

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Gamow-Teller transitions to $\{45\}$ Ca via the $\{45\}$ Sc(t, $\{3\}$ He+ γ) reaction at 115 MeV/u and its application to stellar electron-capture rates S. Noji *et al.*

> Phys. Rev. C **92**, 024312 — Published 17 August 2015 DOI: 10.1103/PhysRevC.92.024312

Gamow-Teller transitions to 45 Ca via the 45 Sc $(t, {}^{3}$ He + $\gamma)$ reaction at 115 MeV/u and its application to stellar electron capture rates

3	S. Noji, ^{1, 2, *} R. G. T. Zegers, ^{1, 2, 3} Sam M. Austin, ^{1, 2} T. Baugher, ^{1, 3, †} D. Bazin, ¹ B. A. Brown, ^{1, 2, 3}
4	C. M. Campbell, ⁴ A. L. Cole, ^{5,2} H. J. Doster, ^{1,3} A. Gade, ^{1,3} C. J. Guess, ^{6,‡} S. Gupta, ⁷
5	G. W. Hitt. ⁸ C. Langer, ^{1,2} S. Lipschutz, ^{1,3,2} E. Lunderberg, ^{1,3} R. Meharchand, ^{9,§} Z. Meisel, ^{1,2,3}
6	G. Perdikakis. ^{10,1,2} J. Pereira. ^{1,2} F. Recchia. ^{1,¶} H. Schatz. ^{1,2,3} M. Scott. ^{1,3} S. R. Stroberg. ^{1,3,**}
7	C. Sullivan, ^{1,2,3} L. Valdez, ¹¹ C. Walz, ^{1, ††} D. Weisshaar, ¹ S. J. Williams, ¹ and K. Wimmer ^{10,1,‡‡}
8	¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
9	² Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
10	³ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
11	⁴ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
12	⁵ Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA
13	⁶ Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
14	⁷ Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
15	⁸ Department of Applied Mathematics and Sciences, Khalifa University of Science,
16	Technology, and Research, P.O. Box 127788 Abu Dhabi, UAE
17	⁹ Neutron and Nuclear Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
18	¹⁰ Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
19	¹¹ Orange High School, Orange, New Jersey 07050, USA
	Background: Stellar electron-capture reactions on medium-heavy nuclei are important for many astrophysical phenomena, including core-collapse and thermonuclear supernovæ and neutron stars. Estimates of electron-capture rates rely on accurate estimates of Gamow-Teller strength distributions, which can be extracted from charge-exchange reactions at intermediate beam energies. Measured Gamow-Teller transition strength distributions for stable pf -shell nuclei are reasonably well reproduced by theoretical calculations in the shell model, except for lower mass nuclei where admixtures from the sd shell can become important.
	Purpose: This paper presents a β^+ charge-exchange experiment on ⁴⁵ Sc, one of the lightest <i>pf</i> -shell nuclei. The focus was on Gamow-Teller transitions to final states at low excitation energies, which are particularly important for accurate estimations of electron-capture rates at relatively low stellar densities. The experimental results are compared with various theoretical models.

Method: The double-differential cross section for the ${}^{45}Sc(t, {}^{3}He + \gamma)$ reaction was measured using the NSCL Coupled-Cyclotron Facility at 115 MeV/u. Gamow-Teller contributions to the excitation-energy spectra were extracted by means of a multipole-decomposition analysis. γ rays emitted due to the deexcitation of ${}^{45}Ca$ were measured using GRETINA to allow for the extraction of Gamow-Teller strengths from very weak transitions at low excitation energies.

Results: Gamow-Teller transition strengths to 45 Ca were extracted up to an excitation energy of 20 MeV, and that to the first excited state in 45 Ca at 174 keV was extracted from the γ -ray measurement, which, even though weak, is important for the astrophysical applications and dominates under certain stellar conditions. Shell-model calculations performed in the pf shell-model space with the GXPF1A, KB3G, and FPD6 interactions did not reproduce the experimental Gamow-Teller strength distribution, and a calculation using the quasiparticle random phase approximation that is often used in astrophysical simulations also could not reproduce the experimental strength distribution.

Conclusions: Theoretical models aimed at describing Gamow-Teller transition strengths from nuclei in the lower pf shell for the purpose of estimating electron-capture rates for astrophysical simulations require further development. The likely cause for the relatively poor performance of the shell-model theory is the influence of intruder configurations from the sd shell. The combination of charge-exchange experiments at intermediate beam energy and high-resolution γ -ray detection provides a powerful technique to identify weak transitions to low-lying final states that are nearly impossible to identify without the coincidences. Identification of these weak low-lying transitions is important for providing accurate electron-capture rates for astrophysical simulations.

PACS numbers: 23.40.-s, 25.55.Kr, 26.30.Jk, 27.40.+z

20

^{*} email: noji@rcnp.osaka-u.ac.jp; Present address: Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

University, Piscataway, New Jersey 08854, USA

 $^{^{\}ddagger}$ Present address: Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081

[†] Present address: Department of Physics and Astronomy, Rutgers

Electron-capture (EC) reactions on medium-heavy nu-22 23 clei play a significant role in many astrophysical phe-24 nomena [1] such as core-collapse (type II) supernovæ 25 (SNe) [1–5], thermonuclear (type Ia) SNe [6, 7], and heating [8] and cooling [9] processes in crusts of accreting neu-26 tron stars. The estimation of EC reaction rates requires 27 knowledge of Gamow-Teller (GT) strength [B(GT)] dis-28 tributions in the β^+ direction. Typically a large number 29 of nuclei, including some that are unstable, play a role. 30 Moreover, in stellar environments, the temperature can 31 be sufficiently high to populate excited states in nuclei, 32 on which EC can occur as well. Since it is impossible to 33 measure all relevant GT transitions, experiments must 34 focus on comprehensively benchmarking theoretical ap-35 proaches and on nuclei that are particularly important 36 for specific astrophysical processes. 37

Experimental GT strengths can be obtained from β -38 decay measurements, but such measurements are limited 39 to an often small Q-value window, if they are feasible 40 at all. Charge-exchange (CE) reactions at intermediate 41 beam energies ($\gtrsim 100 \,\mathrm{MeV}/u$) can provide full $B(\mathrm{GT})$ 42 distributions based on the well-established proportion-43 ality between the CE cross section at zero momentum 44 transfer and B(GT) [10–12]. In Refs. [13] and [14], a systematic study of the EC rates was performed for 13 46 ⁴⁷ stable *pf*-shell nuclei with $45 \leq A \leq 64$ based on CE data ⁴⁸ from (n, p), $(d, {}^{2}\text{He})$ and $(t, {}^{3}\text{He})$ experiments for which the locations of daughter states at low excitation energies 49 have been well established. It was found that experimen-50 tal GT strength distributions and derived EC rates are 51 generally reproduced quite well in shell-model (SM) cal-52 culations using the GXPF1A [15–17] and the KB3G [18] 53 interactions. A study of GT strengths from ⁵⁶Ni [19, 20] 54 55 interaction perform slightly better than the SM calcula-57 the quasiparticle random phase approximation (QRPA) 58 59 60 61 larly used in astrophysical simulations that require EC 62 63 rates.

