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The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp)
and proton-neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in
the ground state of atomic nuclei. This work presents an analysis of electroinduced single-proton
and two-proton knockout measurements off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated
by scattering off SRC pairs. The nuclear mass dependence of the observed A(e, e′pp)/12C(e, e′pp)
cross-section ratios and the extracted number of pp- and pn-SRC pairs are much softer than the
mass dependence of the total number of possible pairs. This is in agreement with a physical picture
of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field
basis.

PACS numbers: 25.30.Rw, 25.30.Fj, 24/10.-i

I. INTRODUCTION

The nuclear momentum distribution (NMD) is often
quoted as being composed of two separate parts [1–3].
Below the Fermi momentum (kF ≈ 250 MeV/c) single
nucleons move as independent particles in a mean field
created by their mutual interactions. Above the Fermi
momentum (k > kF ) nucleons predominantly belong to
short-range correlated (SRC) pairs with high relative and
low center-of-mass (c.m.) momenta, where high and low
are relative to the Fermi momentum [4–8]. In addition to
its intrinsic interest, the NMD and its division into mean-
field and correlated parts is relevant to two-component
Fermi systems [9], neutrino physics [10, 11], and the sym-
metry energy of nuclear matter [12].

The mean-field and long-range aspects of nuclear dy-
namics have been studied extensively since the dawn of
nuclear physics. The effect of long-range correlations on
the NMDs is limited to momenta which do not extend
far beyond kF [13]. Study of the short-range aspects of
nuclear dynamics has blossomed with the growing avail-
ability of high-energy high-intensity electron and pro-
ton accelerators. Recent experiments confirm the pre-
dictions that SRC pairs dominate the high-momentum
tails (k > kF ) of the NMDs [4–7], accounting for 20-25
% of the NMD probability density [14–17]. These high-
momentum tails have approximately the same shape for
all nuclei [2, 3, 9, 14–18], differing only by scale factors
which can be interpreted as a measure of the relative
number of SRC pairs in the different nuclei. In this work,
we aim at understanding the underlying dynamics which
give rise to this universal behavior of the high-momentum
tail.

An intuitive picture describing the dynamics of nuclei
including SRCs is that of independent bound nucleons
moving in the nucleus, occasionally getting sufficiently
close to each other to temporarily fluctuate into SRC-
induced nucleon-nucleon pairs. This picture can be for-

mally implemented in a framework in which one shifts the
complexity of the nuclear SRC from the wave functions to
the operators by calculating independent-particle model
(IPM) Slater determinant wave functions and acting on
them with correlation operators to include the effect of
SRCs [18–20]. The observed number of proton-proton
(pp) and proton-neutron (pn) SRC pairs in various nuclei
can then be used to constrain the amount and the quan-
tum numbers of the initial-state IPM nucleon-nucleon
(SRC-prone) pairs that can fluctuate dynamically into
SRC pairs through the action of correlation operators.

In this paper, we will extract the relative number of
pp-SRC and pn-SRC pairs in different nuclei from mea-
surements of electroinduced two-proton and one-proton
knockout cross-section ratios for medium and heavy nu-
clei (27Al, 56Fe, and 208Pb) relative to 12C in kinematics
dominated by scattering off SRC pairs [8, 21]. In these
kinematics in the plane-wave approximation A(e, e′pp)
cross sections are proportional to the number of pp-pairs
in the nucleus and A(e, e′p) cross sections are propor-
tional to twice the number of pp pairs plus the number of
pn pairs (2pp+pn). Therefore, after correcting the mea-
sured cross sections for rescattering of the outgoing nu-
cleons from the residual nucleus (final state interactions
or FSI), the relative number of pp and pn pairs will be
extracted from measurements of A(e, e′pp)/12C(e, e′pp)
and A(e, e′p)/12C(e, e′p) cross-section ratios [8].

We will then compare the A(e, e′pp)/12C(e, e′pp) cross-
section ratios and the extracted number of pp and pn
pairs to factorized calculations using different models of
nucleon pairs in order to deduce the quantum numbers
of the IPM SRC-prone pairs. We will provide strong evi-
dence that the relative quantum numbers of the majority
of the SRC-susceptible pairs are 1S0(1) for pp and 3S1(0)
for pn. Hereby, we used the notation 2J+1LS(T ) to iden-
tify the pair’s quantum state (T is the total isospin).

This paper is structured as follows. The one- and two-
proton knockout experiments analyzed in this paper are
described in Sec. II. In Sec. III we introduce the model to



2

calculate the FSI-corrected two-nucleon knockout cross-
section ratios. Results and discussions are presented in
Sec. IV. Section V contains the concluding remarks.

