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We make use of a subtraction procedure, introduced to overcome double–counting problems in
beyond–mean–field theories, in the second random–phase–approximation (SRPA) for the first time.
This procedure guarantees the stability of SRPA (so that all excitation energies are real). We show
that the method fits perfectly into nuclear density–functional theory. We illustrate applications to
the monopole and quadrupole response and to low–lying 0+ and 2+ states in the nucleus 16O. We
show that the subtraction procedure leads to: (i) results that are weakly cutoff dependent; (ii) a
considerable reduction of the SRPA downwards shift with respect to the random–phase approxima-
tion (RPA) spectra (systematically found in all previous applications). This implementation of the
SRPA model will allow a reliable analysis of the effects of 2 particle–2 hole configurations (2p2h) on
the excitation spectra of medium–mass and heavy nuclei.

PACS numbers: 21.60.Jz,21.10.Re

I. INTRODUCTION

Energy–density functional (EDF) theories have
evolved over the years with the formulation and applica-
tion of sophisticated methods that go beyond mean–field
theory. One example is the SRPA model, formulated
long ago [1, 2] but applied in full only very recently
because of the extreme numerical effort required. The
last few years have seen large–scale SRPA calculations
done without approximations in the matrices and with
high–energy cutoffs [3–8]. Performing such calculations
has allowed us to identify some specific features of the
SRPA model, that could not be seen in previous strongly
truncated and simplified calculations. Unexpectedly,
the SRPA spectrum is systematically lowered by several
MeV with respect to that obtained in the ordinary RPA.
The origin of this strong shift was unclear until recently.

One would think that the SRPA, which adds 2p2h
states to the 1 particle–1 hole (1p1h) states of the RPA,
should not greatly modify excitations in which 1p1h con-
figurations represent the dominant contribution. The im-
provements provided by the SRPA should be the follow-
ing: 1) For cases in which the 1p1h states are the most
important configurations and the RPA properly describes
the location of the main peaks of the response func-
tion, the SRPA should not change those locations much.
In addition, the coupling to 2p2h states should pro-
vide some spreading and improve the calculated widths,
which in the RPA are far too small. 2) For cases in
which multiparticle–multihole configurations are essen-
tial to describe the excitation, the SRPA model should
yield not only spreading widths, but also a substantially
different description of the overall strength distribution
than does the RPA. Only recently it has started to be-
come clear that the unexpected shift in SRPA energies is
intimately related to the implicit inclusion of correlations
in ground states; properly accounting for those correla-

tions would guarantee a stable ground state and thus a
consistent response function.

In Refs. [5–8], SRPA calculations were performed with
density–dependent effective interactions — the Skyrme
[9–11] and the Gogny [12, 13] interactions — that derive
from EDFs and are used extensively in medium–mass
and heavy nuclei. Kohn–Sham–based density–functional
theory (see next section) requires that EDF parameters
be adjusted through mean–field calculations to reproduce
properties of nuclear matter as well as masses and radii
of some selected nuclei. However, mean–field calcula-
tions, even with density–dependent interactions, fail to
reproduce several aspects of nuclear phenomena. Higher–
order corrections (and correlations) may be explicitly in-
troduced by going beyond the mean–field approximation.
One must then depart from strict density–functional the-
ory and treat the interaction as an explicit Hamiltonian.
Such beyond–mean–field calculations may lead to sev-
eral problems associated with mixing EDFs (which gener-
ate effective interactions with non–antisymmetric matrix
elements) and genuine Hamiltonian many–body theory.
Moreover, when higher–order corrections are explicitly
introduced, the parameters of the interaction should be
readjusted to avoid problems of double counting [14]. In
the particular framework of extended RPA theories, such
as SRPA, this would imply that different interactions are
used for the description of the ground state and of excited
states, with a lack of self–consistency leading to possible
admixing of spurious states in the physical spectrum.