64 experiments and SM calculations were observed [13], es-65

- Present address: TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- †† Present address: Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- ‡‡ Present address: Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

67 transitions are the most important for the accurate es-68 timation of EC rates in astrophysical phenomena, espe-⁶⁹ cially at lower stellar densities and temperatures. In a re-⁷⁰ cent study of the $(t, {}^{3}\text{He})$ reaction on the nucleus ${}^{46}\text{Ti}$ [22] 71 significant deficiencies in SM calculations based on the ⁷² GXPF1A, KB3G, and FPD6 [23] effective interactions $_{73}$ for the *pf* shell were observed. It is likely due to admix-74 tures from protons and neutrons in the sd-shell config-⁷⁵ urations which are not included in the SM calculations. ⁷⁶ which assume a closed ⁴⁰Ca core. It was concluded that 77 further improvements to the theoretical calculations of $_{78}$ GT strengths for nuclei in the lower pf shell are needed. In the present study, we investigated nearby 45 Sc, $_{80}$ which is one of the lightest *pf*-shell nuclei, by measur- $_{\rm ^{81}}$ ing the $B({\rm GT})$ distribution via the ${\rm ^{45}Sc}(t,{\rm ^{3}He})$ reaction. ⁸² Under the assumption of a closed ⁴⁰Ca core, ⁴⁵Sc is one $_{83}$ of the simplest *pf*-shell nuclei with non-vanishing first-⁸⁴ order β^+ GT strength since it has only one proton in $_{85}$ the pf shell. Hence, it is an attractive case to further ⁸⁶ investigate possible admixtures from *sd*-shell configurations. We have applied the same technique as used for 87 ⁸⁸ the investigation of ⁴⁶Ti [22], namely a CE reaction mea-⁸⁹ surement in combination with high-resolution γ -ray de-⁹⁰ tection from the excited residue. This enables to perform ⁹¹ detailed spectroscopy since one can gate on a specific ex- $_{92}$ citation energy in the $(t, {}^{3}\text{He})$ spectrum and investigate $_{93}$ the γ -decays without ambiguities related to feeding from ⁹⁴ higher-lying states. Note that it is clear that one cannot ⁹⁵ pinpoint a single, or even a few, nuclei that are critical for ⁹⁶ the relevant astrophysical scenarios. The approach fol-⁹⁷ lowed here is to provide detailed data that will guide the 98 development of theoretical models in a deliberate man-⁹⁹ ner. Specifically, the focus is on providing such guidance $_{100}$ for nuclei just above the *sd* shell-model space.

The GT strength distribution from ${\rm ^{45}Sc}$ to ${\rm ^{45}Ca}$ had 101 indicated that the SM calculations with the GXPF1A ¹⁰² been previously extracted in an (n, p) measurement at ¹⁰³ 198 MeV at TRIUMF [24]. The relatively poor energy tions with the KB3G interaction. Calculations based on 104 resolution of that measurement (~1 MeV in FWHM) ¹⁰⁵ made it difficult to make a detailed comparison between formalism of Ref. [21] performed worse than either SM $_{106}$ the data and theory. In the present work, the $^{45}Sc(t, {}^{3}He)$ calculations. These QRPA calculations, as well as the 107 reaction at an incident triton energy of $115 \,\mathrm{MeV}/u$ was SM calculations using the KB3G interaction, are regu- 108 used to extract the GT strength distribution with bet-¹⁰⁹ ter resolution, which, together with the high-resolution 110 coincidence measurement of the deexcitation γ -ray from For specific nuclei, significant discrepancies between 111 the residue, allowed for a more precise comparison be-112 tween data and theory and made it possible to include ⁶⁶ pecially for GT excitations to low-lying final states. Such ¹¹³ the case of ⁴⁵Sc in the evaluation of theoretical EC rates $_{114}$ for *pf*-shell nuclei as presented in Refs. [13, 14].

EXPERIMENT II.

115

The measurement was carried out at the Coupled Cy-116 ¹¹⁷ clotron Facility at the National Superconducting Cy-¹¹⁸ clotron Laboratory. A 150-MeV/u beam of ¹⁶O with ¹¹⁹ an intensity of 150 pnA impinged on a 3525-mg/cm²-¹²⁰ thick beryllium target, and tritons at $115 \,\mathrm{MeV}/u$ were 121 selected from various fragmentation products in the

[§] Present address: Institute for Defense Analyses, Alexandria, VA 22311

[¶] Present address: Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, I-35131 Padova, Italy

 $_{122}$ A1900 fragment separator [25] with a 195-mg/cm²-thick wedge-shaped aluminum degrader at the intermediate image [26]. About 5×10^6 tritons (³H) per second with 124 a purity in excess of 99% were transported by using the 125 dispersion-matching technique [27, 28] to a ⁴⁵Sc reaction target with a thickness of 9.1 mg/cm^2 and with a dimen-126 127 sion of $2" \times 3"$. 128

The ³He ejectiles from the target were magnetically 120 130 momentum-analyzed by the S800 spectrometer [29], and detected at the focal plane by two cathode-readout drift 131 chambers (CRDCs) [30]. A 5 mm-thick plastic scintil-132 lation counter was also placed at the focal plane of the 133 S800 and enabled particle identification of the ${}^{3}\text{He}$ ejec-134 tiles through a combination of energy-loss and time-of-135 flight information. 136

For each event, the scattering angle and momentum 137 ¹³⁸ of the ³He particle at the target were reconstructed ¹³⁹ from the position and angle measured at the focal plane ¹⁴⁰ of the S800. The excitation energy in ⁴⁵Ca was ob-141 tained from a missing-mass calculation. Absolute double-¹⁴² differential cross sections, $d^2\sigma/d\Omega dE$, were determined ¹⁴² relative to those of the ${}^{12}C(t, {}^{3}\text{He}){}^{12}B(1^+, \text{g.s.})$ reaction, taken with a polyethylene (CH_2) target with a thick-144 ness of $10 \,\mathrm{mg/cm^2}$, for which absolute cross sections were 146 measured accurately in a previous experiment [12]. The double-differential cross sections were determined for the 147 $_{^{148}}$ excitation-energy range of $0\leqslant E_{\rm x}\lesssim 20\,{\rm MeV}$ and the $_{^{149}}$ scattering-angle range of $0^\circ\leqslant\theta\lesssim 6^\circ.$ The energy ¹⁵⁰ and angular resolutions were estimated from the same $^{12}C(t, {}^{3}He)$ spectra; they were 0.3 MeV and 1.0°, FWHM, 151 ¹⁵² respectively. The background due to hydrogen contamination in the ⁴⁵Sc target was evaluated and subtracted 177 $^{12}C(t, {}^{3}\text{He})^{12}B(1^+, \text{g.s.})$ reaction. The systematic uncer-153 154 also taken with the same CH_2 target. 155

The high-purity germanium detector array 156 GRETINA [31], located at the target position of 157 158 the S800, was used for detecting deexcitation γ rays from the 45 Ca residue. The use of GRETINA allowed 159 160 precise determination of γ -ray energies. The large ¹⁶¹ detector volume provided a high photopeak detection ¹⁶² efficiency, and its high peak-to-total ratio enabled the ¹⁶³ measurement of low-yield transitions, including weak ¹⁶⁴ GT transitions at low excitation energies.