II. EXPERIMENT

The one- and two-proton knockout measurements an-
alyzed in this paper were described in [8] and its sup-
plemental information. They were carried out using the
CEBAF Large Acceptance Spectrometer (CLAS) [22], lo-
cated in Hall-B of the Thomas Jefferson National Ac-
celerator Facility (Jefferson Lab) in Newport News, Vir-
ginia. The data were collected in 2004 using a 5.014 GeV
electron beam incident on 12C, 27Al, 56Fe and 208Pb tar-
gets. The scattered electron and knocked out proton(s)
were measured with CLAS. We selected A(e, e′p) events
in which the electron interacts with a single fast proton
from a SRC nucleon-nucleon pair in the nucleus by re-
quiring large four-momentum transfer (Q2 > 1.5 GeV2),

Bjorken scaling parameter xB = Q2

2mNω
> 1.2 and miss-

ing momentum 300 < |~pmiss| < 600 MeV/c. The four-

momentum transfer Q2 = ~q · ~q−
(
ω
c

)2
where ~q and ω are

the three-momentum and energy transferred to the nu-
cleus respectively; mN is the nucleon mass; the missing
momentum ~pmiss = ~pp−~q, and ~pp is the knockout proton
three-momentum. We also required that the knockout
proton was detected within a cone of 25◦ of the momen-
tum transfer ~q and that it carried at least 60% of its

momentum (i.e.
|~pp|
|~q| ≥ 0.6). To suppress contributions

from inelastic excitations of the struck nucleon we lim-
ited the reconstructed missing mass of the two-nucleon
system mmiss < 1.1 GeV/c2.

The A(e, e′pp) event sample contains all A(e, e′p)
events in which a second, recoil, proton was detected
with momentum greater than 350 MeV/c. Fig. 1 shows
the distribution of the cosine of the angle between the
initial momentum of the knockout proton and the recoil
proton for these events [8]. The recoil proton is emitted
almost diametrically opposite to the missing-momentum
direction. The observed backward-peaked angular distri-
butions are very similar for all nuclei and are not due to
acceptance effects as shown by the angular distribution
of mixed events. These distributions are a signature of
scattering on a nucleon in a SRC pair, indicating that
the two emitted protons were largely back-to-back in the
initial state, having large relative momentum and small
c.m. momentum [6, 23]. Further evidence of scattering on
a SRC nucleon pair is that the recoil proton was emitted
at forward angles (i.e., angles in the range 20-60◦ with
respect to ~q).

The A(e, e′p)/12C(e, e′p) and A(e, e′pp)/12C(e, e′pp)
cross-section ratios are obtained from the ratio of the
measured number of events, normalized by the incident
integrated electron flux and the nuclear density of each
target. During the experiment all solid targets were
held in the same location, the detector instantaneous

FIG. 1: (color online). The distribution (in arbitrary units)
of the cosine of the angle γ between the missing momentum
of the leading proton and the recoil proton for 12C (dark blue
long-dashed line), 27Al (red dotted line), 56Fe (purple solid
line), and 208Pb (blue dashed line). The black dashed line
shows the distribution of the random phase-space extracted
from mixed events.

rate was kept constant, and the kinematics of the mea-
sured events from all target nuclei were almost identi-
cal [8, 21]. Therefore detector acceptance effects cancel
almost entirely in the A(e, e′pp)/C(e, e′pp) cross section
ratios. Due to the large acceptance of CLAS, radiative
effects affect mainly the electron kinematics. These cor-
rections were calculated in Ref. [21] for the extraction of
the A(e, e′p)/C(e, e′p) cross section ratio. As the electron
kinematics is the same for the A(e, e′p) and A(e, e′pp) re-
actions, the same corrections are used here to extract the
A(e, e′pp)/C(e, e′pp) cross-section ratios. See Ref. [8] for
additional details.

III. FSI AND CROSS-SECTION MODEL

In order to extract the underlying relative number of
pp and pn SRC pairs in nuclei from the measured cross-
section ratios, we must correct the data for FSI effects
[8]. Alternatively, in order to compare the measured ra-
tios to calculations, we must correct either the data or
the calculation for FSI effects. The two dominant contri-
butions are: (1) attenuation of the outgoing nucleon(s)
upon traversing the residual A− 1 or A− 2 nucleus, and
(2) rescattering of a neutron into a proton (i.e., single
charge-exchange (SCX)). SCX can lead to a pp final state
which originates from a pn pair.