Some years ago [15], Tselyaev proposed another proce-
dure to avoid double–counting, called the “subtraction”
method. It has been applied thus far mainly to models
that include particle–vibration coupling, specifically both
the non–relativistic [16–18] and relativistic [19–21] ver-
sions of the time–blocking approximation. More recently
[22], Tselyaev formally demonstrated that this procedure
guarantees the validity of the usual stability condition in
extensions of the RPA. The stability of the RPA is re-
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lated to the Thouless theorem [23], which states that the
Slater determinant on which the RPA is based must be
a minimum of the Hartree–Fock (HF) energy to guar-
antee real RPA eigenvalues. Ref. [22] showed that this
theorem does not hold in general for extended versions
of the RPA, such as the SRPA, and that the subtraction
procedure reinstates it.

For the SRPA with a real density–independent Hamil-
tonian, the problem of stability was addressed in a differ-
ent way by Papakonstantinou [24]. The author showed
that: (i) the Thouless theorem can be extended to the
SRPA model if an explicitly correlated ground state is
used; (ii) in spite of the stability problem, the energy–
weighted sum rule (EWSR) [23, 25] is satisfied within
the SRPA model, confirming a previous study by Yan-
nouleas [2]. Indeed, an extension of SRPA with a corre-
lated ground state was applied to metallic clusters in the
work reported in Ref. [26]. The standard SRPA with a
HF ground state produced a significant shift of strength
towards lower energies with respect to the RPA strength
function. The use of a correlated ground state, however,
pushed the strength back towards larger energies, closer
to the RPA (and experimental) results. In this kind of
calculation, the shift is clearly due to a consistent ground
state, of which an account of correlations and stability are
both clearly important features.

As already mentioned, however, explicit correlations
(for example, a correlated ground state in SRPA) may be
problematic in an EDF–based calculation. The ground
state of an EDF–based model already has an energy and
density designed to be as close as possible to the exact
ones. The Tselyaev subtraction procedure, by contrast,
fits beautifully into density functional theory, as we show
in the next section, and is much less costly numerically. It
has in addition the great advantage of simultaneously re-
moving double–counting problems and instabilities. This
is the procedure adopted in the present work.

In subsequent sections, we apply the subtraction proce-
dure within the SRPA for the first time, to the monopole
and the quadrupole giant resonances of the nucleus 16O,
as well as to its low–lying 0+ and 2+ states. We will
compare the results with those of the ordinary RPA
and with experiment. We perform the calculations with
the Skyrme functional SGII [27], both in the mean–field
equations and in the effective residual interaction. We
omit Coulomb and spin–orbit contributions in the resid-
ual interaction but include rearrangement terms follow-
ing Ref. [6].

The article is organized as follows: Section II dis-
cusses the subtraction method in the context of density–
functional theory. Section III presents our formalism and
discusses a convenient “diagonal” approximation. Sec-
tion IV illustrates the results obtained with the sub-
tracted SRPA, and assesses the accuracy of the diagonal
approximation. Section V compares subtracted SRPA
response functions with those of the ordinary RPA and
with experiment. Section VI presents conclusions.

II. SUBTRACTION METHOD AND

DENSITY–FUNCTIONAL THEORY

It is difficult to say exactly what is meant by a density–
dependent interaction, particularly when it does not have
antisymmetric two–body matrix elements. In practice
such an interaction is always used to construct an ex-
pression for the energy, which is then varied to obtain
mean–field equations. It turns out to be natural not to
worry about the interaction and to work instead with the
energy as a functional of various densities — the ordinary
number density, the spin–density, etc. The condensed–
matter and atomic–physics communities have seized on
this idea, the elaboration of which is known as density
functional theory [28].
The foundation of the theory consists of the

Hohenberg–Kohn theorem [29] and the Kohn–Sham pro-
cedure [30]. These building blocks have to be modified
slightly for nuclear physics so that they work with den-
sities that are defined with respect to the nuclear center
of mass, but they survive the modification intact [31].
To simplify matters here, we pretend that only the in-
trinsic one–body density ρ(r) is relevant; that is, we ne-
glect other densities and currents on which the functional
typically depends. Density functional theory then works
with the object E[ρ], the meaning of which is the small-
est expectation value of the underlying nuclear Hamilto-
nian produced by states that yield density ρ. Thus, one
finds the system’s ground–state energy and density by
minimizing E[ρ]. The Hohenberg–Kohn theorem states
that the energy–density functional E[ρ] is universal: in
the presence of an additional local Hermitian operator
λQ(r), with λ an arbitrary constant, E[ρ] is modified in
a simple way,