165

III. **RESULTS AND ANALYSIS**

166 167 168 169 170 171 172 173 174 175 the first dipole magnet of the A1900 fragment separator 199 Ref. [38], the depths of the OMPs for the triton in the $_{176}$ against the aforementioned absolute cross section for the $_{200}$ incoming channel were scaled from those for the ³He in

FIG. 1. (color online). (Left) Double-differential cross section spectra for the ${}^{45}Sc(t, {}^{3}He)$ reaction at various scattering angles. The error bars denote the statistical uncertainty only. The histograms also show the results from the multipoledecomposition analysis (MDA). (Right) Representative angular distributions at $E_x = 6.5$ and $15.3 \,\mathrm{MeV}$ including the results from the MDA.

by using the corresponding peak in the ${}^{1}H(t, {}^{3}He)$ spectra 178 tainties introduced by the subtraction of the background ¹⁷⁹ reactions on hydrogen instead of ⁴⁵Sc were small com-180 pared to those introduced by the beam intensities.

Multipole-Decomposition Analysis A.

181

A multipole-decomposition analysis (MDA) [32, 33] 183 was performed to extract the $\Delta L = 0$ (GT) com-184 ponents from the measured differential cross sections. ¹⁸⁵ The method used here was similar to the one described ¹⁸⁶ in Ref. [33]. The angular distribution in each bin of ¹⁸⁷ the excitation energy, $E_{\rm x}(^{45}{\rm Ca})$, was fitted with a lin-¹⁸⁸ ear combination of angular distributions calculated in 189 the distorted-wave Born approximation (DWBA) with Double-differential cross sections for the ${}^{45}Sc(t, {}^{3}He) \xrightarrow{190} \Delta L = 0, 1, 2, \text{ and } 3$. The calculations were perreaction are shown in the left panel of Fig. 1. Note that ¹⁹¹ formed with the microscopic, double-folding DWBA code wider energy bin sizes were used at higher excitation en- 192 FOLD/DWHI [34]. The single-particle wave functions for t ergies to reduce the statistical uncertainties. The system- 193 and ³He were taken from variational Monte Carlo calcuatic uncertainty in the absolute normalization of the cross 194 lations [35], and those for ⁴⁵Sc and ⁴⁵Ca were generated section was estimated to be 6%, which was dominated by ¹⁹⁵ by using a Woods-Saxon potential. The effective NN inthe uncertainty in the triton beam intensity. The inten-¹⁹⁶ teraction at 140 MeV of Ref. [36] was used. The opticalsity was monitored by calibrating the current readout ¹⁹⁷ model-potential (OMP) parameters were taken from the for the unreacted ¹⁶O beam in a Faraday bar placed in 198 ³He + ⁵⁸Ni reaction at 443 MeV in Ref. [37]. Following

²⁰¹ the outgoing channel by a factor of 0.85. The results of ²⁰² the MDA are also shown in the left panel of Fig. 1. It can be seen that the extracted $\Delta L = 0$ contributions are 203 204 consistent with zero up to an excitation energy of about 3 MeV. As shown by two examples in the right panels of ²⁰⁶ Fig. 1, the experimental angular distributions are well re-207 produced in the MDA. The statistical error of the MDA ²⁰⁸ was estimated by means of a Monte Carlo simulation, ²⁰⁹ as described in Ref. [39], where the experimental data ²¹⁰ points were randomly varied in accordance with their 211 statistical uncertainty, and the deviation of the result-²¹² ing $\Delta L = 0$ cross section was determined. A systematic error was estimated by using other trials of the MDA 213 with different OMP as described in Ref. [40]. The ex-214 tracted $\Delta L = 0$ components varied by less than 5%. The 215 uncertainties in the extraction of the $\Delta L = 0$ contribu-216 $_{\rm 217}$ tion above $E_{\rm x}=10\,{\rm MeV}$ is very large, partly because its ²¹⁸ contribution to the total cross section becomes relatively ²¹⁹ small while the statistical uncertainties are significant. ²²⁰ In addition, in this higher energy region, the forward-₂₂₁ peakedness of the angular distribution of the $\Delta L = 0$ 222 cross section becomes somewhat less distinct. This was ²²³ also the case in the previous ⁴⁶Ti $(t, {}^{3}\text{He})$ study [22]. Also 224 note that contribution from the excitation of the isovector ²²⁵ spin-monopole resonance (IVSMR) [39, 41] is expected ₂₂₆ for $E_{\rm x} \gtrsim 15 \,{\rm MeV}$.

227

в. **Extraction of GT Strengths**

The B(GT) was calculated from the extracted $\Delta L = 0$ 228 ²²⁹ cross sections at 0° $[\sigma_{\Delta L=0}(0^{\circ})]$ by using the proportion-²³⁰ ality relation [10–12] between $\sigma_{\Delta L=0}(0^{\circ})$ and B(GT),

$$\sigma_{\Delta L=0}(0^{\circ}) = \hat{\sigma}_{\rm GT} F(q,\omega) B({\rm GT}), \tag{1}$$

²³¹ where $\hat{\sigma}_{\rm GT}$ is the GT unit cross section and $F(q,\omega)$ is 232 a kinematical correction factor representing the depen-233 dence of $\sigma_{\Delta L=0}(0^\circ)$ on the momentum (q) and the en- $_{234}$ ergy (ω) transfers. The $\hat{\sigma}_{\rm GT}$ for the ($t, {}^{3}{\rm He}$) and (${}^{3}{\rm He}, t$) 235 reactions at this energy have been calibrated in a system-²³⁶ atic study [12], and is $\hat{\sigma}_{\rm GT} = 109 \, A^{-0.65} {\rm mb \, sr^{-1}}$ with A 237 being the mass number of the target nucleus. The value $\hat{\sigma}_{\rm GT}|_{A=45} = 9.18 \,\mathrm{mb}\,\mathrm{sr}^{-1}$ was used for the present analy- $_{239}$ sis, and this value has an uncertainty of about 10% [12]. ²⁴⁰ $F(q,\omega)$ was calculated using the DWBA.

