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Abstract 

Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering NNνν  

( nnνν , ppνν , and npνν ) have recently attracted attention in studies of neutrino emission in 

neutron stars, because of the implications for the neutron star cooling. The calculated NNνν  

emissivities within the neutron star environment are relatively insensitive to the two-nucleon 

dynamical model used in the calculations, but differ significantly from those obtained using an 

OPE model.  

Purpose:  We investigate the free NNνν  cross sections using a realistic nucleon-nucleon 

scattering amplitude, comparing the relative sizes of the cross sections for the three processes 

nnνν , ppνν , and npνν .  

Method:  We employ a realistic one-boson-exchange (ROBE) model for NN  scattering and 

combine those strong scattering amplitudes with the well-known nucleon weak interaction 

vertices to construct weak bremsstrahlung amplitudes.  Using the resulting NNνν  amplitudes 

we investigate the relative importance of the vector ( V
μΓ ), axial vector ( A

μΓ ), and tensor ( T
μΓ ) 

terms.  The ROBE model bremsstrahlung amplitudes are also used as a two-nucleon dynamical 

model with which we calculate the cross sections d
d

σ
ω

 for nnνν , ppνν , and npνν . 

Results: The three free NNνν  cross sections d
d

σ
ω

 are of similar order of magnitude.  Each 

increases with increasing neutrino-pair energy ω . For the neutrino-pair energy of ω  = 1 MeV 

our nnνν  results are in quantitative agreement with those previously reported by Timmermans 

et al. [Phys. Rev. C 65, 064007 (2002)], who used the leading-order term of the soft-neutrino-
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pair bremsstrahlung amplitude to calculate the cross sections.  Differences between the nnνν  

and ppνν  cross section are not discernible over the nucleon-nucleon incident energy region 

considered, due to the complete dominance of the axial vector component of the weak interaction 

nucleon vertex function μΓ  as demonstrated analytically in Appendix A.   The npνν  cross 

section is smaller than either the nnνν or the ppνν  cross section for low to moderate values of 

ω ; this characteristic only changes at larger neutrino-pair energies around ω ~50 MeV, which is 

above the low energy region characterized in Appendix B.    

Conclusions:   The free NNνν  cross sections, calculated using a realistic nucleon-nucleon 

amplitude model, are new except for the nnνν  cross section at  ω =1 MeV that was first 

reported by Timmermans et al, and at ω =0.5, 1, 2 MeV by Li et al [Phys. Rev. C80, 035505 

(2009)].  The  nnνν  and ppνν  cross sections are virtually identical in magnitude.  All three 

NNνν  processes are dominated by the axial vector component of the vertex function μΓ , with 

only slight deviations from this behavior being seen in the npνν process at large neutrino-pair 

energies.  
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I. Introduction 

The implications of neutrino-pair bremsstrahlung from nucleon-nucleon scattering for  

the cooling of neutron stars has been the subject of several recent studies [1-4]. The free 

processes 

 n n n n ν ν+ → + + + ,         (1) 

 p p p p ν ν+ → + + + ,        (2) 

 n p n p ν ν+ → + + + ,        (3) 

are herein denoted as nnνν , ppνν , and npνν , respectively. A primary purpose of these studies 

is to investigate the role of the nucleon weak interaction vertices, when combined with realistic 

nucleon-nucleon amplitudes, in the resulting neutrino-pair bremsstrahlung cross sections in the 

absence of the complications that arise in neutron star model emissivity calculations due to 

thermal modifications. Neutron star studies have shown that the cross sections or emissivities are 

not sensitively dependent on the dynamical nucleon-nucleon model used in the calculation, when 

a realistic representation of the nucleon-nucleon scattering amplitude is generated by the model 

employed.  This is in contrast, for example, to the situation where a simple one-pion-exchange 

(OPE) model is used, in which case results for the NNνν  process are a factor of 3-5 larger than 

for more realistic scattering amplitude calculations.  (The emissivities using the OPE model were 

first calculated by Friman and Maxwell [5].)  