The effect of FSIs of the ejected pair with the re-
maining A − 2 spectators was computed in a relativis-
tic multiple-scattering Glauber approximation (RMSGA)
[24, 25]. The RMSGA is a multiple-scattering for-
malism based on the eikonal approximation with spin-
independent NN interactions. We have included both the
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elastic and the SCX rescattering of the outgoing nucleons
with the A−2 spectators. The three parameters entering
in the RMSGA model are taken from NN scattering data
and yield an excellent description of the world’s A(e, e′p)
transparency data [25]. In this work no free parameters
are tuned to model the FSI effects in the A(e, e′p) and
A(e, e′pp) data under study. The RMSGA yields attenu-
ation coefficients that are similar to the power-law results
obtained in nuclear transparency measurements [21]. For
those reasons, we estimate the systematic uncertaintly
related to the FSI calculation as small.

The SCX probabilities are calculated in a semi-classical
approximation. The probability of charge-exchange re-
scattering for a nucleon with initial IPM quantum num-
bers α which is brought in a continuum state at the co-
ordinate ~r is modeled by,

P
α(β)
CX (~r ) = 1− exp[−σCX(s)

∫ +∞

z

dz′ραβ(z′)] . (1)

The z-axis is chosen along the direction of propagation of
the nucleon with initial quantum numbers α. The quan-
tum numbers of the correlated partner in the SRC pair
are denoted with β. The ραβ is the IPM one-body den-
sity of the residual nucleus available for SCX reactions.
The ραβ is determined as the IPM density of the target
nucleus, minus the contribution from the single-particle
orbitals α and β. Obviously, for an ejected proton (neu-
tron) only the neutron (proton) density of the residual
nucleus affects SCX reactions. σCX(s) in Eq. (1), with
s the total c.m. energy squared of the two nucleons in-
volved in the SCX [26], can be extracted from elastic
proton-neutron scattering data [27].

As outlined in Refs. [23, 28], in the spectator approxi-
mation it is possible to factorize the A(e, e′pN) cross sec-
tion in kinematics probing short-range correlated pairs as

d8σ [A(e, e′pN)]

d2Ωe′d
3 ~P12d3~k12

= KepNσepN (~k12)F
pN(D)
A (~P12) , (2)

where Ωe′ is the solid angle of the scattered electron,

and ~k12 and ~P12 are the relative and c.m. momenta of
the nucleon pair that absorbed the virtual-photon. The

KepN is a kinematic factor and σepN (~k12) is the cross
section for virtual-photon absorption on a correlated pN

pair. The F
pN(D)
A (~P12) is the distorted two-body c.m.

momentum distribution of the correlated pN pair. In the
limit of vanishing FSIs, it is the conditional c.m. momen-
tum distribution of a pN pair with relative Sn=0 quan-

tum numbers. Distortions of F
pN(D)
A (~P12) due to FSI are

calculated in the RMSGA. The factorized cross-section
expression of Eq. (2) hinges on the validity of the zero-
range approximation (ZRA), which amounts to putting
the relative pair coordinate ~r12 to zero. The ZRA works
as a projection operator for selecting the very short-range
components of the IPM relative pair wave functions.

The probability for charge-exchange reactions in pN
knockout is calculated on an event per event basis, us-

ing the SRC pair probability density F
pN(D)
A (~R12) in the

ZRA corrected for FSI. With the aid of the factorized
cross-section expression of Eq. (2), the phase-space inte-
grated A(e, e′pN) to 12C(e, e′pN) cross-section ratios can
be approximately expressed as integrals over distorted
c.m. momentum distributions,

σ [A(e, e′pN)]

σ [12C(e, e′pN)]
≈∫

d2Ωe′d
3~k12KepNσepN (~k12)

∫
d3 ~P12F

pN(D)
A (~P12)∫

d2Ωe′d
3~k12KepNσepN (~k12)

∫
d3 ~P12F

pN(D)
C (~P12)

=

∫
d3 ~P12F

pN(D)
A (~P12)∫

d3 ~P12F
pN(D)
C (~P12)

. (3)

In the absence of FSI, the integrated c.m. momentum

distributions
∫

d3 ~P12F
pN(D)
A (~P12) equal the total num-

ber of SRC-prone pN pairs in the nucleus A. Hence,
the cross section ratios of Eq. (3) provide access to the
relative number of SRC pN-pairs up to corrections stem-
ming from FSI. We have evaluated the ratios of the dis-
torted c.m. momentum distributions of Eq. (3) over
the phase space covered in the experiment. Given the
almost 4π phase space and the high computational re-
quirement of multidimensional FSI calculations, we use
an importance-sampling approach. The major effect on

the c.m. momentum distribution F
pN(D)
A (~P12) when in-

cluding FSIs is an overall attenuation, the shape is almost
unaffected [23]. Motivated by this, we used the c.m. mo-
mentum distributions without FSI as sampling distribu-
tion for the importance sampling in the FSI calculations.
When convergence is reached, the computed impact of
FSI is extrapolated to the whole phase space.