The extracted B(GT) distribution is shown in Fig. 2. 241 ²⁴² In Fig. 2(a), a comparison of the B(GT) distributions ²⁴³ of the present work and of the previous (n, p) work [24] ²⁴⁴ is shown. They agree within about a factor of two with ²⁴⁵ each other except for the excitation-energy range below $_{246}$ 3 MeV, where the B(GT) values are consistent with zero $_{254}$ the excitation-energy region below 3 MeV provided only $_{247}$ in the present work. This discrepancy is likely due to $_{255}$ an upper limit. We note that the B(GT) for the tran-248 the contribution from reactions on hydrogen absorbed 256 sition from the ${}^{45}Sc$ $(J^{\pi} = 7/2^{-})$ ground state to the ²⁴⁹ onto the ⁴⁵Sc target in the case of the (n, p) experi-²⁵⁷ ⁴⁵Ca $(J^{\pi} = 7/2^{-})$ ground state is known from the corre- $_{250}$ ment. As the authors of Ref. [24] noted, contributions $_{258}$ sponding β decay, with the log ft value of 6.0 [42] which $_{251}$ from reaction on hydrogen would interfere with the spec- $_{259}$ corresponds to a B(GT) value of 3.8×10^{-3} . The cross $_{252}$ trum at low excitation energies, but could not be sub- $_{260}$ section associated with such a B(GT) is too small to be ²⁵³ tracted. They therefore concluded that their results in ²⁶¹ observable as a distinct peak in our data.

FIG. 2. (color online). (a) B(GT) distribution extracted in the MDA of the ${}^{45}Sc(t, {}^{3}He)$ data. The error bars denote the statistical and systematic uncertainties. The B(GT) distribution extracted from the (n, p) data at 198 MeV [24] is also shown for comparison. (b) B(GT) distribution from the $(t, {}^{3}\text{He})$ data is compared with the SM calculations with the GXPF1A, KB3G, and FPD6 interactions and with the QRPA calculation smeared with the experimental resolution. The results from the QRPA calculation is divided by a factor of 3. (c) Cumulative sum of the B(GT) distribution from the $(t, {}^{3}\text{He})$ data and those from the theoretical calculations.

С. Analysis of Coincidence γ Rays

The analysis of the γ rays provided more detailed in-263 formation on the low-lying states. We analyzed the data 264 ²⁶⁵ in a similar way as in the preceding paper (Ref. [22]). ²⁶⁶ Figure 3(a) is a two-dimensional plot of the γ -ray energy $_{267}$ (E_{γ}) measured with GRETINA and the excitation en- $_{268}$ ergy $E_{\rm x}(^{45}{\rm Ca})$ extracted from the $(t, {}^{3}{\rm He})$ data. A sharp 269 boundary along the $E_{\gamma} = E_{\rm x}$ line is seen, which indicates 270 that the spectrum is nearly background-free. A clear $_{271}$ drop of the γ -ray yield at the neutron separation energy $_{272}$ ($S_n = 7414.79 \,\mathrm{keV}$) is also observed. In the present case, ²⁷³ the ground state of ⁴⁵Ca $(J^{\pi} = 7/2^{-})$ is reached by a ²⁷⁴ GT transition from ⁴⁵Sc $(J^{\pi} = 7/2^{-})$. After the ⁴⁵Ca 275 ground state, the next known state is located at 174.25 $_{276}$ keV, which has $J^{\pi} = 5/2^{-}$ and is thus reachable by a 277 GT transition [43]. It should also be noted that the next ²⁷⁸ state above 174 keV reachable by a GT transition, based ²⁷⁹ on the assigned J^{π} , does not appear until 1973(6) keV $_{280} (J^{\pi} = 5/2^{-} \text{ or } 7/2^{-}) [43].$

The 174-keV state has a branching of 100% for γ de-281 ₂₈₂ cay to the ground state. Figure 3(b) is the γ -ray energy spectrum gated on $E_{\rm x} = 174 \pm 380$ keV in the ${}^{45}{\rm Sc}(t, {}^{3}{\rm He})$ 283 excitation energy spectrum, where the width of the gate 284 corresponds to 3σ of the excitation energy resolution. 285 286 Since other states that are potentially excited and con-287 tained in this gate do not decay through the 174-keV state, the observation of events with the 174-keV γ ray 288 in Fig. 3(b) directly relates to the excitation of the 174-²⁹⁰ keV state. The number of counts with $E_{\gamma} = 174 \,\mathrm{keV}$ in $_{291}$ Fig. 3(b) can be converted to the GT strength of this ²⁹² state after taking into account the detection efficiency of GRETINA. The obtained B(GT) of this state was 293 $_{294}$ 0.008(5), where the uncertainty is a combination of the ²⁹⁵ statistical and systematic contributions. A systematic er-²⁹⁶ ror of 0.003 due to interference effects between $\Delta L = 0$, $\Delta S = 1$, and $\Delta L = 2$, $\Delta S = 1$ amplitudes mediated 297 ²⁹⁸ through the tensor interaction [10] was estimated based on previous studies [44, 45]. Such interference effects can 299 be relatively large for very weak GT transitions. Reliable 300 strength of such a weak transition could not have been extracted without the coincident high-resolution measure-302 $_{303}$ ment of γ rays.

304 305 8 MeV, namely above the neutron separation energy 320 ried out in the full pf shell-model space with the $_{306}$ (S_n) at 7414.79 keV. γ -ray energies for known deexcita- $_{321}$ GXPF1A, KB3G, and FPD6 [23] Hamiltonians using the 307 308 as well. One cannot completely exclude very minor con- 323 GXPF1A interaction have been fitted to reproduce the ³⁰⁹ tributions from the decay of excited states in ⁴⁴K (i.e., ³²⁴ experimental excitation energies and masses for many pf-³¹⁰ after proton decay of ⁴⁵Ca), since some of the energies ³²⁵ shell nuclei. The KB3G interaction is an updated version ³¹¹ overlap with deexcitations of states in ⁴⁴Ca. However, ³²⁶ of the KBF interaction [48], which was used to gener- $_{312}$ it is clear that the overwhelming majority of transitions $_{327}$ ate the weak reaction rate library of Refs. [49, 50] and ³¹³ observed are from the decay of excited states in ⁴⁴Ca ³²⁸ whose parameters were primarily deduced from experi- $_{314}$ (i.e., after neutron decay of 45 Ca). This indicates that $_{329}$ mental data in the lower pf shell. The FPD6 interaction $_{315}$ the $(1\nu)(1\pi)^{-1}$ particle-hole states created in the $(t, {}^{3}\text{He})_{330}$ was derived by taking into account experimental informa-³¹⁶ reaction predominantly decay by neutron emission.