 We have developed a realistic one-boson exchange (ROBE) approach for the 

investigation of electroweak production processes involving nucleon-nucleon scattering.  Photon 
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bremsstrahlung amplitudes in the ROBE approach have been successfully applied to describe 

NNγ  ( ppγ ,npγ , and nnγ ) photon bremsstrahlung processes [6-11]. In the present paper, the 

ROBE amplitudes are used to investigate the NNνν  neutrino-pair bremsstrahlung processes.  It 

is crucial that the ROBE NNγ  amplitudes, as defined in Refs. [6, 9, 10], obey the soft-photon 

theorem [12-23]; likewise, the ROBE NNνν  amplitudes should be consistent with the soft-

neutrino-pair method [1,3].   The ROBE amplitude is a complete (vector and axial vector) 

relativistic amplitude, which is not expanded in powers of ω  but which provides a rigorous 

model independent result to O(ω 0) for the vector contribution and to O(ω −1) for the axial vector 

contribution. 

 In the ROBE approach the NNγ  and NNνν  amplitudes are generated from Horowitz’s 

OBE model [24] for the two-nucleon amplitude, which is an alternative representation of the 

nucleon-nucleon elastic scattering amplitude. Whereas the standard Goldberger-Grisaru-

MacDowell-Wong (GGMW) amplitude is expressed in terms of a set of phase shifts [25], the 

Horowitz amplitude is expressed in terms of a set of OBE parameters (masses, complex coupling 

constants, and cutoff parameters). These parameters have been determined by fitting to the Arndt 

[26] amplitudes directly without iteration of the meson exchanges (the tree approximation). 

Nucleon-nucleon soft-photon bremsstrahlung calculations using the two-u-two-t special (TuTts) 

amplitude [21, 27-31] have used the GGMW amplitude as input. The agreement between the 

theoretical predictions using the ROBE and the soft-photon TuTts amplitudes with both the high-

precision Kernfysisch-Versneller-Institute (KVI) ppγ  cross section data [32-34] and the 

TRIUMF ppγ  cross section data [35] provides clear examples of the quantitative nature of the 

ROBE and soft-photon TuTts approaches to describing pp bremsstrahlung [7, 8]. 
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 Details of the ROBE model calculations for nnνν  cross sections have been previously 

presented [11].  Numerical results were quantitatively similar to those obtained in the soft-

neutrino-pair treatment of Timmermans et al. [1]. The  nnνν  results will be extended in the 

present paper.  ROBE model results for the ppνν  and npνν  cross sections are presented for the 

first time. The ROBE amplitudes for the respective processes are outlined in Section II. The 

cross section results and their mutual comparisons are given in Section III, together with 

associated discussion and analysis. A summary and conclusions are provided in Section IV. An 

analytic analysis of the axial vector dominance is provided in Appendix A, and the low energy 

region of the neutrino-pair energy ω , in which our numerical results are valid, is investigated in 

Appendix B.  

II. NNνν  Amplitudes 

 The relevant diagrams for the nnνν  process are depicted in Fig. 1, while those for the 

ppνν  process are obtained by the replacement of n  with p  in the diagrams. Figs. 2(a) and 2(b) 

show the relevant diagrams for the npνν  process. In Fig. 2(a) 0A  represents 10 different neutral 

mesons ( 0π , 0ρ , 0δ , 0
1t , 0

1a , n , σ , ω , 0t , and 0a ), while in Fig. 2(b) A+  represents 5 different 

charged mesons (π + , ρ + , δ + , 1t
+ , and 1a

+ ). The g ’s denote the respective complex coupling 

constants, and the αλ  ( 1, 2,3,4,5α = ) represent the 5 Fermi covariants. The Z-boson propagator 

is approximated as 

 
2

2 2 2

1Z

Z Z

g q q M
i i g

q M M
μν μ ν

μν

−
− ≈

−
       (4) 
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for the neutrino-pair energy region considered. In the c.m. frame, the expression for the cross 

section d
d

σ
ω

 is given by (see, e.g., Ref. [1]) 