E[ρ] −→ Eλ[ρ] = E[ρ] + λ

∫

drQ(r)ρ(r). (1)

The Kohn–Sham procedure guarantees that any energy–
density functional can be written in terms of orbitals
ϕi(r), as if the system consisted of noninteracting parti-
cles in a density–dependent external potential, and that
the ground state energy and density can be found by solv-
ing the Hartree–like equations for the orbitals that come
from minimizing the functional with respect to the or-
bital wave functions. Skyrme and Gogny energy–density
functionals for a given nucleus make perfect sense when
interpreted as approximations to the Kohn–Sham func-
tional.
Now suppose that the multiplier λ is small. Then,

system’s density changes from the unperturbed ground–
state density ρ0 to a new one ρλ, given by

ρλ = ρ0 + λ

∫

drR(ω = 0, r, r′)Q(r), (2)

where R(ω = 0) is the static response function for the
underlying Hamiltonian. Because the energy functional
is universal, it reproduces ρλ exactly when modified as
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in Eq. 1. And in the Kohn-Sham approach, the func-
tional produces a mean–field effective Hamiltonian (that
nonetheless reproduces exact energies and densities), so
that the response function R(ω = 0) is given by the RPA,
which is the small–amplitude limit of time–dependent
mean–field theory [25]. In other words

R(ω = 0) = RRPA
KS , (3)

where RRPA
KS is the RPA response associated with the

Kohn–Sham representation of the functional and the cor-
responding ground–state Slater determinant. Thus, to
the extent that the Skyrme functional is the exact Kohn–
Sham functional, Skyrme–RPA produces the exact zero–
frequency response function, and any modification of the
response must vanish in the static limit. This is what
is meant by “avoiding double counting,” a fact that was
noted by Tselyaev in Ref. [22].
More generally, one can show through a time–

dependent version of the Hohenberg–Kohn theorem
(known as the Runge–Gross theorem [32]) and a time–
dependent Kohn–Sham procedure that the full response
function at any frequency obeys

R(ω,r, r′) = R0
KS(ω, r, r

′) (4)

+

∫

dr1dr2 R
0
KS(ω, r, r1)V (ω, r1, r2)R(ω, r2, r

′) ,

where R0
KS is the bare Kohn–Sham (mean–field) re-

sponse and V (ω) is a frequency–dependent effective inter-
action obtained from the time–dependent energy–density
functional E[ρ(t), t]. The approximation

V (ω, r1, r2) −→
δ2E[ρ]

δρ(r1)δρ(r2)

∣

∣

∣

∣

ρ0

≡ V RPA(r1, r2) , (5)

implies that the solution R is just RRPA
KS , which does

not depend on ω. The approximation is equivalent to
assuming that E[ρ(t), t] = E[ρ(t)], that is, that the time–
dependent energy is just the ground–state functional
evaluated at the time–dependent density. Making that
approximation is known as the adiabatic limit. To go
beyond that limit, one must introduce an ω dependence
into the effective two–body interaction V . That, as we
will see shortly, is precisely what the SRPA does. But
since RRPA

KS is correct (as correct as the Skyrme func-
tional, anyway) in the adiabatic limit, we must modify
the SRPA so that it gives the RPA response at ω = 0.
There are many ways one might modify the SRPA

V (ω) so as to obtain the RPA response in the adia-
batic limit. One could, for example, simply multiply
V SRPA(ω) by a function that is unity at large ω and falls
to V RPA/V SRPA(0) as ω goes to zero. But the response

function has other constraints as well; in particular the
quantity

∫

drdr′Q(r)R(ω, r, r′)Q(r′) must have real and
positive residues at poles on the positive real axis, that is,
it must produce a genuine strength function (the stability
condition). Although there may be more than one way to
ensure this, a particularly simple way is the subtraction
method. If we define the frequency/energy–dependent
difference between the SRPA and RPA effective interac-
tions by U(ω),