FIG. 3. (color online). (a) E_{γ} versus $E_{\rm x}({}^{45}{\rm Ca})$. The $E_{\gamma} = E_{\rm x}$ line is shown, and the proton (S_p) and neutron (S_n) separation energies are also indicated. (b) A projection of (a) onto the E_{γ} axis, gated on $E_{\rm x}({}^{45}{\rm Ca})$ around 174 keV as indicated by the box in (a). The inset shows a schematic decay diagram of the 174-keV state. (c) E_{γ} spectrum gated on $E_{\rm x} > 8 \,{\rm MeV}$. The selected region is indicated by the dashed rectangle in (a). The known γ -ray energies [46], are indicated, and with the matched peaks shown by arrows.

COMPARISON WITH THEORY IV.

317

The results are compared with theoretical calcula-318 Figure 3(c) shows the E_{γ} spectrum gated on $E_{\rm x} > {}_{319}$ tions in Fig. 2. The SM calculations [47] were cartions [46] from ⁴⁴Ca and ⁴⁴K are indicated in the figure ³²² code NUSHELLX@MSU [47]. The parameters for the $_{331}$ tion available for nuclei also in the lower part of the *pf* 334 335 ergy resolution of 0.3 MeV (FWHM) in Fig. 2. 336

337 $_{338}$ strength with a transition to a state at about 5–6 MeV. $_{396}$ alone. In the pf shell there are about 6 5/2⁻ states up to 339 340 341 343 344 345 data quite well, whereas the calculations that employ the 403 of the present experiment as measure of the spreading of 346 KB3G and GXPF1A interactions produce more strength. 404 the simple pf-shell configuration over the more complex $_{347}$ The summed B(GT) value up to $E_x = 10 \,\text{MeV}$ for the $_{405}$ configurations allowed by the excitation of sd-shell nucle- $_{348}$ FPD6 interactions is $\sum B(\text{GT})_{\text{FPD6}} = 0.38$ (with a fur- 406 ons with an observed spreading width of about 2 MeV. 349 ther 2.2% of that value located at higher energies) com- 407 To improve GT strength calculations we need to expand 350 351 352 353 354 located at higher energies. 355

356 ³⁵⁷ ment for the transition to the ground state of ⁴⁵Ca is ⁴¹⁵ a QRPA formalism of Ref. [21] using ground-state de-358 359 360 361 362 363 364 365 366 367

³⁶⁹ tribution extracted from the data and those calculated ⁴²⁷ to a state at an excitation energy near 6 MeV, but in ad-368 370 371 that reference, the likely cause is the influence of intruder 372 states that involve nucleons excited from the sd shell $_{374}$ into the *pf* shell. A similar discussion on the intruder 375 sd-shell configurations is also found in a recent paper on the β^- charge-exchange measurement on a nearby ³⁷⁷ nucleus ⁴⁴Ca [52]. There is evidence for such intruder ⁴³² 378 states (see e.g. Ref. [16, 53]). It is interesting to note 433 tal and theoretical GT strength distributions were comthat the SM calculations that employ the FPD6 interac-379 tion perform somewhat better in terms of describing the 380 total GT strength than the SM calculation involving the 381 KB3G and GXPF1A interactions, even though the latter 382 two do rather well in describing GT strengths throughout 383 most of the pf shell. The likely cause is that the FPD6 $_{435}$ where f_i is a calculable phase-space factor and ft_i is the 384 385 386 387 388 configurations from the *sd* shell significantly affected the 439 the ground state of the parent nucleus are considered. ³⁸⁹ properties of this Hamiltonian.

³³² shell: ^{41–49}Ca, ^{42–44}Sc and ⁴⁴Ti. These SM calculations ³⁹⁰ According to the SM, the strong transition near 6 MeV have been scaled by a quenching factor of $(0.74)^2$ [51] ³⁹¹ in the calculations is from a $5/2^-$ state with the configto account for the shell configurations outside the model $_{392}$ uration dominated by one neutron in the $f_{5/2}$ orbital. space, and have been smeared with the experimental en- $_{393}$ However, due to the proximity to 40 Ca core and the ex- $_{394}$ citation of sd-shell nucleons, the level density of $5/2^{-1}$ All SM calculations associate the bulk of the GT 395 states is much larger than that obtained in the pf shell Most of the GT strength extracted from the data re- 397 6 MeV in excitation (the $5/2^-$ basis dimension is 253). In sides between 3 MeV and 8 MeV, but is much more $_{398}$ the $s_{1/2}-d_{3/2}-f_{7/2}-p_{3/2}$ model space with the Hamiltonian fragmented than predicted by theory (see Fig. 2(c)). $_{399}$ used in [54] there are about 100 5/2⁻ states up to 6 MeV The summed strength up to an excitation energy of $_{400}$ (the $5/2^-$ dimension is 4,215,731). The dimension for a 10 MeV calculated with the FPD6 interaction matches $_{401}$ model space that includes $s_{1/2}$, $d_{3/2}$ and pf is too large the summed experimental strength extracted from the 402 to consider. Qualitatively, we can interpret the results pared to the experimental value of $\sum B(GT) = 0.38 \pm 400$ the pf shell-model space to include the $0d_{3/2}$ and $1s_{1/2}$ $0.06(\text{stat.}) \pm 0.03(\text{syst.})$. The summed B(GT) values up 409 orbitals. The high level density above 5 MeV will require to 10 MeV for the GXPF1A and KB3G interactions are 410 the use of a Lanczos strength function method [55] to ob- $\sum B(GT)_{GXPF1A} = 0.59$ and $\sum B(GT)_{KB3G} = 0.47$, re- 411 tain the spreading width. The present data, in turn, can spectively, with a further 2.4% and 0.90% of these values 412 be used to benchmark cross-shell effective interactions ⁴¹³ when they become available.

While the B(GT) value from the β -decay measure- ⁴¹⁴ Also shown in Fig. 2 is the GT distribution based on 3.8×10^{-3} [42], the theoretical values are 0.28×10^{-3} , 416 formation parameters and masses from the finite-range 0.35×10^{-3} , and 5.5×10^{-3} for the GXPF1A, KB3G, and ⁴¹⁷ droplet model of Ref. [56]. This particular model is fre-FPD6 interactions, respectively. Note that the FPD6 in- 418 quently used for estimating weak-reaction rates in various teraction gives a value closest to the experiment. The cal- 419 astrophysical scenarios, primarily because it has the adculated excitation energies of the first $5/2^-$ state, which $_{420}$ vantage over SM calculations that it can be used across is located at 174 keV, are 364, 195, and 446 keV for the 421 nearly the entire nuclear chart. The theoretical distribu-GXPF1A, KB3G, and FPD6 interactions, respectively, ⁴²² tion has been smeared with the experimental resolution, and their B(GT) values are 0.076×10^{-3} , 0.013×10^{-3} , $_{423}$ but not modified in any other way. Note that in the figand 0.015×10^{-3} , which are more than two orders of mag- ⁴²⁴ ure, the theoretical strength distribution has been scaled nitude smaller than the experimental value of $8(5) \times 10^{-3}$. 425 down by a factor of 3 for visualization purposes. The The large discrepancy between the GT strength disin the SM using interactions designed for the pf model ⁴²⁸ dition predict that the strength for the transition to the space was also observed for 46 Ti [22]. As described in 429 ground state of 45 Ca is more than 30 times larger than $_{\rm 430}$ the value deduced from the $\beta\text{-decay}$ data.