 ( ) ( )

( ) ( )

24
3

82

* 2 * 3
3

nucleon spins

163
3 22 4 2

1         
4

F pGd m
d ss s m

M q M q q M M d p d qμ ρ μ
μ ρ μ

σ π
ω ωπ

= ×
−−

× − Ω∑ ∫∫

r

r r
,   (5) 

where m  is the nucleon mass, 3p
r  is the outgoing nucleon c.m. momentum, ( ),q qμ ω= r  is the 

neutrino-pair four-momentum, ( )2 24s m p= + r , pr  is the incident nucleon momentum in the c.m. 

frame, and the Fermi weak interaction constant is 5 21.166 10  GeVFG
− −= × . (The Bjorken-Drell 

convention for the metric and the γ  matrices is used.) The factor of 3 arises from the emission of 

the three neutrino-pair flavors. For the Z-boson propagator approximation defined in Eq. (4) and 

a coupling constant 
2cos W

g
θ

 at each vertex, one finds 
2 2

2 2 2 2
4 cos 4 2

F

Z W W

Gg g
M Mθ

= = . 

 The amplitude M μ  for the nnνν  and ppνν  processes has the form 
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( )
( )

( )
( ) ( ) ( ) ( ) ( )

( )
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( ) ( ) ( ) ( ) ( )
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μ α
α

α
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α
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α

λ λ

λ λ

λ λ

≡

⎧⎡⎪= Γ + +⎢⎨
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+ Γ + +
+ −

+ − + Γ
− −

∑ u

u

u ( )

( )
( )

( ) ( ) ( ) ( ) ( )

( )

0

0 0

2

13
3 1 4 2 22 2

2

3 4 13 14 24 23

           

           terms , , .

A
NA N NA N

u p

F t
u p g u p p g p q m u p

p q m

p p t u t u

α μ
αλ λ

⎤
+ − + Γ ⎥

− − ⎥⎦
⎫⎪− ⇔ → → ⎬
⎪⎭

u

 (6) 

The form of M μ  for the npνν   can be obtained from Eq. (6) through multiplication by an 

overall minus sign for 0A  = ( 0π , 0ρ , 0δ , 0
1t , 0

1a ) in the first terms, and by the replacement of 

0A  by A+  (see Fig. 2(b)) and the multiplication by a factor of 2 in the second terms. 

 In Eq. (6), ( )2

ij i jt p p= −  ( 13, 24ij = ) and ( )2
ik i ku p p= −  ( 14,23ik = ) are Mandelstam 

variables.  The ( )A ijF t  [ ( )A ikF u ] represent the other relevant factors (defined in terms of ijt  and 

iku , the mass of the exchanged meson Am , and the cutoff parameter AΛ ), 

 ( )
( )22 2

4 1

1
A ij

ij A ij A

F t
t m t

π−=
− − Λ

 ( 13, 24ij = ),     (7a) 

 ( ) ( ), 13,24 14,23A ik A ij ikF u F t u ij ik= → = → = .     (7b) 
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 The weak interaction nucleon vertex functions nn
μΓ  and pp

μΓ  arising in Eq. (6) for nn  and 

pp  vertices, respectively, are 

 ( ) ( )2 5 2
1 1 2 2

1 14sin 4sin
2 2 2

V n V n
nn W A W

iF F G F F qμ μ μ μρ
ρθ γ γ γ θ σΓ = − + − + + ,  (8a) 

 ( ) ( )2 5 2
1 1 2 2

1 14sin 4sin
2 2 2

V p V p
pp W A W

iF F G F F qμ μ μ μρ
ρθ γ γ γ θ σΓ = − + − − ,  (8b) 

where qμ  is the outgoing total four-momentum of the emitted neutrino-pair. In Eqs. (8a) and 