U(ω) ≡ V SRPA(ω)− V RPA(ω) , (6)

the subtraction procedure amounts to the replacement

V SRPA(ω) −→ V SRPA(ω)− U(0) , (7)

which guarantees, as required, that V SRPA(0) =
V RPA(0) after the substitution and thus that this “sub-
tracted SRPA” reduces to the RPA in the zero–frequency
limit.
In the next section we describe how the method works

in the matrix version of the SRPA.

III. SUBTRACTION METHOD IN SRPA

Here we work with the matrix formulation of the
SRPA. Details about the associated formalism appear,
for instance, in Ref. [2]. Details about the subtraction
method and its specific application to extended RPA
models can be found in Refs. [15, 22].
The SRPA equations can be written in the following

form:
(

A B

−B∗
−A∗

)(

Xν

Yν

)

= ων

(

Xν

Yν

)

, (8)

where

A =

(

A11′ A12

A21 A22′

)

, B =

(

B11′ B12

B21 0

)

, (9)

Xν =

(

Xν
1

Xν
2

)

, Yν =

(

Y ν
1

Y ν
2

)

. (10)

The indices 1 and 2 denote 1p1h and 2p2h configura-
tions, respectively. Thus, the 11′ block in the matrices
A and B corresponds to the standard RPA A and B ma-
trices. The 12 and 21 blocks contain the 1p1h − 2p2h
coupling, and the 22′ block (the B part of which van-
ishes) contains the 2p2h part of the matrix.
It is straightforward to show that the SRPA equa-

tions may be written as RPA–like equations with energy–
dependent RPA matrices A11′ (ω) and B11′(ω),
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A11′ (ω) = A11′ +
∑

2,2′

A12(ω + iη −A22′)
−1A2′1′ −

∑

2,2′

B12(ω + iη +A22′)
−1B2′1′ , (11)

B11′(ω) = B11′ +
∑

2,2′

A12(ω + iη −A22′)
−1B2′1′ −

∑

2,2′

B12(ω + iη +A22′)
−1A2′1′ .

where in the last two equations, and hereafter, we assume that all the matrix blocks are real. These expressions are
just the analogs of the ω–dependent interaction V (ω) from Sec. II in the more general particle–hole basis. Without
so–called rearrangement terms, B12 and B21 would vanish, there would be no correction to B11′ , which would simply
become the corresponding RPA matrix (no energy dependence) and the last term in Eq. (11) would be zero. We
include rearrangement terms here, however.
Let us denote by E11′(ω) and F11′(ω) the energy–dependent corrections to A11′ , and B11′ :

E11′(ω) =
∑

2,2′

A12(ω + iη −A22′)
−1A2′1′ −

∑

2,2′

B12(ω + iη +A22′ )
−1B2′1′ , (12)

F11′(ω) =
∑

2,2′

A12(ω + iη −A22′)
−1B2′1′ −

∑

2,2′

B12(ω + iη +A22′)
−1A2′1′ .

The subtraction procedure, in this matrix context, cor-
rects the RPA–like matrices by subtracting from A11′(ω)
and B11′(ω) the static parts E11′(0) and F11′(0), respec-
tively (the analogs of U in Sec. II):

AS
11′(ω) = A11′(ω)− E11′(0), (13)

BS
11′(ω) = B11′(ω)− F11′ (0). (14)

AS
11′(ω) and BS

11′(ω) are then substituted for A11′ (ω) and
B11′(ω) in the energy–dependent RPA–like equations.
One can then return to energy–independent equations
with larger matrices, obtaining

AS
F =





A11′ +
∑

2,2′ A12(A22′)
−1A2′1′ +

∑

2,2′ B12(A22′)
−1B2′1′ A12

A21 A22′



 , (15)

BS
F =





B11′ +
∑

2,2′ A12(A22′ )
−1B2′1′ +

∑

2,2′ B12(A22′)
−1A2′1′ B12

B21 0



 .

