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Charge density difference between 206Pb and 205Tl, measured by elastic electron scattering, offers a unique 
opportunity to look for effects of short range correlations on a shell model wave function of a single 
proton. The measured difference is very similar to the charge density due to a proton in a 3s1/2 orbit. If 
there is a potential whose 3s1/2 wave function yields the measured difference between the charge 
distributions, no effect of short range correlations is evident. To check this point, we look for a potential 
whose 3s1/2 wave function yields the measured data. We developed a novel method to obtain the potential 
directly from the density and its first and second derivatives. Fits to parametrized potentials were also 
carried out. The 3s1/2 wave functions of the potentials determined here, reproduce fairly well the 
experimental data within the quoted errors. To detect possible effects of two-body correlations on the 3s1/2 
shell model wave function, more accurate measurements are required.  

PACS numbers: 21.60.Cs, 30.Bf, 21.10.Gv, 27.80.+w 

1. Introduction  

An important problem is how the success of the nuclear shell model can be reconciled with the strong and 
short ranged interaction between free nucleons. It was realized that shell model wave functions are 
eigenstates of a renormalized nuclear Hamiltonian in which the interactions are rather tame. Thus, shell 
model wave functions, of independently moving nucleons, do not have short range correlations. The latter 
are imposed on the real wave functions by the strong short-range interaction between free nucleons (the 
bare interaction).  According to current results of the nuclear many-body theory, short-range two-nucleon 
correlations due to the bare interaction, play an important role. In some papers, the admixtures into shell 
model wave functions due to correlations were calculated to be rather high, up to 35% [1,2]. 
   Still, there are indications that shell model wave functions have a certain reality. A possible way to 
check it was to measure the difference between charge distributions of two nuclei with the same N and 
Z2=Z1-1 [3]. A much higher accuracy was obtained by Frois et al [4,5] who measured the difference 
between the charge densities of 206Pb and 205Tl. The authors used elastic electron scattering. The 
difference between the charge distributions which they determined is very similar to the one due to a 
proton wave function in a 3s1/2 orbit. It has a clear maximum at the origin and two additional maxima. 
This result is in agreement with the simple shell model. The ½+  ground state of 205Tl shows that the 3s1/2 
orbit is the highest in the proton Z=82 major shell.  The authors noticed that the experimental charge 
density near r = 0 is much lower than the one due to a Hartree-Fock calculation and to the one obtained 
from a conventional Wood-Saxon single particle potential. They attributed it to a rather strong (30%) 
admixture of a shell model wave function in which the proton hole is in a 2d3/2 state, coupled to a J=2 
state of two neutron holes [4,5]. As pointed in Ref. [6], the inclusion of the 2d3/2 orbital leads to an 
agreement with data at the origin but deviations from data by a factor of two occur in the region between 
2 to 4 fm. An attempt to obtain the observed shape of the charge distribution from a conventional Wood-
Saxon potential was carried out in Ref. [6]. The authors assumed a significant modification of the proton 
form factor (increasing the charge radius) in medium. This assumption was also made to explain the EMC 
effect. However, it was shown in Ref. [7] that the EMC effect was simply explained by the fact that 
nucleons are bound in a nucleus. One should use the four momenta distribution function in calculating the 
deep inelastic muon (electron) cross section on a nucleus. 
 
 