ELECTRON-CAPTURE RATES v.

431

Finally, the EC rates $(\lambda_{\rm EC})$ based on the experimen-⁴³⁴ pared. The EC rates were calculated as

$$\lambda_{\rm EC}(T,\rho) = \ln 2 \sum_{j} \frac{f_j(T,\rho)}{ft_j},\tag{2}$$

Hamiltonian was derived by focusing on the experimen- $_{436}$ comparative half life. The index j runs over all the states tal data only on the nuclei in the lower part of the pf_{437} in the daughter nucleus which can be populated through shell. Consequently, some of the effects of the intruder 438 GT transitions in the EC reaction. Only transitions from ⁴⁴⁰ The calculations were performed as described in Ref. [13]

FIG. 4. (color online). (a) EC rates on 45 Ca at $\rho Y_e =$ $10^7 \,\mathrm{g/cm^3}$ as a function of stellar temperatures. The shaded band denotes the EC rate based on the experimental GT strengths (including uncertainties), whereas the dotted and solid lines only represents the EC into the ground and 174keV states, respectively. The total rates based on the SM (GXPF1A, KB3G, and FPD6) and QRPA calculations are also shown. (b) Same as the one on the top, but at $\rho Y_e =$ $10^9 \, {\rm g/cm^3}$.

in a code previously used in Refs. [8, 13]. 442

443 444 445 446 447 449 450 contraction [4, 61], and also to those for the high-density 498 theory increases as well. 451 burning regions where EC occurs during the thermonu-452 clear runaway in type Ia SNe [6, 7]. 453

The EC rate based on the available experimental infor-454 mation was calculated by combining the B(GT) value for 455 the transition to the ground state from β -decay data with 500 456 457 $_{458}$ tracted from the γ -ray analysis in the present data), and $_{502}$ B(GT) distribution. For the extraction of B(GT) for $_{459}$ the B(GT) distribution to the higher-lying final states $_{503}$ very weak transitions at low excitation energies, coinci-460 from the $(t, {}^{3}\text{He})$ data. In Fig. 4, the EC rates based on 504 dences with γ rays produced in the deexcitation of the

⁴⁶¹ the theoretical GT strength distributions are also shown. The EC rate is very sensitive to the B(GT) distribution at low excitation energies, in particular at lower stellar 463 densities, since the electron Fermi energy at the density 464 of $\rho Y_{\rm e} = 10^7 (10^9) \,{\rm g/cm^3}$ is $\epsilon_F(T=0) = 1.2 \,(5.2) \,{\rm MeV}$ 466 while $Q_{\rm EC} = -0.7677 \,{\rm MeV}$. As shown in Fig. 4, un-₄₆₇ der the lower-density ($\rho Y_{\rm e} = 10^7 \, {\rm g/cm^3}$) condition, the EC into the 174-keV state contributes roughly 60% of 469 the total rate at $T = 3.0 \times 10^9$ K, while most of the re-470 maining 40% is from the EC into the ground state. The experimental EC rate is larger than those based on the SM calculations due to the difference in the B(GT) dis-472 tributions at low excitation energies. Among the three 473 SM calculations the one with the FPD6 interaction is the 474 closest to the experimental rate because the FPD6 gives 475 the B(GT) value for the transition to the ground state 476 closest to the experimental data. The experimental EC rate is smaller than that based on the QRPA calculations 478 reflecting the large B(GT) value for the transition to the 479 ⁴⁸⁰ ground state for the QRPA calculations. These discrep-481 ancies might be important in particular in low density ⁴⁸² and temperature environment such as presupernova evo-⁴⁸³ lution of massive stars [3].

To quantify the differences between the EC rates based on the experimental data and on the theoretical calculations, an average (absolute) deviation $\Delta_{\rm EC}$ ($|\Delta_{\rm EC}|$) was calculated in Refs. [13, 14]. These were defined as

$$\overline{\Delta_{\rm EC}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_i^{\rm th} - \lambda_i^{\rm exp}}{\lambda_i^{\rm exp}} \tag{3a}$$

$$\overline{|\Delta_{\rm EC}|} = \frac{1}{N} \sum_{i=1}^{N} \frac{|\lambda_i^{\rm th} - \lambda_i^{\rm exp}|}{\lambda_i^{\rm exp}},\tag{3b}$$

₄₈₄ where λ^{exp} (λ^{th}) is the EC rate based on the experimen- $_{485}$ tal data (theory). In Ref. [14], the average was taken for $_{486}$ eight nuclei ($^{48}\mathrm{Ti},~^{51}\mathrm{V},~^{56}\mathrm{Fe},~^{58,60,62,64}\mathrm{Ni},$ and $^{64}\mathrm{Zn})$ for 487 which high-resolution data were available, and the sum-⁴⁴¹ and follow the formalism of Refs. [57–60], implemented ⁴⁸⁸ mations in Eq. (3) run over these nuclei, namely N = 8. ⁴⁸⁹ In Table I, the average deviations for these eight nuclei Figure 4 shows the calculated EC rates at two 490 for Case I ($\rho Y_e = 10^7 \text{ g/cm}^3$, $T = 3 \times 10^9 \text{ K}$) and those particular density-temperature combinations: Follow- 491 for Case II ($\rho Y_e = 10^9 \text{ g/cm}^3$, $T = 10 \times 10^9 \text{ K}$) are preing Refs. [13, 14], these two combinations are $\rho Y_{\rm e} = 492$ sented together with the deviations for the present 45 Sc 10^7 g/cm^3 , $2.5 < T/10^9 \text{ K} < 4.5$ (case I) as shown in 493 case and the recent ⁴⁶Ti case [22]. The deviations for Fig. 4(a), and $\rho Y_{\rm e} = 10^9 \,{\rm g/cm^3}$, $8.5 < T/10^9 \,{\rm K} < 10.5$ 494 the two new cases are larger than for the previous eight (case II) as shown in Fig. 4(b). Case I corresponds to 495 cases. Consequently, after combining the two new cases the conditions during silicon core burning [3], while Case 496 with the previous eight cases, the average deviations be-II corresponds to the conditions just prior to the core 497 tween the EC rates deduced from the data and from the

SUMMARY VI.