The subscript F stands for “full” here. We will con-
trast the full calculation later with a “diagonal approxi-
mation”. We note that the restoration of the RPA in the
ω = 0 limit implies that the static polarizability, related
to the inverse energy–weighted moment m−1, is the same
in the subtracted SRPA as in the RPA. Because m−1 is
generally larger in the standard SRPA than in the RPA,
this fact already suggests that subtraction, which restores
the RPA m−1, must shift energy upwards with respect

to the ordinary SRPA.
The matrix A22′ has to be inverted to construct the

matrices in Eq. 15. If the energy cutoff is very large, the
dimensions of the matrix become even more so and the
inversion becomes computationally costly. We therefore
will sometimes use a diagonal approximation in which
off–diagonal terms of the matrix A22′ are discarded only
in the correction terms. The subtracted SRPA matrices,
which we call AS

D and BS
D, then are

AS
D =





A11′ +
∑

2
A12(A

diag
22 )−1A21′ +

∑

2
B12(A

diag
22 )−1B21′ A12

A21 A22′



 , (16)

BS
D =





B11′ +
∑

2
A12(A

diag
22 )−1B21′ +

∑

2
B12(A

diag
22 )−1A21′ B12

B21 0



 .

With this approximation the computational effort is con- siderably reduced. When Eq. (16) is used, one can ei-
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Figure 1. (Color online) Isoscalar monopole response for the
nucleus 16O, calculated in the standard SRPA (orange dia-
monds and orange area), and with the SSRPAF , with a cutoff
for the correction terms at 50 (black dotted line), 60 (black
dashed line), and 70 (black solid line and magenta area) MeV.
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Figure 2. (Color online) Same as in Fig. 1, but in the diagonal
approximation SSRPAD.

ther keep only the unperturbed energies or include also

the residual interaction in Adiag
22 to compute the correc-

tion terms. We have verified that the two choices lead to
very similar results. In what follows, we show the results
obtained by neglecting the residual interaction.

IV. SUBTRACTED SPECTRA AND

ACCURACY OF THE DIAGONAL

APPROXIMATION

Let us first show the effect of the subtraction method
on the SRPA results, for illustration in the isoscalar
monopole and quadrupole channels of 16O. We perform
HF–RPA calculations with a cutoff on the 1p1h configu-
rations at 100 MeV. For the 2p2h space in the SRPA cal-
culations, we take the cutoff to be at 70 MeV and 50 MeV
for the monopole and the quadrupole cases, respectively.

Those values lead to about 5000 2p2h configurations in
each of the two cases. This number is small enough so
that we can still fully invert the matrix A22′ to perform
the subtraction.

We use the acronyms SSRPAF to denote the sub-
tracted SRPA in the full scheme, Eq. (15), and SSRPAD

to denote the subtracted SRPA with the diagonal ap-
proximation in the correction terms, Eq. (16). In all the
figures that follow, we fold the calculated response with
a Lorentzian of width 0.5 MeV.

Fig. 1 shows the isoscalar monopole strength distri-
bution, calculated with the unmodified SRPA and with
the SSRPAF , using a cutoff in the correction term equal
to 50, 60, and 70 MeV. In the last of these cases, all the
SRPA 2p2h configurations are included in the correction.
The effect of the subtraction, as we expected, is to shift
the SRPA spectrum upwards, by amounts that increase
with the cutoff in the correction terms. The important
differences between the three subtracted strength func-
tions indicate that it is crucial to include all the 2p2h
states in the correction terms containing (A22′)

−1 in Eq.
(15). The calculation must be coherent, that is, the 2p2h
spaces used in the original SRPA matrices and in the
correction terms should be the same.