   A large deviation from the shell model wave function has direct implications to direct nuclear reactions. 
Results of these reactions depend on the occupation probability of shell model orbits. The estimates 
obtained by analysis of experimental data are usually less than those expected from the shell model. Such 
estimates are based on measured cross sections of various reactions which seem to be smaller than those 
calculated with shell model wave functions. Unlike the depletions which are considered in those 
reactions, the measured 206Pb - 205Tl charge difference is exactly equal to 1 proton charge. Any effect of 
short range correlations could only modify the shape of the difference between the charge distributions. 
The striking results of the measured difference of the charge densities [4,5] deserve attention. In the 
present paper, we look for a potential whose proton 3s1/2 wave function can reproduce the measured 
difference.  
   If such a potential exists, no effect of short range correlations is evident in the experimental data. This 
would definitely not contradict the existence of those correlations. The latter cause “wounds” in shell 
model wave functions. If the wound occupies a small volume, it will not have a big effect on expectation 
values of “long range” operators. This term was used in a paper on ab initio calculations [8]. The authors 
consider short range and long range operators. They find that “when the operator becomes long range, the 
renormalized operator becomes indistinguishable from the bare value”. This means that for long range 
operators, shell model wave functions may be safely used.    
   If a potential as described above is found, it could serve also as an additional constraint in the 
determination of a modern energy density functional (EDF) for more reliable prediction of properties of 
nuclei and nuclear matter [9,10]. 
   We developed a new method to determine the single particle potential directly from the single particle 
matter density and its first and second derivatives. In section 2 we consider the single particle Schrodinger 
equation and describe the method for determining the single particle potential   from a given single 
particle wave function   or matter density, , assuming it is known for all . In particular, we 
consider the case of spherical symmetry. We also describe the method of deducing the point proton 
density directly from the charge distribution determined in electron scattering measurements. In section 3 
we present our attempts to construct a single nucleon potential whose 3s1/2 proton wave function yields a 
good fit to the data.  The experimental data [4,5] is for the charge density difference between the close ∆ 1   isotones 206Pb – 205Tl. In Section 4 we present our conclusions. 

2. Formalism  

Consider the single particle Schrodinger equation, 
 ћ  , (1) 
where  is a real local and non-singular potential. From Eq. (1) follows that for a given single particle 
wave function , known for all , and given eigenvalue E, the corresponding single particle potential 
V is uniquely determined by 
 ћ ,      . (2) 

For a non-singular V, 0 when   0 . The relation for  , where b is a positive 
integer, is given in Ref. [11]. In the present paper we consider the spherically symmetric case where, 
 

   
 . (3) 

Here,  is the radial wave function for the orbit with principal number n, orbital angular momentum 
l and total angular momentum j and   is the eigenfunction of the angular momenta l and j. In the 
following we limit the discussion to the proton 3s1/2

 orbit. Therefore, the corresponding single particle 
potential for a nucleon is  

 ћ 1 ,          . (4) 



where  and  1 , are the central and coulomb potentials, respectively. Here, =1 
for a neutron and -1 for a proton. 
   The single particle radial density  is related to the square of the radial wave function  by 
 4  . (5) 
From (5) it is possible to extract the wave function  and use Eq. (4) to deduce the corresponding 
single particle potential, but this leads to additional complications. Therefore, we developed a method to 
determine the potential directly from the density and 
second derivatives. Using Eq. (4), we obtain the simple relation with ,  

 
 

. (6) 

When 0, ⁄ 0 with the additional condition that the term on the right hand side (r.h.s) of 
Eq. (6)  in the square brackets also vanishes. From Eqs. (5) and (6) we find the relation, 

 . (7) 

When 0, ⁄ 0 with the additional condition that the term   also vanishes.  

   A commonly used central nuclear potential is the Woods Saxon (WS) potential,      
 1 a⁄⁄  , (8) 
where, ,  and a   are the depth, half radius and diffuseness parameters, respectively.  For the 
Coulomb potential we adopt the form obtained from a uniform charge distribution of radius ,                                         

 3  / 2         ⁄                   1/                    , (9) 

with 5 3⁄ , where   is the charge mean square radius. 
   In elastic electron-nucleus scattering measurements the charge density distribution, , is 
determined by carrying out a phase shift analysis of the cross section [12]. In theoretical models the point 
proton density distribution,  is calculated. The difference between the two distributions is due to the 
finite size of the proton internal charge distribution. They are related by the convolution relation       
  , (10) 
where  is the charge density distribution of the proton. The experimental elastic electron scattering 
data of a free proton can be well reproduced by the expression 
 ⁄  , (11) 

where   with  0.85 fm being the corresponding charge root mean square (rms) radius 
[12,13]. The Fourier transform of the charge density , determined by the convolution relation of 
Eq. (10) is given by   
  , (12) 
where ,  and , are the Fourier transfoms of ,  and , respectively. 
Eq. (12) can be used to determine the form factor , associated with the point proton density 
distribution . Then  can be obtained from  by the inverse Fourier transform and 
compared with theoretical predictions.  

