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Nuclear level densities are crucial for estimating statistical nuclear reaction rates. The shell model
Monte Carlo method is a powerful approach for microscopic calculation of state densities in very
large model spaces. However, these state densities include the spin degeneracy of each energy level,
whereas experiments often measure level densities, in which each level is counted just once. To enable
the direct comparison of theory with experiments, we introduce a method to calculate directly the
level density in the shell model Monte Carlo approach. The method employs a projection on the
minimal absolute value of the magnetic quantum number. We apply the method to nuclei in the iron
region and to the strongly deformed rare-earth nucleus 162Dy. We find very good agreement with
experimental data and methods, including level counting at low energies, charged particle spectra
and Oslo method data at intermediate energies, neutron and proton resonance data, and Ericson’s
fluctuation analysis at higher excitation energies. We also extract a thermal moment of inertia from
the ratio between the state density and the level density, and observe that in even-even nuclei it
exhibits a signature of a phase transition to a superconducting phase below a certain excitation
energy.

PACS numbers: 21.10.Ma, 21.60.Cs, 21.60.Ka, 21.60.De

Introduction. The level density is among the most im-
portant statistical properties of atomic nuclei. It appears
explicitly in Fermi’s golden rule for transition rates and in
the Hauser-Feshbach theory [1] of statistical nuclear re-
actions. Yet its microscopic calculation presents a major
theoretical challenge. In particular, correlations have im-
portant effects on nuclear level densities but are difficult
to include quantitatively beyond the mean-field approx-
imation. The configuration-interaction (CI) shell model
is a suitable framework, in which both shell effects and
correlations are included. However, the dimension of the
required model space increases combinatorially with the
number of single-particle states and/or the number of nu-
cleons, and conventional shell model calculations become
intractable in medium-mass and heavy nuclei. This dif-
ficulty has been overcome using the shell model Monte
Carlo (SMMC) approach [2–5]. The SMMC has proved
to be a powerful method to calculate microscopically nu-
clear state densities [6–11].

The SMMC method is based on a thermodynamic ap-
proach, in which observables such as the thermal energy
are calculated by tracing over the complete many-particle
Hilbert space at fixed number of protons and neutrons.
Thus, the calculated density is the state density, which
takes into account the magnetic degeneracy of the nu-
clear levels, i.e., each level of spin J is counted 2J + 1
times.

However, experiments often measure the level density,
in which each level is counted exactly once, irrespective
of its spin degeneracy [12–14]. To make direct compari-
son of theory with experiments, it would be necessary to
calculate the level density within the SMMC approach.
A spin-projection method, introduced in Ref. 10, can be

used to calculate the level density ρJ(Ex) for given spin
J and excitation energy Ex. While the state density is
given by ρ(Ex) =

∑

J(2J+1)ρJ(Ex), the total level den-
sity is ρ̃(Ex) =

∑

J ρJ(Ex). However, this latter formula
is not useful for practical calculations because the statis-
tical errors of ρJ(Ex) increase with J , and the resulting
statistical errors in ρ̃(Ex) are too large.

Here we introduce a simple method to calculate di-
rectly and accurately the level density in SMMC. We
present level density calculations of medium-mass nuclei
in the iron region and of the heavy well-deformed nucleus
162Dy. We find very good agreement with a variety of ex-
perimental data and methods, including level counting at
low energies, charged particle spectra and Oslo method
at intermediate energies, neutron and proton resonance
data, and Ericson’s fluctuation analysis at higher excita-
tion energies. We note that our method can be applied
more generally to many-particle systems with good total
angular momentum.

Level density in SMMC. We make the observation that
for any nuclear level with spin J and magnetic quantum
number degeneracy of 2J + 1, the state with the lowest
possible non-negative spin projection M appears exactly
once. Denoting by ρM the level density for a given value
of the spin projection M , the total level density for even-
even and odd-odd nuclei (whose spin is integer) is given
by ρ̃ = ρM=0, while for odd-even nuclei (whose spin is
half-integer), the total level density is ρ̃ = ρM=1/2.

The M -projected level density can be calculated as
in Ref. 10. For a nucleus described by a shell model
Hamiltonian H and at inverse temperature β = 1/T , the
SMMC method is based on the Hubbard-Stratonovich
(HS) transformation [15] e−βH =

∫

D[σ]GσUσ, where Gσ
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is a Gaussian weight and Uσ is a one-body propagator de-
scribing non-interacting nucleons in time-dependent aux-
iliary fields σ. For a quantity X that depends on the
auxiliary fields σ, we define

Xσ ≡
∫

D[σ]W (σ)XσΦσ
∫

D[σ]W (σ)Φσ
, (1)

where W (σ) = Gσ|TrUσ| is the positive-definite
weight used in the Monte Carlo sampling and Φσ =
TrUσ/|TrUσ| is the Monte Carlo sign function. Here and
in the following, the traces are evaluated in the canoni-
cal ensemble for fixed number of protons and neutrons,
which in turn can be calculated from grand-canonical
traces by particle-number projections.
The M -projected thermal energy EM (β) = 〈H〉M is

calculated using

〈H〉M ≡ TrM
(

He−βH
)