Fig. 2 shows the same results with the diagonal ap-
proximation SSRPAD and Fig. 3 compares the full and
diagonal subtracted SRPA results with the 70–MeV cut-
off in the correction terms. We observe that the SSRPAF

and SSRPAD results are very similar, the difference be-
ing a small systematic shift to larger excitation energies
in the SSRPAD.

Figs. 4, 5, and 6 display the same results as Figs. 1, 2,
and 3, respectively, but in the isoscalar quadrupole chan-
nel (where the 2p2h cutoff is at 50 MeV in the SRPA
calculation). The cutoffs in the correction terms are at
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Figure 3. (Color online) Isoscalar monopole response for the
nucleus 16O, calculated in the SRPA without subtraction (or-
ange diamonds and orange area), in the SSRPAF (black solid
line and magenta area) and in the SRPAD (black dotted line
and blue area), with a cutoff in the correction terms at 70
MeV.
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Figure 4. (Color online) Same as in Fig. 1 but for the isoscalar
quadrupole response. The 2p2h cutoffs in the correction terms
are now at 40, 45, and 50 MeV.
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Figure 5. (Color online) Same as in Fig. 2 but for the isoscalar
quadrupole response.

40, 45, and 50 MeV. The remarks made about the first
three figures apply here as well. In Fig. 6, the same sys-
tematic shift between the results of the full and diagonal
subtracted calculations is visible.

To better understand the extra shift produced by the
SSRPAD, we plot in Figs. 7 and 8 the diagonal part
of the correction in the monopole and quadrupole chan-
nels, respectively, calculated for each 1p1h state with the
SSRPAF and SSRPAD, with the largest cutoff in each
multipole. The correction introduced by the subtraction
modifies the diagonal part of the RPA A matrix, and
induces a shift in the 1p1h unperturbed excitation ener-
gies. The figures show that the diagonal correction term
is always larger in the SSRPAD than in the SSRPAF .
This leads to the extra shift of the spectrum found in
the SSRPAD. The difference, while systematic, is small.
The result suggests that the dominant effect of the cor-
rection comes from its diagonal part, which modifies the
unperturbed excitation energies.
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Figure 6. (Color online) Same as in Fig. 3 but for the isoscalar
quadrupole response. The 2p2h cutoff for the correction terms
is at 50 MeV.
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Figure 7. (Color online) Diagonal part of correction term
for each 1p1h configuration that contributes to the monopole
strength, for the SSRPAF (red full bars) and the SSRPAD

(blue dashed bars), with a cutoff at 70 MeV in the correc-
tion terms. The horizontal axis simply labels individual 1p1h
configurations in the monopole channel.

We turn now to low–lying 0+ and 2+ excited states.
These states are predominantly multiparticle–multihole
[33], and so cannot be described in the ordinary RPA,
(see Fig. 16 for illustration). It is thus interesting to
see the role played by the 2p2h configurations in their
description as well as the effects of the subtraction pro-
cedure on their energies. Fig. 9 shows the first 0+ and
2+ states obtained in the unmodified SRPA and in the
SSRPAF and SSRPAD, with different 2p2h cutoffs in the
correction terms. Only states with a B(E0) or B(E2)
larger than 10−2 e2fm4 are shown. The effect of the cor-
rection is different from what we found for the giant res-
onances. Low–lying states are not strongly modified by
the subtraction method because, as we’ve noted, these
states are mostly multiparticle–multihole, as a close ex-
amination of the X’s and Y’s from Eq. (10) verifies. They
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Figure 8. (Color online) Same as in Fig. 7, but for the
quadrupole channel, with a cutoff at 50 MeV in the correction
terms.
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Figure 9. (Color online) First 0+ (a) and 2+ (b) states
calculated with the standard SRPA, the SSRPAF , and the
SSRPAD, with different cutoffs in the correction terms (in
parentheses).

cannot be affected by the subtraction because it acts only
on the 1p1h sector of the SRPA matrix.