3. Results  

In Fig. 1a we present (solid line) the experimental data [4,5] for the charge density difference, ;  206Pb) ;  205Tl), between the isotones 206Pb – 205Tl. It is normalized by the charge of one proton 
(Z=1) and hence, it is replaced in the following, by 1. The dotted lines indicate the limits of experimental 
uncertainty. The two maxima like those of the proton 3s1/2 orbit are clearly seen in the Figure. The 



experimental values of the charge rms radii of 206Pb and 205Tl are 5.4897 and 5.4792 fm, respectively, 
leading to a value of 6.2822 fm for the charge rms radius of the proton 3s1/2 orbit.   To assess the possible 
rearrangement effect (from 205Tl to 206Pb) on the charge rms radius of the 81 core protons in 206Pb, we 
assume that it increases by 0.005 fm, similar to the change between 206Pb and 207Pb [3]. The 
rearrangement effect is approximated (see Ref.  [3]) by scaling the charge distribution of 205Tl so that the 
charge rms radius of the scaled density is equal to that of the 81 core protons in 206Pb. We thus obtain 
 ;  206Pb) ;  205Tl), (13) 
where the scaling parameter α = 5.4792/(5.4792 + 0.005) = 0.9990 is the ratio between the charge rms 
radius of 205Tl to that of the core 81 protons in 206Pb. The form of (13) guarantees that the integral of    is equal to 1. The results for the charge density    are shown in Figure 1a (dashed line). 
   To extract the corresponding single particle potential, using Eqs. (4) and (6) or (7), we need the point 
proton distribution, . It is obtained by using Eqs. (11) and (12) to determine the point proton form 
factor, , and then obtain  by inverse Fourier transform. Using the relation (5) we determined 
the values of  4  as obtained from Figure 1a and shown by the solid line in Figure 1b. 
If  is obtained from an eigenfunction of Eq.(1),  is related to it by (5). Similarly, 4 . The dashed line in Figure 1b, is obtained from the dashed line in Figure 1a. The dotted 
lines indicate the experimental uncertainty. We note that  as obtained from Figure 1a (solid line) is 
slightly negative at the first node (at ~ 2.6 fm) and above zero at the second node (r ~ 4.9 fm). In Refs. 
[4,5] it was concluded that this result is consistent with the  proton 3s1/2 orbit in the vicinity of these 
minima. however, the experimental uncertainty in  is larger than its value. The magnitude of the 
difference between  and  is similar to that of the experimental uncertainty. 
  We tried to use the experimental  and  of Figure 1b, shown by the solid and dashed lines, 
respectively, to directly deduce the corresponding potentials by employing (4) and (6).  The Coulomb 
potential of Eq. (9), with  7.1 fm, was adopted in the calculations. For non-singular potential V, the 
second derivative    should vanish when 0. As seen from Figure 1b, this condition is not 
fulfilled at the minima of the experimental . Moreover, in the vicinity of the minima, in the regions 
of r = 2.0 – 3.0 fm and r = 4.5 – 5.5 fm, the uncertainty in  is larger than 50% of its value. Due to 
the large uncertainties in the experimental data, no reliable potential can be extracted.  
   Therefore, we considered several nuclear central potentials with the given Coulomb potential (9) added 
to each. We looked for potentials whose 3s1/2 wave functions yield charge distributions which fit best the 
measured one. The parameters of these potentials are obtained by least squares fits of the calculated 

