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The nucleon’s peripheral transverse charge and magnetization densities are computed in chiral
effective field theory. The densities are represented in first–quantized form, as overlap integrals of
chiral light–front wave functions describing the transition of the nucleon to soft pion–nucleon inter-
mediate states. The orbital motion of the pion causes a large left–right asymmetry in a transversely
polarized nucleon. The effect attests to the relativistic nature of chiral dynamics [pion momenta
k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.
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I. INTRODUCTION

The long–distance behavior of strong interactions is
governed by the spontaneous breaking of chiral symme-
try in the microscopic theory of Quantum Chromody-
namics. The associated Goldstone bosons — the pions —
are almost massless on the hadronic scale, couple weakly
to other hadrons (proportional to their momentum), and
mediate long–distance interactions. The resulting “chiral
dynamics” can be studied systematically using methods
of effective field theory (EFT) [1, 2] and explains nu-
merous phenomena in low–energy pion–pion and pion–
nucleon scattering, the nucleon–nucleon interaction at
large distances, and electroweak interactions of hadrons.
Chiral dynamics represents an essentially relativistic

dynamical system, as the pion 4–momenta in typical pro-
cesses are of the order of the pion mass, k = O(Mπ)
[1], and the number of particles changes due to quantum
fluctuations. Chiral EFT is therefore usually formulated
and solved as a second–quantized field theory. While
this allows one to calculate most observables of interest,
for many purposes it would be desirable to have a first–
quantized, particle–based formulation of the dynamics.
It would make it possible to follow the space–time evolu-
tion of chiral processes and gain a more intuitive under-
standing of their effects. It would introduce the concept
of a wave function and its densities and help quantify the
spatial structure of hadrons, the orbital motion of pions,
and polarization effects.
The light–front (LF) formulation of relativistic dynam-

ics [3–5] makes it possible to construct a consistent first–
quantized description of essentially relativistic systems.
In this framework one follows the evolution of the system
in LF time x+ = x0 + x3 ≡ t+ z. The wave functions at
fixed x+ are invariant under Lorentz boosts in the lon-
gitudinal (z−) direction, so that their particle content
and densities are frame–independent and have objective
meaning — in contrast to the equal–time wave function,
where they are frame–dependent. Transverse boosts (in
the x, y–plane) are kinematical and preserve the particle
number. Orbital motion and spin are naturally expressed
and lead to a description in close correspondence to non-

relativistic quantum mechanics [5].
In this work we use chiral EFT in the LF formulation

to study the long–distance contributions to the nucleon’s
electromagnetic current matrix element and explain their
properties. The form factors are expressed in terms of
the transverse densities of charge and magnetization at
fixed LF time [6–9]. At peripheral transverse distances
b = O(M−1

π ) the isovector densities have been calculated
using chiral EFT in the leading–order (LO) approxima-
tion [10]. We represent them here in first–quantized form,
as overlap integrals of chiral LF wave functions describing
the transition of the nucleon to soft pion–nucleon inter-
mediate states. The new representation leads to a simple
quantum–mechanical picture, according to which the or-
bital motion of the soft pion causes a left-right asymme-
try of the “plus” current density in a transversely polar-
ized nucleon [8]. The effect is sizable and attests to the
essentially relativistic nature of chiral dynamics.

II. TRANSVERSE DENSITIES

The transition matrix element of the electromagnetic
current between nucleon states with 4–momenta p1 and
p2 is parametrized by the Dirac and Pauli form factors,
F1(t) and F2(t), which are functions of the invariant mo-
mentum transfer t ≡ ∆2 = (p2−p1)

2 (we follow the nota-
tion of Ref. [10]). In a frame where the momentum trans-
fer is transverse, ∆T ≡ (∆x,∆y) 6= 0, ∆0 = ∆z = 0, the
form factors are represented as a Fourier integral over a
transverse coordinate b ≡ (bx, by) [7, 9]

F1,2(t = −∆
2
T ) =

∫
d2b ei∆T ·b ρ1,2(b). (1)

The functions ρ1,2(b ≡ |b|) describe the transverse spatial
distribution of charge and magnetization in the nucleon
at fixed LF time. Specifically, in a state where the nu-
cleon is localized in transverse space at the origin, and
spin–polarized in the y–direction, the expectation value
of the current J+ ≡ J0 + J3 at LF time x+ = 0 and
transverse position xT = b is

〈J+(b)〉loc = (...)[ρ1(b) + (2Sy) cosφ ρ̃2(b)], (2)
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FIG. 1. (Color online) Interpretation of the transverse densi-
ties in a nucleon state polarized in the y–direction, Eq. (2).