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the measured uncorrected
σ[A(e,e′pp)]
σ[12C(e,e′pp)]

cross-section ratios compared with the ZRA reaction-
model calculation with and without RMSGA FSI correc-
tions. The first striking observation is that the measured
cross-section ratios increase very slowly with A (e.g., the
Pb/C ratio is only 3.8 ± 0.5). For contrast, combinato-
rial scaling based on the number of pp pairs leads to a
ratio of over 200. The ZRA-RMSGA calculations agree
well with the measured data, yielding a Pb/C ratio of
4.96+0.11

−0.14. The ZRA and ZRA-RMSGA calculations as-
sume that only pairs with a finite probability density at
relative coordinate zero contribute to the cross-section.
This is consistent with assuming that only IPM pairs in
a relative Sn=0 state contribute.

Figure 3 shows the number of pp- and pn-SRC pairs in
various nuclei relative to Carbon extracted from the mea-
sured A(e, e′pp)/C(e, e′pp) and A(e, e′p)/C(e, e′p) cross-
section ratios following the method outlined in Ref. [8]
with RMSGA corrections for FSI and SCX. The ex-
tracted number of pp pairs are very sensitive to SCX.
If the virtual photon is absorbed on a pn pair and the
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FIG. 2: (color online). The mass dependence of the
A(e, e′pp)/12C(e, e′pp) cross-section ratios. The points show
the measured, uncorrected, cross section ratios. The lower
orange band and upper grey line denote ZRA reaction-model
calculations for 12C, 27Al, 56Fe, and 208Pb based on Eq. (3)
with and without FSI corrections respectively. The width of
the ZRA-RMSGA band reflects the maximum possible effect
of SCX.

neutron subsequently undergoes a single charge exchange
reaction with a proton, two protons will be detected in
the final state. These events must be subtracted in order
to extract the number of pp-SRC pairs. As the contri-
bution from these pn pairs to the pp final state is com-
parable to the number of initial pp pairs, this leads to
a large uncertainty in the number of pp pairs, especially
for heavy nuclei.

Figure 3 also shows the expected number of pp and pn
SRC pairs relative to Carbon for different quantum num-
bers of the IPM pairs that can dynamically form SRC
pairs through the action of correlation operators. These
include (a) all possible NN pairs (i.e. Z(Z-1)/(6 · 5) and
ZN/(6 ·6) for pp and pn pairs respectively), (b) pairs in a
nodeless relative S state (i.e. Sn=0), and (c) L ≤ 1 pairs
(i.e. both S and P state pairs). Those ”Sn=0” pairs are
characterized by the (n = 0, L = 0) quantum numbers for
their relative orbital motion. Of all possible states for the
pairs, the Sn=0 pairs have the highest probability for the
two nucleons in the pair to approach each other closely.
Close-proximity IPM pn pairs in a 3S1(0) state are highly
susceptible to the tensor correlation operator that cre-
ates SRC pairs in a spin-triplet state with predominantly
deuteron-like quantum numbers (L = 0, 2;T = 0;S = 1).

We determine the number of pairs in each case us-
ing an IPM harmonic-oscillator basis and performing a
standard transformation to relative and center-of-mass
coordinates as detailed in Ref. [29]. The relative number
of pairs are displayed in Fig. 3 and listed in Table I. As
can be seen, both (a) the naive combinatorial assump-
tion and (c) the calculations that include IPM S and P

pp pn

Sn=0 ZRA expt. Sn=0 ZRA expt.
27Al / 12C 3.10 2.89 2.47+0.55

−0.67 2.99 2.52 2.99+0.26
−0.22

56Fe / 12C 8.60 5.89 3.98+0.99
−1.19 7.72 4.82 6.03+0.60

−0.51
208Pb/ 12C 45.29 17.44 7.73+5.92

−7.23 37.62 18.80 24.87+3.89
−3.42

TABLE I: The relative number of SRC pp and pn pairs calcu-
lated using Sn=0 counting and the ZRA reaction model com-
pared to the extracted values from the measured A(e, e′p) and
A(e, e′pp) ratios after correcting for FSI effects. The error in-
cludes the uncertainties on the cross-section ratios and FSI
calculations.

pairs contributions both drastically overestimate the in-
crease in the number of pairs with A. The ZRA and Sn=0

pairs counting calculations are in fair agreement with the
extracted number of pp and pn pairs.