 to the corresponding experimental data. The fitted potential VF(r) is obtained by taking the values 
of the potential at the points r = 3, 6 and 9 fm as free parameters. The value of VF(0) is constrained to 
reproduce the experimental value of 7.25 MeV for the separation energy of the proton in the 3s1/2 orbit of 
206Pb. The value of VF(12) is taken to be zero. The values of VF(r) between these points are determined by 
polynomial interpolation (solid line in Fig.2). From a fit to the experimental data of , solid line in 
Figure 1b, we obtained the values of the parameters of VF(r) given in Table 1. Similarly, the potential 
VRF(r) (dashed line) is obtained by a fit to  (dashed line in Figure 1b), with values of the 
parameters shown in Table 1. The potential VWSF(r), dashed double dotted line, is obtained by fitting the 
Wood-Saxon potential (8) to . The values of its parameters are given in Table 1. For comparison, a 
conventional Wood-Saxon potential VWS(r) is also shown, by the dashed-dotted line, with the values of its 
parameters given in Table 1. 
   In Figures 3a and 3b, the experimental data of  4   and of   (between the two 
dotted lines) are compared with results of the proton 3s½  orbit. The latter were obtained from the 
potentials described above, and shown in Figure 2. The agreement between the experimental values and 
the results of the fitted VF(r) potential (solid line) is fair with  χ2

 /N =  1.15. The results of the potential 
VRF(r) (not sown in Figure 3) are also in fair agreement with the data, χ2

 /N =  1.81. The results of the 
fitted potential VWSF(r), (dashed double dotted line) are also in reasonable agreement with the data, χ2

 /N= 



3.28. For comparison, we also show by the dashed-dotted line the results of the conventional Wood Saxon 
potential VWS\(r). The agreement is much poorer, with the value of χ2

 /N =  8.85. 
  The potential well of the shell model may well depend on the mass number A. It may also be non-local 
and depend on l. Still, it is interesting to look at the charge distribution due to the proton s-orbits occupied 
in 206Pb. They are the only orbits which contribute to the point proton density distribution at r=0. In 
Figures 4a, b and c we compare the charge density of the 1s1/2 , 2s1/2 and 3s1/2 proton orbits, respectively, 
obtained from the fitted  potential VF(r) (solid lines) with those obtained from the conventional Wood-
Saxon potential VWS(r) (dashed-double dotted line). The calculated contribution to 0  of the s1/2 
proton orbits for the fitted potential VF(r) is 0.053 fm-3, significantly smaller than the value of 0.073 fm-3 
obtained from the conventional Wood-Saxon potential, VWS(r), leading to a better agreement with the 
experimental observation of 0 0.063 for 206Pb [4,5,13]. The separation energies of the 1s1/2, 2s1/2 
and 3s1/2 proton orbits are -47.09, -22.64 and -7.24 MeV for the VF(r) potential and  -36.31, -24.46 and -
8.00 MeV for the VWS(r) potential, respectively. The relatively large separation energy of the 1s1/2 proton 
orbit obtained for the VF(r) is close to the experimental value of -64.8 MeV [14]. 

4. Conclusion 

The difference between the charge distributions of 206Pb and 205Tl  was measured many years ago. It offers 
a good opportunity to study possible effects of short range correlations on the shell model wave function 
of a proton in the 3s1/2 orbit. Effects of this kind were estimated by comparing measured cross sections of 
various reactions to those calculated using shell model wave functions. Usually, the measured values were 
lower than the calculated ones. This depletion was sometimes attributed to effects of short range 
correlations. The difference between the charge distributions considered here, cannot be depleted. The 
integrated difference between charge densities must be exactly equal to the charge difference between the 
two isotones, 1 proton charge. The effects of short range correlations in this case can only change the 
shape of the difference between the charge  distributions.  
   The experimental values of that difference have features which are very similar to those due to the wave 
function of a proton in some 3s1/2 orbit.  These are two zero values for r > 0 which correspond to the two 
nodes of the 3s wave function R(r)/r. If the point proton distribution  is due to a 3s wave function, 
two conditions should be satisfied, in addition to its having first and second derivatives for all r values. 
These conditions are presented after Eq. (7). They are necessary to derive the single nucleon potential, 
using (4), (6) or (7) from a proton distribution . It is difficult to see whether these conditions are 
satisfied by the measured difference of charge distributions. The experimental accuracy is not sufficient, 
particularly near the zero values. 
   We started by deriving and employing a new relation [11] between the potential V and the single 
particle density and its first and second derivatives. Due to insufficient experimental accuracy, no reliable 
potential can be obtained in this way. In view of this situation, we tried to construct nuclear single particle 
potential V whose proton 3s1/2 orbit in 206Pb yield charge distributions which best fit the electron scattering 
results [4,5]. We found several potentials which yield fair fits to the data (Fig. 3). The fair agreement with 
fitted potentials may be an indication that effects of short range correlations on charge distributions of 
shell model wave functions are not significant. Still, to answer the question to what extent the data agree 
with the distribution due to a 3s wave function of some potential, better accuracy of the measurement is 
needed. The uncertainty in values of Δρ  r  must be reduced by a factor of two or more before an 
accurate determination of the effects of short range correlations on shell model wave functions can be 
achieved. This is a strong demand on the plan of experiments described in Ref. [15].   
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Table 1. Values of parameters of standard Woods Saxon (WS) potential and the fitted potentials. 
 