ρ̃2(b) ≡
∂

∂b

[
ρ2(b)

2MN

]
, (3)

where (...) hides a trivial factor arising from the normal-
ization of states, cosφ ≡ bx/b, and Sy = ±1/2 is the
y–spin projection in the nucleon rest frame (see Fig. 1)
[7, 10]. Thus ρ1(b) describes the spin–independent (left–
right symmetric) and cosφ ρ̃2(b) the spin–dependent
(left–right antisymmetric) plus current in the y–polarized
nucleon. Choosing Sy = +1/2 and looking at two oppo-
site points on the x–axis, b = ∓bex, one has

〈J+(∓bex)〉loc = (...) [ρ1(b) ∓ ρ̃2(b)]

≡ (...) ρleft/right(b), (4)

which shows that ρ1(b) and ρ̃2(b) can be determined
directly as the left–right symmetric and antisymmetric
parts of the plus current on the x–axis.

III. CHIRAL PERIPHERY

At peripheral distances b = O(M−1
π ) the transverse

densities are governed by chiral dynamics and can be
computed from first principles using chiral EFT [10, 11].
The densities can be obtained from the relativistic chi-
ral EFT results for the form factors [12–17]. Periph-
eral contributions arise from the chiral processes in which
the current couples to the nucleon through two–pion ex-
change, i.e., contributions to the two–pion cut of the
isovector form factors at t > 4M2

π . At LO these are given
by the Feynman diagrams of Fig. 2a, where the vertices
are those of the relativistic chiral Lagrangian [18]; the
densities depend only on the imaginary parts of the form
factors on the physical cut [10, 11] and are not sensitive
to the choice of relativistic renormalization scheme at
LO (for a review of the schemes and their properties, see
Ref. [16]). The first diagram contains a term in which the
pole of the intermediate nucleon propagator is canceled
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FIG. 2. (Color online) (a) Feynman diagrams of LO chiral
EFT processes contributing to the peripheral transverse den-
sities (two–pion cut of the form factors). Indicated below are
the effective vertices obtained after isolating the nucleon pole
term of the first diagram. (b) Chiral LF wave function of the
nucleon.

by the numerator; this term is of the same form as the
contact term from the second diagram and can be com-
bined with it. Effectively this amounts to replacing the
πNN vertices in the first diagram by the pseudoscalar
vertex MNgAiγ5/Fπ, and changing the ππNN contact
coupling in the second as 1/F 2

π → (1 − g2A)/F
2
π , as indi-

cated in Fig. 2a [10, 11]. With this rearrangement the
first Feynman diagram is given entirely by the nucleon
pole contribution. It can therefore be represented as a LF
time–ordered process in which the initial nucleon makes
a transition to a soft pion–nucleon intermediate state and
back. The transition is described by the chiral LF wave
function (Fig. 2b)

Ψ(y,kT ; pol) ≡
Γ(y,kT ; pol)

∆M2(y,kT )
, (5)

where y = k+/p+1 is the LF plus momentum fraction
of the pion, kT its transverse momentum relative to the
initial nucleon with p1T = 0, and “pol” denotes generic
spin quantum numbers characterizing the initial and in-
termediate nucleon states. In the numerator, Γ is the
on-shell pseudoscalar πNN vertex between the initial nu-
cleon spinor and the intermediate one with LF momen-
tum (1− y)p+1 and −kT ,

Γ(y,kT ; pol) ≡
gAMN

Fπ
ū((1 − y)p+1 ,−kT )