As both the ZRA and the Sn=0 pair counting project
IPM states onto close-range pairs, we expect the two
methods to produce a similar mass dependence of the
number of SRC pairs The ZRA predicts a somewhat
softer mass dependence (∝ A1.01±0.02 vs A1.12±0.02).
This can be explained by the fact that the ZRA is a
more restrictive projection on close-proximity pairs than
the Sn=0 counting which accounts also for ~r12 6= 0 con-
tributions.

The observed agreement with the experimental data
indicates that correlation operators acting on IPM Sn=0

pairs are responsible for the largest fraction of the high-
momentum nucleons in nuclei. This gives further support
to the assumption that the number of IPM pairs with
quantum numbers Sn=0 is a good proxy for the number
of correlated pairs in any nucleus A [18, 29, 30]. This is
also consistent with an analysis of the cross section of the
ground-state to ground-state transition in high-resolution
16O(e, e′pp)14C measurements [31, 32] which provided ev-
idence for the 1S0(1) dominance in SRC-prone pp pairs.

V. CONCLUSIONS

We have extracted the relative number of np and pp
SRC correlated pairs in nucleus A relative to Carbon
from previously published measured A(e, e′pp)/C(e, e′pp)
and A(e, e′p)/C(e, e′p) cross section ratios corrected for
final state interactions. The relative number of np and pp
pairs increases much more slowly with A than expected
from simple combinatorics.

We calculated the cross section in a framework which
shifts the complexity of the nuclear SRC from the wave
functions to the operators by calculating independent-
particle model (IPM) Slater determinant wave func-
tions and acting on them with correlation operators to
include the effect of SRCs [18–20]. The uncorrected
A(e, e′pp)/C(e, e′pp) cross section ratios are consistent
with a zero range approximation (ZRA) calculation in-
cluding the effects of FSI.
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FIG. 3: (color online). The mass dependence of the num-
ber of pp (top panel) and pn (bottom panel) SRC pairs of
nucleus A relative to 12C. Data are extracted from the mea-
sured CLAS A(e, e′p) and A(e, e′pp) cross section ratios [8, 21]
after correcting for FSI. Error bars include the estimated un-
certainty on the cross-section ratios and the FSI corrections.
The green squares correspond with unconditional counting of
the pp pairs i.e. (Z(Z-1)/30 in the upper panel) and pn pairs
(ZN/36 in the bottom panel) for the nuclei 12C, 16O, 27Al,
40Ca, 48Ca, 56Fe, 63Cu, 108Ag and 208Pb. The yellow dia-
monds are the ratios obtained by counting IPM pairs in a rel-
ative S and P state. The blue triangles count IPM Sn=0 pairs.
The solid line denotes the result of a reaction-model calcula-
tion for scattering from close-proximity pairs (Eq. (3)) which
takes full account of the experimental phase space. This cal-
culation does not include FSI corrections as these are applied
to the data, see text for details.

Due to factorization, the ratio of calculated cross sec-
tions is approximately equal to the ratio of the distorted
c.m. momentum distributions. In the absence of FSI, the
integrated c.m. momentum distribution equals the total
number of SRC-prone pairs in that nucleus. We com-
pared three choices of SRC-prone pairs to the data: (a)
all pairs, (b) pairs in a nodeless relative S state (Sn=0),
and (c) L ≤ 1 pairs (i.e., both S and P).

We found that the soft mass dependence of the mea-
sured A(e, e′pp) cross-section ratios agrees with scatter-
ing from highly selective close-proximity pairs (i.e., only
IPM relative Sn=0 pairs). The mass dependence of the
extracted ratios of the number of short-range correlated
pp and pn pairs provides additional support for this con-
clusion. All these results consistently hint at a physical
picture whereby the aggregated effect of SRC in the nu-
clear wave function is determined to a large extent by
mass-independent correlation operators on Sn=0 pairs.
This provides additional evidence for the scale separation
between the mean-field and SRC dynamics that has, for
example, been used in calculations of NMD of Refs. [18–
20]. Amongst other things, these conclusions are likely to
affect the models used to estimate the effect of correlated
pairs on neutrino-nucleus cross sections [33] and studies
of the nuclear equation-of-state in conditions of increased
density—enhanced sensitivity of SRC [34].
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