Before comparing our results with those obtained in
the RPA and with the experimental values, we analyze
the robustness of the subtracted SRPA model. We focus
on the 0+ channel. We initially carry out standard SRPA
calculations with several cutoffs up to 90 MeV on the
2p2h configurations, finding, as expected, that the shift
to lower energies (with respect to the RPA spectrum)
becomes more and more pronounced as the cutoff energy
increases [5]. The number of 2p2h configurations is too
large in these high–cutoff SRPA calculations to invert
the matrix A22′ , and so when examining the subtraction
correction we use the diagonal approximation. Fig. 10
shows the resulting isoscalar monopole responses, with
cutoffs for the correction terms at 70, 80, and 90 MeV.
In each case, this cutoff is the same as that in the cor-
responding unsubtracted SRPA calculation. The three
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Figure 10. (Color online) Isoscalar monopole response in the
diagonal approximation with cutoff for the correction terms
at 70 (black line and magenta area), 80 (green dashed line),
and 90 (blue dotted line) MeV.

strength functions are very similar. The same is true of
the low–lying 0+ state. Its energy with the 70, 80, and
90 MeV cutoff is 6.26 MeV, 6.13 MeV, and 5.96 MeV, re-
spectively. The difference between the highest and lowest
of these numbers is only 5%. We can conclude that the
subtraction procedure not only rectifies the SRPA energy
shifts for giant resonances, but also provides much more
robust (cutoff–insensitive) predictions for both giant res-
onances and low–lying states.

V. COMPARISON WITH RPA AND

EXPERIMENT

We turn finally to the quality of the subtracted SRPA
results in comparison with those of the ordinary RPA
and with experiment. We again restrict ourselves to the
monopole and quadruople cases. For these comparisons,
we carry out fully the subtraction, with the maximal cut-
offs given earlier (50 and 70 MeV for the monopole and
quadrupole channels, respectively).
The top panels of Figs. 11 and 12, respectively, com-

pare the monopole and quadrupole strength distributions
of the ordinary SRPA, the SSRPAF , and the RPA. We
observe that the strong shift that the ordinary SRPA
provides with respect to the RPA is significantly reduced
by the subtraction procedure. The lower panels of the
same figures display the discrete (binned) strengths. The
fragmentation and the width of the excitation are pro-
vided by both SRPA models (with and without subtrac-
tion). They are described in a natural way by the ex-
tremely dense discrete 2p2h configurations obtained in
both cases. The subtraction procedure does not affect
this feature but only shifts states to higher energies. The
ordinary RPA, by contrast, produces a scattered set of
states without any fragmentation.
Before comparing with experiment, we analyze the mo-
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Figure 11. (Color online) (a): Isoscalar monopole response
in the standard SRPA (orange diamonds and orange area),
RPA (blue dashed line), and the SSRPAF (black solid line
and magenta area); (b): Discrete spectra (binned strength)
obtained with the SRPA (orange dashed bars), the RPA (blue
dotted bars) and the SSRPAF (magenta solid bars).
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Figure 12. (Color online) Same as in Fig. 11 but for the
quadrupole strength.

ments m−1, m0, and m1 of the strength–distribution, for
the isoscalar quadrupole case, as an illustration. In Fig.
13 we show the ratios of these moments, calculated in
the SRPA, the SSRPAF , and the SSRPAD, to those of
the RPA. We have varied the cutoff energy in the correc-
tion terms for the subtracted calculations. One observes
first that m0 and m1 are the same in the RPA and in
the SRPA, as expected. The corresponding subtracted–
SRPA moments are different, however. The upward shift
from subtraction means that m1 must be larger with sub-
traction than without and m−1, as noted earlier, must be
smaller; the figure bears these conclusions out. Unsur-
prisingly, in addition, the full subtraction produces (at
maximal cutoff) values that are closer to the RPA than
does the diagonal approximation. The inverse moment
m−1 is exactly the same in the SSRPAF with maximal
cutoff and in the RPA, as it must be (see Sec. III). The
equality holds only when the calculation is fully coherent
(full inversion and same 2p2h space in the matrices and
in the correction term).
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Figure 13. (Color online) Ratios of the moments m
−1, m0,

and m1 of the quadrupole strength distribution in the SRPA
(purple circles), the SSRPAF (red squares), and the SSRPAD

(yellow diamonds) to those in the RPA for increasingly high
cutoffs in the correction terms, at 40, 45, and 50 MeV.