TrMe−βH
=

[TrM (HUσ)
TrUσ

]

[

TrMUσ

TrUσ

]

. (2)

The trace TrMX at fixed spin component M can be
calculated by a discrete Fourier transform

TrMX =
1

2Js + 1

Js
∑

k=−Js

e−iϕkMTr
(

eiϕkĴzX
)

, (3)

where ϕk (k = −Js, . . . , Js) are quadrature points ϕk =
π k

Js+1/2 and Js is the maximal spin in the many-particle

shell model space (for the given number of protons and
neutrons).
The M -projected canonical partition function ZM (β)

is calculated by integrating the thermodynamic relation
−d lnZM/dβ = EM (β), taking ZM (β = 0) to be the total
number of levels with the magnetic quantum number M .
For the lowest non-negative value ofM , ZM (β = 0) is the
total number of levels without counting their magnetic
degeneracy. The M -projected level density ρM (Ex) is
then calculated in the saddle-point approximation

ρM ≈ 1√
2πT 2CM

eSM , (4)

where SM and CM are, respectively, the M -projected
canonical entropy and heat capacity

SM = lnZM + βEM ; CM =
dEM

dT
= −β2 dEM

dβ
. (5)

In the calculation of CM we implemented the method of
Ref. 16, in which the same set of auxiliary fields is used to
calculate both E(β+ δβ) and E(β− δβ) in the numerical
derivative. This enable us to take into account correlated
errors, thus reducing significantly the statistical errors in
the heat capacity compared to a direct numerical deriva-
tive of the thermal energy. Equation (4) is analogous to
the formula used for the state density [6] in which the
corresponding quantities do not include M projection.

The projection on the spin component M usually in-
troduces a sign problem that leads to large fluctuations of
observables at low temperatures (even for a good-sign in-

teraction). However, for even-even nuclei Tr
(

eiϕkĴzUσ

)

is almost always positive (for a good-sign interaction),
and using Eq. (3) with M = 0 and X = Uσ we have
TrM=0Uσ > 0. Thus the level density of even-even nu-
clei can be calculated accurately down to low excitation
energies without a sign problem.

Medium-mass nuclei. We demonstrate the SMMC cal-
culation of level densities for medium-mass nuclei in the
iron region using the CI shell model Hamiltonian of Ref. 6
in the complete pfg9/2 shell.

In Fig. 1 we compare SMMC level density calculations
(solid circles with error bars) for 56Fe, 60Ni, 62Ni and
60Co with various experimental data compiled in Ref. 14:
(i) level counting at low excitation energies (open dia-
monds), (ii) charged particle reactions such as (α, α′),
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FIG. 1: Level densities versus excitation energy Ex for
56Fe, 60Ni, 62Ni and 60Co. SMMC level densities ρ̃(Ex) =
ρM=0(Ex) (solid circles) are compared with various experi-
mental data sets [14]: level counting at low excitation energies
(open diamonds), charged particle spectra [17] at intermedi-
ate energies (dashed lines), and Ericson’s fluctuation analy-
sis [18] at higher energies (open circles). For 60Co there is
also the proton resonance data (open square) [19, 20].
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(p, p′), (p, α) and (α, p) at intermediate excitation en-
ergies (dashed lines) [17], and (iii) Ericson’s fluctuation
analysis at higher excitation energies (open circles) [18].
For 60Co there is also high-resolution proton resonance
data at around 8 MeV (open square) [19, 20]. Overall,
we find good agreement between the SMMC calculations
and the experimental data.
Spin-cutoff parameter. In the spin-cutoff model [21],

the spin distribution ρJ (Ex) is given by

ρJ(Ex) = ρ(Ex)
(2J + 1)

2
√
2πσ3

c

e
−

J(J+1)

2σ2
c , (6)

where ρ(Ex) is the total state density and σc = σc(Ex) is
an energy-dependent spin-cutoff parameter. The distri-
bution (6) is normalized such that

∑

J(2J + 1)ρJ(Ex) ≈
ρ(Ex). Equation (6) can be derived in the random cou-
pling model of individual spins [21]. In this model, the
level density ρ̃(Ex) can be calculated to be