× iγ5 u(p+1 ,0T ). (6)

Its form is unambiguously determined by the rearrange-
ment of the EFT interactions; the peripheral densities
are insensitive to the off-shell behavior [19]. In the de-
nominator of Eq. (5) ∆M2 denotes the invariant mass
difference between the initial and intermediate state,

∆M2(y,kT ) ≡ [k2
T +M2

T (y)]/[y(1− y)], (7)

M2
T (y) ≡ (1− y)M2

π + y2M2
N , (8)
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which is proportional to the LF energy denominator of
the transition [5]. The wave function for a state mov-
ing with overall transverse momentum p1T 6= 0 is ob-
tained by a transverse boost, and analogous formulas de-
scribe the transition back to the final state with p2T .
The chiral wave functions refer to the parametric regime
|kT | = O(Mπ) and y = O(Mπ/MN ), where the pion is
soft and couples weakly to the nucleon, and are used in
this context only. The coordinate–space wave function is

Φ(y, rT , pol) ≡
∫

d2kT
(2π)2

eikT ·rT Ψ(y,kT ; pol), (9)

where rT is the transverse separation of the pion–nucleon
system in the intermediate state and |rT | = O(M−1

π ).
The peripheral transverse densities can be expressed

as overlap integrals of the chiral LF wave functions of
the initial and final nucleon and an effective contact
term. A particularly simple form is obtained when the
nucleon spin states in the wave function are quantized
in the transverse y–direction. Transversely polarized LF
spinors are constructed by preparing a transverse spinor
in the nucleon rest frame and performing a longitudinal
and a transverse boost to get to the desired LF momen-
tum [5]. We denote the LF wave function Eq. (9) defined
with such transversely polarized nucleon spin states by

Φtr(y, rT ; τ, τ1), (10)

where τ1 and τ are the y–spin projections of the initial
and the intermediate nucleon states; the complex con-
jugate function Φ∗

tr(y, rT ; τ, τ2) describes the transition
back to the final state with y–spin τ2. At the special
points b = ∓bex [cf. Eq. (4)] only the transverse spin–flip
wave function (τ1 = τ2 = +1/2, τ = −1/2) contributes to
the current matrix element; the spin–nonflip wave func-
tion (τ = +1/2) vanishes on the transverse x–axis. We
obtain the isovector densities as [ρV ≡ (ρp − ρn)/2]

ρVleft(b)

ρVright(b)

}
=

∫ 1

0

dy
|Φtr(y,∓rTex;− 1

2 ,
1
2 )|2

2πy(1− y)3

[rT = b/(1− y)]. (11)

The coordinate–space wave function is readily ob-
tained by deriving the explicit form of the vertex
function Eq. (6) for transversely polarized LF spinors,
Γtr(y,kT ; τ, τ1), with τ1 = +1/2 and τ = −1/2,

Γtr(y,kT ;− 1
2 ,

1
2 ) =

gAMN (yMN + ikx)

Fπ
√
1− y

, (12)

inserting it in Eq. (5), and evaluating the Fourier integral
Eq. (9). The approximate expressions for the spin–flip
wave function at large separations rT ≫ M−1

T are

Φtr(y,∓rTex;− 1
2 ,

1
2 )

=
gAMN y

√
1− y

2
√
2πFπ

[yMN ±MT (y)]
e−MT (y)rT

√
MT (y)rT

; (13)
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FIG. 3. Left and right peripheral transverse densities in LO
chiral EFT, as given by Eq. (11) and the contact term. The
plot shows the densities after extraction of the exponential
factor exp(−2Mπb). The transverse distance b and the densi-
ties are given in units of the pion mass.

the exact expressions for any rT involve modified Bessel
functions. The charge and magnetization densities are
then obtained as

ρV1 (b)

ρ̃V2 (b)

}
=

1

2
[±ρVleft(b) + ρVright(b)]. (14)