We measured the double-differential cross section for the B(GT) for the transition to the 174-keV state (ex- $_{501}$ the $^{45}Sc(t, {}^{3}He)$ reaction at 115 MeV/u and extracted the

TABLE I. Deviations between EC rates calculated based on GT strength distributions extracted from charge-exchange experiments and those based on theoretical GT strength distributions, relative to the experimental values, for two stellar densitytemperature combinations. The left-hand side of the table refers to deviations for Case I ($\rho Y_e = 10^7 \text{ g/cm}^3$, $T = 3 \times 10^9 \text{ K}$) and the right-hand side of the table refers to those for Case II ($\rho Y_e = 10^9 \text{ g/cm}^3$, $T = 10 \times 10^9 \text{ K}$). The average deviations, as defined in Eq. (3) of the EC rates on the ground states of eight nuclei (⁴⁸Ti, ⁵¹V, ⁵⁶Fe, ^{58,60,62,64}Ni₂ and ⁶⁴Zn) in the *pf* shell are shown in (a) as presented in Ref. [14]. The deviations for the 46 Ti case [22] and the present 45 Sc case are shown in (b). The average deviations, with the 46 Ti and 45 Sc cases included, are shown in (c).

		I: $\rho Y_e = 10^7 \mathrm{g/cm^3}, T = 3 \times 10^9 \mathrm{K}$			II: $\rho Y_e = 10^9 \text{ g/cm}^3$, $T = 10 \times 10^9 \text{ K}$		
		GXPF1A	KB3G	QRPA	GXPF1A	KB3G	QRPA
(a)	$\overline{\varDelta_{ ext{EC}}}$	-0.25	-0.40	26.	-0.05	0.01	0.54
(a)	$\overline{ \Delta_{ m EC} }$	0.31	0.51	27.	0.07	0.27	0.66
(b)	$^{46}\mathrm{Ti}$	-0.61	-0.77	31.	0.17	0.11	4.8
(0)	^{45}Sc	-0.99	-0.98	34.	-0.78	-0.75	19.
(c)	$\overline{\varDelta_{ ext{EC}}}$	-0.36	-0.50	27.	-0.06	0.11	2.8
(C)	$ \Delta_{ m EC} $	0.41	0.58	28.	0.09	-0.75	2.9

532

505 506 507 by using the GXPF1A, KB3G, and FPD6 interactions, 527 periments must be performed in inverse kinematics. The 508 nor with the results from a QRPA calculation. Conse- 528 GRETINA array will be particularly useful for such stud- $_{509}$ quently, the EC rates calculated based on the theoretical $_{529}$ ies, since its γ -ray tracking capability provides the neces-⁵¹⁰ strength distributions also compared disfavorably with ⁵³⁰ sary position resolution for performing accurate Doppler the EC rates calculated based on strengths extracted ${}_{531}$ reconstruction of γ rays produces in-flight. 511 from available experimental data. We conclude that fur-512 ther theoretical improvements are important for provid-513 514 ing reliable theoretical predictions of B(GT) and derived 515 EC rates for nuclei in the lower pf-shell nuclei. This is ⁵¹⁶ particularly important for astrophysical simulations at relatively low stellar densities, for which transitions to 533 517 low-lying final states are particularly important. 518

519 ⁵²⁰ resolution has proven to be very useful for extracting ⁵³⁶ clear Astrophysics) and PHY-14-04442. GRETINA was 521 ⁵²² excitation energies, since these transitions, even though ⁵³⁸ the array at NSCL is supported by NSF under Coopera-⁵²³ weak, are important for the astrophysical applications ⁵³⁹ tive Agreement PHY-11-02511 (NSCL) and DOE under ⁵²⁴ and are even dominant under certain stellar conditions. ⁵⁴⁰ grant DE-AC02-05CH11231 (LBNL).

residual 45 Ca were studied. The extracted B(GT) dis- $_{525}$ In the future, this technique can also be applied in studtribution did not agree with those calculated in the SM 526 ies of unstable isotopes, for which charge-exchange ex-

ACKNOWLEDGMENTS

We thank all the staff at NSCL for their outstanding 534 efforts and support. This work was supported by the The measurement in coincidence with γ rays with high 535 US NSF grant PHY-08-22648 (Joint Institute for Nutransition strengths for very weakly excited states at low 537 funded by the US DOE Office of Science. Operation of

- [1] K. Langanke and G. Martínez-Pinedo, Rev. Mod. Phys. 559 541 **75**, 819 (2003). 542
- [2] H. A. Bethe, G. E. Brown, J. Applegate, and J. M. 543 Lattimer, Nucl. Phys. A324, 487 (1979). 544
- [3] A. Heger, S. E. Woosley, G. Martínez-Pinedo, and 545 K. Langanke, Astrophys. J. 560, 307 (2001). 546
- [4] W. R. Hix et al., Phys. Rev. Lett. 91, 201102 (2003). 547
- [5] H.-T. Janka, K. Langanke, A. Marek, G. Martínez-548 Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007). 549
- [6] K. Iwamoto et al., Astrophys. J. Suppl. Ser. 125, 439 550 (1999).551
- F. Brachwitz et al., Astrophys. J. 536, 934 (2000). [7]552
- S. Gupta, E. F. Brown, H. Schatz, P. Möller, and K.-L. [8] 553 Kratz, Astrophys. J. 662, 1188 (2007). 554
- [9] H. Schatz et al., Nature 505, 62 (2014). 555
- [10]T. N. Taddeucci, C. A. Goulding, T. A. Carey, R. C. 556 Byrd, C. D. Goodman, C. Gaarde, J. Larsen, D. Horen, 575 557
- J. Rapaport, and E. Sugarbaker, Nucl. Phys. A469, 125 576 558

(1987).

- [11] R. G. T. Zegers et al., Phys. Rev. Lett. 99, 202501 (2007). 560
- [12] G. Perdikakis et al., Phys. Rev. C 83, 054614 (2011). 561
- [13] A. L. Cole, T. S. Anderson, R. G. T. Zegers, Sam M. 562 Austin, B. A. Brown, L. Valdez, S. Gupta, G. W. Hitt, 563 and O. Fawwaz, Phys. Rev. C 86, 015809 (2012). 564
- M. Scott et al., Phys. Rev. C 90, 025801 (2014). 565 [14]
- [15]M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, 566 Phys. Rev. C 65, 061301(R) (2002). 567
- 568 [16] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 69, 034335 (2004). 569
- M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, [17]570 Eur. Phys. J. A25, 499 (2005). 571
- 572 [18] A. Poves, J. Sánchez-Solano, E. Caurier, and F. Nowacki, Nucl. Phys. A694, 157 (2001). 573
- M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011). 574 [19]
 - [20]M. Sasano et al., Phys. Rev. C 86, 034324 (2012).
 - [21] P. Möller and J. Randrup, Nucl. Phys. A514, 1 (1990).

