Vk)TVk. Then, we search at each iteration
for the largest overlap

O1 = 〈ψu
k |ψ

u
k′

1

〉+ 〈ψv
k |ψ

v
k′

1

〉, O2 = 〈ψu
k |ψ

v
k′

2

〉+ 〈ψv
k|ψ

u
k′

2

〉,

where k′1 (k′2) are determined by running over all the
single qp states obtained in the previous step while max-
imizing the overlap. Finally, the state k would be blocked
only if O1 is larger (smaller) than O2 and the state k′1
(k′2) was blocked (unblocked).

III. RESULTS AND DISCUSSION

The present self-consistent calculation for 135Nd leads
automatically for the bandhead to a state with consider-
able triaxial deformation (γ ∼ 22◦) associated with the
1-qp configuration νh11/2. Along the band, the tilt angle
θ of the rotational axis is determined in a self-consistent
way by minimizing the total Routhians (Fig. 1). Here,
the tilt angle is defined as the angle between the ro-
tational and the long axis, and the positive (negative)
value denotes a tilt towards the short (intermediate) axis.
Fig. 1 clearly indicates that the 1-qp state always fa-
vors rotating along an axis in the long-intermediate (l-i)
plane, and the rotation axis tilts more and more appre-
ciably toward the i-axis with increasing frequency. More-
over, the 3-qp state, rotating along an axis in the long-
short (l-s) plane, becomes lower in energy than the 1-qp
configuration at high frequency. This is consistent with
the fact that the observed 3-qp band becomes yrast at
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FIG. 1. (color online) Total Routhians for the 1-qp and 3-qp
configurations as functions of the tilt angle θ at the rotational
frequencies ~ω = 0.2 (top), 0.3 (center), 0.4 (bottom) MeV.
The circles and triangles represent the local minimum points
for the 1-qp and 3-qp configurations, respectively.

high angular momentum. The pairing effects for the 3-
qp states are suppressed significantly by the two aligned
h11/2 protons. In contrast, the 1-qp states are lifted
notably in energy by excluding the pairing correlations,
and, thus, they are always located much higher than the
corresponding 3-qp states. Therefore, it is concluded that
one can determine the band crossing frequency more ac-
curately by including the pairing correlations.

In addition to determining the tilt angle, the calculated
energy spectrum and the angular momenta could be cal-
culated as well: these are compared with the data [15]
in Fig. 2 with the upper panel indicating that the ex-
perimental rotational excitation energies for both the 1-
qp (lower spin part) and 3-qp bands (higher spin part)

are reproduced well by the present self-consistent calcula-
tions with pairing. In particular, the inclusion of pairing
leads to the correct energy difference between the 1-qp
and 3-qp configurations. Therefore, the need for an artifi-
cial renormalization of the bandhead energies mentioned
above has been eliminated by including pairing.
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FIG. 2. (color online) Rotational energy (upper panel) and
rotational frequency (lower panel) as functions of the angular
momentum in comparison with the data of Ref. [15] (solid
dots). Here, the excitation energies are the relative energy
differences with respect to the ground state.

In the lower panel of Fig. 2, it is seen that the cal-
culated total angular momenta also agree well with the
data. A backbending happens in the region I = 10 –
14~, where the angular momentum increases while the
rotational frequency drops drastically. It is well-known
that such phenomenon is beyond the scope of a cranking
calculation [37], and, consequently, the calculated results
are omitted. It should be expected that the moment of
inertia I/ω is reduced by pairing in the present tilted axis
calculations. However, it is surprising that the reduction
for the 3-qp band is only visible at high frequency, where
the pairing effects tend to be hindered by the Coriolis
term. Indeed, here the proton pairing gaps are very small
due to the two quasi-protons, while the neutron ones de-
creases from 1.25 MeV (~ω = 0.2 MeV) to 1.14 MeV
(~ω = 0.6 MeV).
To understand this distinctive feature, the neutron and

proton angular momentum vectors are provided in Fig. 3
for both the 1-qp and 3-qp bands. For the former band,
the neutron angular momentum aligns along the l-axis
and the proton one essentially vanishes at ~ω = 0.1 MeV.
Along the band, the neutron angular momentum keeps
its projection on the l-axis nearly constant, which reflects
the contribution of the one unpaired neutron hole in the
h11/2 shell, but at the same time the proton angular mo-
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mentum increases remarkably along the i-axis due to a
coherent collective rotation of many nucleons.