The effective contact term in Fig. 2 describes the in-
stantaneous contributions to the current in LF time (zero
modes) and has to be added to Eq. (11). The coupling
∝ (1 − g2A) shows that this term reflects the nucleon’s
internal structure due to non-chiral intermediate states
[10]. Its contribution to the density is left–right symmet-
ric and amounts to <10% of ρV1 (b) at b > 1M−1

π . The
peripheral densities are thus practically determined by
the wave function overlap Eq. (11).
The LF representation Eq. (11) (including the con-

tact term) is exactly equivalent to the result of the rel-
ativistically invariant EFT calculation [10] and embod-
ies the entire chiral structure of the peripheral densities
at LO. It reveals several interesting properties: (a) The
left and right densities are of the same parametric order
in the heavy–baryon limit, ρVleft(b)/ρ

V
right(b) = O(1) for

Mπ/MN → 0, because the integral in Eq. (11) is dom-
inated by pion momentum fractions y = O(Mπ/MN ).
(b) The left and right densities in Eq. (11) are individu-
ally positive, ρVleft/right(b) > 0. The charge and magneti-

zation densities Eq. (14) therefore obey an inequality,

|ρ̃V2 (b)| < ρV1 (b), (15)

as was observed numerically in Ref. [10]. (c) The left-
right asymmetry of the densities produced by chiral dy-
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namics is numerically large (see Fig. 3). The ratio
ρVleft(b)/ρ

V
right(b) is∼10 at b = 1M−1

π and decreases slowly
at larger distances. As a result the charge and magneti-
zation densities Eq. (14) are almost equal and opposite,

ρ̃V2 (b) ≈ −ρV1 (b), (16)

and the inequality Eq. (15) is almost saturated.

IV. QUANTUM-MECHANICAL PICTURE

Our findings can be summarized in a simple quantum–
mechanical picture of the peripheral transverse densities
in chiral EFT (see Fig. 4), inspired by the general ar-
guments of Ref. [8]. Consider a physical proton with
y–spin projection +1/2 in the rest frame. In the inter-
action picture we may think of this system as a bare nu-
cleon that undergoes transitions to multiple pion–nucleon
states through the chiral EFT interactions. In LO the
peripheral left/right densities (at the points b = ∓bex)
arise from the single π+n intermediate state, in which
the neutron has y–spin −1/2 and the pion is in a state
with orbital angular momentum L = 1 and y–projection
Ly = +1. Because of the orbital motion the pion on
the left moves toward the observer and has net posi-
tive z–momentum kz > 0, while the pion on the right
moves away and has kz < 0. The plus current carried
by a free charged pion is 〈π+(k)|J+|π+(k)〉 = 2k+ =

2(
√
|k|2 +M2

π + kz). The observer thus sees a larger
plus current on the left than on the right, resulting in a
left–right asymmetry. If the motion of the pion were non-
relativistic, |k| ≪ Mπ the asymmetry would be small,
ρleft/ρright = 1 + O(|k|/Mπ). That the asymmetry ob-
tained in chiral EFT is large therefore directly attests to
relativistic motion of the pion, |k| = O(Mπ).
The intuitive arguments presented here assume rota-

tional symmetry around the y–axis, which is not present
in the LF formulation. The explicit expressions Eqs. (13)
and (14) show, however, that all the described features
are realized in the LF formulation as well, if the nucleon
transverse spin states are defined as specified above.

V. SUMMARY AND DISCUSSION

The LF formulation of chiral EFT provides a con-
cise representation of the peripheral transverse densities,
which reveals new properties (positivity, inequality) and
permits a simple mechanical interpretation. The large
left–right asymmetry is rooted in the spin structure of
the pion–nucleon coupling and the essentially relativis-
tic motion of pions and represents a striking chiral ef-
fect. It could be observed by extracting the peripheral
transverse densities from precise measurements of the nu-
cleon’s Dirac and Pauli form factors at low momentum
transfer, using dispersion fits that respect the analytic
properties [20]; see Ref. [21] for details. Similar chiral
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FIG. 4. (Color online) Quantum–mechanical picture of chiral
dynamics in the peripheral transverse densities (explanation
in text).

left–right asymmetries may be observed in high-energy
proton–proton collisions, by selecting events in which the
scattering takes place on a peripheral pion; such pro-
cesses would permit much more direct tests of the effect
described here.