- 577 [22] S. Noji et al., Phys. Rev. Lett. 112, 252501 (2014).
- ⁵⁷⁸ [23] W. A. Richter, M. G. Van Der Merwe, R. E. Julies, and
 ⁵⁷⁹ B. A. Brown, Nucl. Phys. A523, 325 (1991).
- ⁵⁸⁰ [24] W. P. Alford *et al.*, Nucl. Phys. **A531**, 97 (1991).
- 581 [25] D. J. Morrissey, B. M. Sherrill, M. Steiner, A. Stolz, and 623
 582 I. Wiedenhoever, Nucl. Instrum. Methods Phys. Res., 624
 583 Sect. B 204, 90 (2003). 625
- 584 [26] G. W. Hitt *et al.*, Nucl. Instrum. Methods Phys. Res.,
 585 Sect. A 566, 264 (2006).
- 586 [27] B. M. Sherrill *et al.*, Nucl. Instrum. Methods Phys. Res.,
 587 Sect. A 432, 299 (1999).
- ⁵⁸⁸ [28] M. Berz, K. Joh, J. A. Nolen, B. M. Sherrill, and A. F.
 ⁵⁸⁹ Zeller, Phys. Rev. C 47, 537 (1993).
- ⁵⁹⁰ [29] D. Bazin, J. A. Caggiano, B. M. Sherrill, J. Yurkon, and
 A. Zeller, Nucl. Instrum. Methods Phys. Res., Sect. B
 ⁵⁹² 204, 629 (2003).
- J. Yurkon, D. Bazin, W. Benenson, D. J. Morrissey, B. M.
 Sherrill, D. Swan, and R. Swanson, Nucl. Instrum. Methods Phys. Res., Sect. A 422, 291 (1999).
- 596 [31] S. Paschalis *et al.*, Nucl. Instrum. Methods Phys. Res.,
 597 Sect. A **709**, 44 (2013).
- ⁵⁹⁸ [32] B. Bonin *et al.*, Nucl. Phys. **A430**, 349 (1984).
- [33] M. Ichimura, H. Sakai, and T. Wakasa, Prog. Part. Nucl.
 Phys. 56, 446 (2006).
- ⁶⁰¹ [34] J. Cook and J. Carr, Computer program FOLD/DWHI, ⁶⁴³ (2001).
 ⁶⁰² Florida State University (unpublished); based on ⁶⁴⁴ [55] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves,
- 603 F. Petrovich and D. Stanley, Nucl. Phys. A275, 487 645
- 604 (1977); modified as described in J. Cook, K. W. Kem- 646
- 605 per, P. V. Drumm, L. K. Fifield, M. A. C. Hotchkis, 647 [56]
- T. R. Ophel, and C. L. Woods, Phys. Rev. C 30, 1538 648
 (1984); R. G. T. Zegers, S. Fracasso, and G. Colò (un- 649 [57])
- ⁶⁰⁸ published).
 ⁶⁰⁹ [35] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part.
 ⁶¹⁰ Sci. 51, 53 (2001).
- 611 [36] M. A. Franey and W. G. Love, Phys. Rev. C **31**, 488 653 [59] 612 (1985). 654
- 613 [37] J. Kamiya et al., Phys. Rev. C 67, 064612 (2003).
- 614 [38] S. Y. Van Der Werf et al., Nucl. Phys. A496, 305 (1989).
- 615 [39] K. Miki et al., Phys. Rev. Lett. 108, 262503 (2012).
- 616 [40] T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. 658 617 Rev. C 82, 044612 (2010).
- 618 [41] C. J. Guess et al., Phys. Rev. C 80, 024305 (2009).

- ⁶¹⁹ [42] M. Freedman, F. Porter, and F. Wagner, Phys. Rev.
 ⁶²⁰ 140, B563 (1965).
- 621 [43] T. Burrows, Nucl. Data Sheets 109, 171 (2008).
- 622 [44] R. G. T. Zegers et al., Phys. Rev. C 74, 024309 (2006).
 - [45] G. W. Hitt *et al.*, Phys. Rev. C **80**, 014313 (2009).
- ⁶²⁴ [46] J. Chen, B. Singh, and J. A. Cameron, Nucl. Data Sheets
 ⁶²⁵ 112, 2357 (2011).
- 625 [47] B. A. Brown, W. D. M. Rae, E. McDonald, and
 627 M. Horoi, NUSHELLX@MSU http://www.nscl.msu.
 628 edu/~brown/resources/resources.html.
- ⁶²⁹ [48] E. Caurier, K. Langanke, G. Martínez-Pinedo, and
 ⁶³⁰ F. Nowacki, Nucl. Phys. A653, 439 (1999).
- ⁶³¹ [49] K. Langanke and G. Martínez-Pinedo, Nucl. Phys. A673,
 ⁶³² 481 (2000).
- ⁶³³ [50] K. Langanke and G. Martínez-Pinedo, At. Data Nucl.
 ⁶³⁴ Data Tables **79**, 1 (2001).
- 635 [51] G. Martínez-Pinedo, A. Poves, E. Caurier, and A. P.
 636 Zuker, Phys. Rev. C 53, R2602 (1996).
- 637 [52] Y. Fujita et al., Phys. Rev. C 88, 014308 (2013).
- 638 [53] G. Stoitcheva, W. Satuła, W. Nazarewicz, D. J. Dean,
 M. Zalewski, and H. Zduńczuk, Phys. Rev. C 73,
 061304(R) (2006).
- 641 [54] E. Caurier, K. Langanke, G. Martínez-Pinedo,
 642 F. Nowacki, and P. Vogel, Phys. Lett. B522, 240
 643 (2001).
 - [55] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005) and references therein.
 - [56] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki,
 At. Data Nucl. Data Tables 59, 185 (1995).
- 649 [57] G. M. Fuller, W. A. Fowler, and M. J. Newman, Astro phys. J. Suppl. Ser. 42, 447 (1980).
- 651 [58] G. M. Fuller, W. A. Fowler, and M. J. Newman, Astro 652 phys. J. 252, 715 (1982).
- ⁶⁵³ [59] G. M. Fuller, W. A. Fowler, and M. J. Newman, Astro ⁶⁵⁴ phys. J. Suppl. Ser. 48, 279 (1982).
- ⁶⁵⁵ [60] G. M. Fuller, W. A. Fowler, and M. J. Newman, Astro ⁶⁵⁶ phys. J. **293**, 1 (1985).
- ⁶⁵⁷ [61] K. Langanke and G. Martínez-Pinedo, Nucl. Phys. A731,
 ⁶⁵⁸ 365 (2004).