Finally, we compare our results with experiment. Figs.
14 and 15 compare the RPA and subtracted SRPA spec-
tra with experimental strength distributions [34]. We
have extracted the experimental fractions of the EWSR
from the top and the bottom panels of Fig. 6 in Ref.
[34]. To compare with our results we have multiplied
our fractions of the monopole EWSR by 0.48 and the
quadrupole EWSR by 0.53. The reason is that only the
48% of the E0 EWSR and the 53% of the E2 EWSR have
been measured [34]. Note that the scales of the vertical
axes in panels (a) and (b) are chosen equal to those of
the corresponding panels (c) for an easier comparison.
We observe that, for the monopole case, the RPA pro-

duces a strength distribution that is higher in energy than
experiment by several MeV. This feature of the RPA for
the nucleus 16O is well known. In Ref. [34], for example,
the RPA results of Ref. [35] were shifted downwards by
4.2 MeV to agree with the measured centroid. The SRPA
results produced here (without subtraction) would be in
much better agreement with experiment because there is
much more strength at low energies, and in particular
there is non–negligible strength between 10 and 15 MeV
(see Fig. 11). One should keep in mind, however, that
the SRPA results without subtraction are strongly cut-
off dependent; strength would be shifted to even lower
energies if the cutoff energy were increased significantly,
worsening the agreement with experiment. In contrast,
as shown in this work, the results obtained with the sub-
traction procedure are quite stable against variations in
the cutoff. Though the subtracted SRPA produces a re-
duced downward shift from the RPA than the ordinary
SRPA with the cutoff chosen here (and as a result ap-
pears to agree less well with experiment) the shift is nev-
ertheless in the right direction: Some strength appears
between 10 and 15 MeV and there is much more strength
between 15 and 20 MeV than in the RPA.
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Figure 15. (Color online) Same as in Fig. 14 but for the E2
EWSR.

For the quadrupole case, the shift between the results
of the RPA and those of the subtracted SRPA is less
pronounced. The main difference between the two re-
sponse functions is in the fragmentation, which is obvi-
ously much better described within the subtracted SRPA.
Some strength is found between 10 and 15 MeV, as in the
experimental distribution, while in the RPA the strength
starts at higher energy. A full and consistent comparison
with experimental data, of course, would require a proper

treatment of the coupling with the continuum both in the
mean field and in the nuclear response; see for example
[37] and [38].

Let us now analyze the low–lying states. Fig. 16 com-
pares the SRPA, SSRPAF , and RPA energies with those
from experiment [36] for the first 0+ and 2+ states. The
RPA values are too high in energy and the SRPA results
(with or without subtraction) are in good agreement with
experiment. As already noted, the subtraction does not
modify the energies of such states because their most im-
portant configurations are 2p2h.

VI. CONCLUSIONS

We have applied to the SRPA a subtraction procedure
proposed by Tselyaev [15] some years ago to overcome
problems related to double counting in certain beyond–
mean–field calculations. Ref. [22] showed that the sub-
traction method in extended RPA models, such as the
SRPA, leads to stable solutions (the Thouless theorem
may be extended and the stability condition satisfied).

We have presented applications to the nucleus 16O with
the Skyrme interaction SGII. We have verified that the
subtracted SRPA provides very robust predictions, which
are stable and very weakly cutoff dependent. Further-
more, the fulfillment of the stability condition, together
with the elimination of double counting, substantially re-
duces the large anomalous shift downwards that the ordi-
nary SRPA systematically produces with respect to the
RPA strength.

This implementation of the SRPA model opens the
door to numerous applications to reliably assess the ef-
fects of multiparticle–multihole configurations on the ex-
citation of medium–mass and heavy nuclei.
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the SSRPAF , the RPA, and experiment for the energy of the
first low–lying 0+ (a) and 2+ (b) states.
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