ρ̃(Ex) =
∑

J

ρJ (Ex) ≈
1√
2πσc

ρ(Ex) , (7)

where the sum over spin is calculated by converting
it to an integral. An effective spin-cutoff parame-
ter can then be estimated from the ratio of the total
state density to the total level density, i.e., σc(Ex) =
(2π)−1/2ρ(Ex)/ρ̃(Ex).
Pairing correlations. In the thermodynamic limit,

pairing correlations lead to a pairing phase transition
at a certain critical temperature below which the sys-
tem is superconducting, as is described by the mean-field
Bardeen-Cooper-Schrieffer (BCS) theory. However, in a
finite-size system such as the nucleus, there are, strictly
speaking, no phase transitions. An interesting question
is whether signatures of the pairing phase transition still
remain in the finite nucleus, where fluctuations beyond
mean-field theory are important. A signature of pairing
correlations in a nucleus might be observed in its response
to rotations, i.e., in its moment of inertia. The moment of
inertia is analogous to the magnetic susceptibility, which
is known to be suppressed in bulk superconductors be-
low the critical temperature. We can extract a moment
of inertia I at finite excitation energy from the above
spin-cutoff parameter using σ2

c = IT/~2, where T is the
nuclear temperature.
We have determined the moment of inertia I from the

calculated SMMC state and level densities of 56Fe and
60Co. In Figs. 2 and 3 we show the corresponding state
densities (open squares) and level densities (solid circles)
and the corresponding moment of inertia I (bottom pan-
els) versus excitation energy Ex. For the odd-odd nu-
cleus 60Co the moment of inertia depends only weakly
on excitation energy. However, for the even-even nucleus
56Fe we observe a suppression of the moment of inertia
at low excitation energies. This suppression is a signa-
ture of pairing correlations, and is consistent with the
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FIG. 2: Top panel: the SMMC state density (open squares)
and level density (solid circles) versus excitation energy Ex

for 60Co. The experimental level density data follow the same
convention as in Fig. 1. Bottom panel: thermal moment of
inertia for 60Co extracted from the ratio of the state density
to the level density (solid circles). The dashed line is the
rigid-body moment of inertia.
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FIG. 3: As in Fig. 2 but for 56Fe.

results found in Ref. 10, in which the moment of inertia
was extracted from the spin distributions.

Heavy rare-earth nucleus 162Dy. In Refs. 22 and 23
we extended the SMMC approach to heavy nuclei in the
rare-earth region using the 50-82 major shell plus the
1f7/2 orbital for protons, and the 82-126 major shell plus
the 0h11/2 and 1g9/2 orbitals for neutrons. We described
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FIG. 4: Top panel: level density and state density in 162Dy.
The SMMC level density (solid circles) is compared with the
state density (open squares). Also shown are experimental
data sets for the level density: level counting at low excita-
tion energies (histograms) [24, 25], Oslo data at intermediate
energies (open circles) [26, 27], and the neutron resonance
data (triangle) [28]. Bottom panel: thermal moment of iner-
tia I of 162Dy (solid circles) as a function of excitation energy
Ex. The dashed line is the rigid-body moment of inertia.

successfully the rotational character of the strongly de-
formed nucleus 162Dy [22] as well as the crossover from
vibrational to rotational collectivity in families of samar-
ium and neodymium isotopes [23].

We have applied the method introduced here to calcu-
late the level density of 162Dy. The top panel of Fig. 4
shows the SMMC level density ρ̃(Ex) = ρM=0(Ex) (solid
circles) and SMMC state density ρ(Ex) (open squares)
of 162Dy. We compare the SMMC level density with
various experimental data sets: (i) level counting (solid
histograms) [24, 25], (ii) renormalized Oslo data (open
circles) [26, 27], and (iii) neutron resonance data (trian-
gle) [28]. We find very good agreement between theory
and experiments.

Unlike iron-region nuclei, 162Dy is a strongly deformed
nucleus and it is of interest to determine whether such
nucleus also exhibits signatures of the pairing phase tran-
sition. We have extracted the moment of inertia I of
162Dy as a function of excitation energy Ex from the
state-to-level density ratio. We found that I depends
only weakly on ∆β, and took an average over its values
for the ∆β = 1/32 and ∆β = 1/64 MeV−1 time slices
to reduce the statistical errors. The results are shown in
the bottom panel of Fig. 4. We observe suppression of I

below Ex ∼ 4 MeV down to values that are about half
its rigid-body value at Ex ∼ 1 MeV. This suppression is
a clear signature of the phase transition to a supercon-
ducting phase.
Conclusion. In conclusion, we have used a spin-

component projection method to calculate directly and
accurately the SMMC nuclear level density ρ̃(Ex) as the
projected density ρM=0(Ex) for even-mass nuclei. The
method is easily extended to odd-mass nuclei by using
ρ̃(Ex) = ρM=1/2(Ex). This method allows us to make
direct comparison with experimental data. We find very
good agreement between the microscopic SMMC level
density and the experimental data for nuclei in the iron
region and for the rare-earth nucleus 162Dy. We have
also extracted the moment of inertia I at finite excita-
tion energy from the ratio between the state density and
level density. In even-even nuclei we observe a strong
suppression of I below a certain excitation energy. This
suppression is a signature of the phase transition to a
superconducting phase, which is induced by pairing cor-
relations.
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