The present study focuses on the structure of the pe-
ripheral transverse densities in LO chiral EFT. The rela-
tivistic LO approximation captures the basic asymptotic
behavior of the densities in the chiral region b = O(M−1

π ),
as established on general grounds [10, 11]. It correctly
implements the analytic properties of the form factors in
the region t = O(M2

π) — the two–pion cut at t > 4M2
π,

and the enhancement of the imaginary parts due to
a subthreshold singularity on the unphysical sheet —
which govern the form of the large–distance behavior
of the densities. The densities are obtained from the
imaginary parts of the form factors on the cut, which
are renormalization–scheme–independent in LO. Higher–
order chiral corrections modify the coupling of the two–
pion exchange to the electromagnetic current and to the
nucleon, but not the analytic properties at t = O(M2

π),
and thus do not qualitatively change the asymptotic be-
havior at b = O(M−1

π ). A numerical estimate, using the
higher–order chiral EFT results for ImFV

1,2(t) at t > 4M2
π

of Ref. [15] and the dispersive representation of transverse
densities of Refs. [10, 11], indicates that at b = 2M−1

π

higher–order chiral corrections would increase ρV1 (b) by
a factor∼1.1 and ρ̃V2 (b) by∼1.9; at b = 5M−1

π the factors
are ∼1.2 and ∼1.5 respectively (note that this estimate is
scheme–dependent and includes both higher–order loop
corrections and contact terms [15]). The trend of the
higher–order corrections would not change our conclusion
regarding the large left–right asymmetry in the nucleon’s
peripheral plus current density. How such higher–order
chiral corrections could be incorporated in the LF wave
function representation described here, what renormal-
ization scheme would be appropriate for this purpose,
and how the corrections would be split between the wave
function overlap and contact terms, are interesting ques-
tions that merit a dedicated future study.
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The dispersive representation [10, 11] can also be used
to evaluate the peripheral transverse densities with em-
pirical estimates of ImFV

1,2(t) at t > 4M2
π obtained from

dispersion analysis [22, 23]. This approach allows one
to combine the contributions to the densities from soft–
pion exchange at t = O(M2

π) (which are captured by
the chiral EFT calculation reported here) with those of ρ
meson exchange at t = O(M2

ρ ). Numerical studies show
that the soft–pion contributions become significant only
at b ∼ 2M−1

π and account for the total isovector densi-
ties only at b >∼ 3M−1

π [21]. This defines the region of
applicability of chiral EFT in the peripheral transverse
densities.

The peripheral chiral structure described here appears
in the isovector transverse densities. In the isoscalar com-
bination ρS ≡ (ρp+ρn)/2 the chiral contributions involve
three–pion exchange between the current and the nucleon
and are strongly suppressed; these densities are generated
mainly by non-chiral ω meson exchange up to very large
distances [21]. As a consequence the isovector combina-
tion dominates at large b, and its chiral structure governs
the behavior of the individual proton and neutron densi-

ties: ρp,n(b) = ρS(b)± ρV (b) ≈ ±ρV (b) at b >∼ 3M−1
π .

Further details regarding the LF wave function rep-
resentation of peripheral transverse densities, including
longitudinal spin and the correspondence with LF time-
ordered perturbation theory, are presented in a recent
article [24]. The representation can be extended to in-
clude intermediate ∆ isobars and implement the proper
scaling behavior in the large–Nc limit of QCD [10, 11].
It can also be used to compute the peripheral densities
of matter and angular momentum (describing the form
form factors of the energy–momentum tensor) and de-
velop a mechanical representation of these structures. It
can be applied further to the nucleon’s peripheral par-
ton densities (generalized parton distributions) [19, 25].
The LF representation has also been employed to study
aspects of chiral nucleon structure (self–energies, elec-
tromagnetic couplings) without restriction to peripheral
distances [26].
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