For the 3-qp band, the neutron angular momentum
aligns mainly along the l-axis due to the h11/2 hole, while
the proton one aligns mainly along the s-axis, due to the
two h11/2 particles involved. As the frequency increases,
the neutron and proton angular momenta align toward
each other and generate larger total angular momentum
with the direction nearly unchanged. This situation is
reminiscent of the “shears mechanism” in a magnetic ro-
tation band. However, due to the considerable triaxiality
(γ ∼ 22◦) involved, it has been shown in Ref. [10] that
a chiral vibration, resulting from rapid conversion be-
tween the left-handed and right-handed configurations,
has been realized in the 3-qp band. Therefore, a transi-
tion from collective to chiral rotation is observed here.

In contrast to principal axis rotation, pairing effects
on the angular momentum here result in two competing
effects. On the one hand, the magnitudes of both proton
and neutron angular momenta are reduced by pairing.
On the other, however, pairing tends to reduce the angle
between the proton and neutron angular momenta (by up
to 20%) and in this way increases the total spin. There-
fore, the impact of pairing on the total angular momen-
tum can be, in some cases, counteracted as is the case for
the lower spin part of the 3-qp band in Fig. 2. All in all,
pairing introduces superfluidity in rotational states and,
here, it expedites the closing of the proton and neutron
angular momenta.

To trace the microscopic reason for the pairing effects,
it would be quite helpful to use the Bogoliubov transfor-
mation to transform the qp basis to the canonical (par-
ticle) basis [16], as in a microscopic picture, the angular
momentum comes from all the individual particles. Since
the pairing effects on the protons are significantly blocked
in the 3-qp band, we show in Fig. 4 only the angular mo-
mentum contributions of the neutron holes while noting
that the proton ones lead to a similar conclusion.

For the 75 neutrons in 135Nd, there are contributions
from only the seven neutron holes with respect to the
closed N = 82 shell: these include three negative-parity
ones in the h11/2 shell and four positive-parity ones in
the (g7/2d5/2d3/2s1/2) shell with low j values. One un-
paired hole always occupies the h11/2 shell and, thus,
the alignment along the z-axis; i.e., l-axis, is almost con-
stant. As ω becomes larger, the increase in angular mo-
mentum is generated mostly along the x-axis; i.e., i-axis
for the 1-qp band and s-axis for the 3-qp one, through
mixing of orbitals with large jx components. This is sim-
ilar to the mechanism pointed out in the previous self-
consistent investigations without pairing of Refs. [18, 31].
Pairing always reduces the alignment of the low-j or-
bitals in the gds shell, and this is connected with the
fact that it reduces the collective moment of inertia by
allowing partial occupation of the single-particle orbitals.
Moreover, it is interesting to note that the alignment Jx
for the three ν(h11/2) holes rises with the inclusion of
pairing, which indicates that additional admixtures are

also introduced to the valence particles (holes) orbitals.
Therefore, it is clear that the self-consistent nucleonic
Cooper-pair dynamics of pairing correlations influences
the single-particle orbitals and their occupation probabil-
ities; i.e., allows additional mixing in the single-particle
orbitals, and, thus, influences the generation of the nu-
clear spin. Moreover, due to the strong Coriolis term at
high frequency, pairing effects become weaker and, thus,
the increment of the alignment Jx becomes smaller as
well.
Finally, the calculated transition probabilities are

given in Fig. 5 in comparison with the available data [10].
Good agreement is achieved after pairing correlations are
included, especially for the 3-qp band. The B(M1) values
are derived from the relativistic expression of the electro-
magnetic current operator, which includes both the Dirac
and anomalous currents [21]. Since the first relativistic
TAC calculation [20], an artificial factor of 0.3 has been
used for many years to attenuate the oversized values of
B(M1). Here, however, it is found that this factor is not
needed as an increase in B(M1) probabilities is coun-
teracted mostly by pairing, which reduces the transverse
magnetic moment by merging the directions of the pro-
ton and neutron angular momenta, as shown in Fig. 3.
In addition, it should be noted that the nuclear defor-
mation is almost unchanged by including pairing. The
slight rise of the B(E2) values is mainly due to the fact
that pairing moves the rotational axis slightly away from
the l-axis; i.e., there is more susceptibility to rotational
alignment.

IV. SUMMARY

In summary, the first tilted axis cranking covariant
DFT with pairing correlations has been formulated and
the evolution of the spin axis in the yrast band of 135Nd
has been investigated in a fully self-consistent micro-
scopic way. The long-standing question of how pairing
correlations influence the structure of tilted axis rotat-
ing nuclei has been addressed. The present work shows
that the experimental energy spectrum and the transition
probabilities are well reproduced when pairing effects are
taken into account. In particular, the artificial renormal-
ization for both the bandhead energy and the B(M1)
values is eliminated by including pairing. Moreover, it
is found that the superfluidity induced by pairing allows
additional mixing in single-particle orbitals, and influ-
ences the generation of the total spin; i.e., reducing the
magnitude of the proton and neutron angular momenta,
but expediting the merging of their directions.
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