 

  VWS VWSF VF VRF 
χ2/N 8.85 3.28 1.15 1.81 
V0 [MeV] -62.712 -167.95     
R1 [fm] 7.087 -0.03     
a0 [fm] 0.65 4.68     
V(0) [MeV]     -58.19 -51.33
V(3) [MeV]     -81.35 -88.29
V(6) [MeV]     -34.50 -33.64
V(9) [MeV]     -23.54 -23.96
V(12) [MeV]     0.00 0.00

  
 
 

 

 

 

 

 

 

 

 

 

 

 



FIGURE CAPTIONS 

Fig.1(a) The experimental difference, Δρc(r) between 206Pb and 205Tl charge distributions (solid line). The 
dashed line is for ΔρRc(r), the data after rearrangement correction. The dotted lines indicate the 
experimental uncertainty. (b) Similar to (a) for  4π Δρp(r) where Δρp(r) is derived from the 
experimental Δρc(r). The dashed line is for  related to ΔρRp(r) similarly obtained from ΔρRc(r). 

 

Fig.2 Potentials fitted to data in Fig.1b. The VF(r) potential (solid line), the VFR(r) version including 
rearrangement (dashed line) and the fitted VFWS(r) potential (double dotted-dashed line). Also shown is the 
conventional Wood-Saxon VWS(r) potential (dashed-dotted line). 

 

Fig.3 Experimental values of 4   (a) and   (b) plotted between dotted lines of 
error limits. They are compared to calculated charge distributions due to the 3s1/2 wave functions of the 
fitted VF(r) potential (solid lines), the fitted Wood-Saxon VFWS(r) potential (double dotted-dashed lines) 
and the conventional VWS(r) potential (dashed-dotted lines. 

 

Fig.4 Calculated charge densities of a proton in the 1s1/2 (a), 2s1/2 (b) and  3s1/2 (c) orbits in the VF(r) 
potential (solid lines) and the conventional VWS(r) potential (double dotted-dashed lines).  

 

 

 



 

Fig.1(a) The experimental difference, Δρc(r) between 206Pb and 205Tl charge distributions (solid line). The 
dashed line is for ΔρRc(r), the data after rearrangement correction. The dotted lines indicate the 
experimental uncertainty. (b) Similar to (a) for Δρp(r) where Δρp(r) is derived from the 
experimental Δρc(r). The dashed line is for  related to ΔρRp(r) similarly obtained from ΔρRc(r). 



 

Fig.2 Potentials fitted to data in Fig.1(b). The VF(r) potential (solid line), the VFR(r) version including 
rearrangement (dashed line) and the fitted VFWS(r) potential (double dotted-dashed line). Also shown is the 
conventional Wood-Saxon VWS(r) potential (dashed-dotted line). 

 

 

 

 

 

 



 

Fig.3 Experimental values of  (a) and  (b) plotted between dotted lines of 
error limits. They are compared to calculated charge distributions due to the 3s1/2 wave functions of the 
fitted VF(r) potential (solid lines), the fitted Wood-Saxon VFWS(r) potential (double dotted-dashed lines) 
and the conventional VWS(r) potential (dashed-dotted lines. 



 

Fig.4 Calculated charge densities of a proton in the 1s1/2 (a), 2s1/2 (b) and  3s1/2 (c) orbits in the VF(r) 

potential (solid lines) and the conventional VWS(r) potential (double dotted-dashed lines). 