(8b), μΓ  is the sum of vector ( V
μΓ ), axial vector ( A

μΓ ), and tensor ( T
μΓ ) terms, respectively, i.e., 

 V A T
μ μ μ μΓ = Γ + Γ + Γ .         (9) 

Here, 

 
( )

( )

2
1 1

2
1 1

1 4sin ,       
2

1 4sin ,      ,
2

V n
W

V
V p

W

F F nn

F F pp

μ

μ

μ

θ γ

θ γ

⎧− +⎪⎪Γ = ⎨
⎪ −
⎪⎩

      (10a) 

 

5

5

1 ,     
2

1 ,      ,
2

A

A

A

G nn

G pp

μ

μ

μ

γ γ

γ γ

⎧−⎪⎪Γ = ⎨
⎪
⎪⎩

        (10b) 

 
( )

( )

2
2 2

2
2 2

4sin ,        
2

4sin ,    .
2

V n
W

T
V p

W

i F F q nn

i F F q pp

μρ
ρ

μ

μρ
ρ

θ σ

θ σ

⎧ +⎪⎪Γ = ⎨
⎪− −
⎪⎩

      (10c) 
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Note that a pseudoscalar term of the form 5qμγ  has been omitted because it yields a term in the 

cross section which is proportional to the mass of the neutrino, and thus it is negligible. We 

utilize 1 1pF = , 1 0nF = , 1 1VF = , 2 2
ppF
m

κ
= , 2 2

n nF
m

κ= , 2 2
p nVF
m

κ κ−
= , 1.257AG = − , the nucleon 

anomalous magnetic moments 1.793pκ =  and 1.913nκ = − , and 2sin 0.234Wθ =  for the 

Weinberg angle Wθ . 

 The conserved vector current (CVC) hypothesis, i.e. 0Vq M μ
μ = , is satisfied by the 

amplitude M μ given in Eq. (6) for the nnνν and ppνν  processes. To satisfy CVC for the npνν  

process, an additional gauge term 

1 3 2 4

2 2
14 23 14 23

,

14 232 2
23 14

4 1 3 2

' 2( )( )

1          (1 / )(1 / ) ( ) ( )
4

1 1                  ( ) ( )
( ) ( )

          ( ) ( ) ( ) ( )

p n
V V V

A A A A
A

A A
A A

NA N NA N

M G G p p p p

u u F u F u

F u F u
u u

u p g u p u p g u p

μ μ

α

α
α

π

λ λ

+ + + +
+

+ +

+ +

+ +

= − + − −

⎡ − Λ − Λ⎢⎣

⎤
+ + ⎥Λ − Λ − ⎥⎦

∑
   (11) 

is included, where n
VG  and p

VG  are the respective factors multiplying μγ  in Eq. (10a). 

 To incorporate the partially conserved axial vector current hypothesis (PCAC) in the 

neutrino bremsstrahlung amplitudes would require including internal terms, those which are 

related to the corresponding internal terms for the associated pion production process. This 

procedure would be similar to that outlined in Ref. [1], but it inherently contains the uncertainties 

associated with the pion production internal terms. To our knowledge, no one has actually 
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reported results for the neutrino bremsstrahlung processes which include such terms, and we 

have not done so here. 

III. NNνν  Results and Discussion 

 The d
d

σ
ω

 cross section results for the nnνν , ppνν , and npνν  processes at various 

neutrino-pair energies ω , over a wide range of incident nucleon center-of-mass momenta p , are 

shown in Fig. 3.  The figure is terminated on the left at 100 MeV/c, which corresponds to a lab 

energy of 21.3 MeV.  We are hesitant to use the Horowitz parameters at lower momenta.  The 

cross sections were obtained by: 1) inserting the appropriate ROBE amplitudes from Eq. (6) into 

Eq. (5), and 2) performing the indicated five dimensional integration numerically using Monte 

Carlo techniques. Results for the nnνν  process at ω  = 0.5, 1, and 2 MeV were previously 

published [11], and the ω  = 1 MeV results were shown to be in quantitative agreement with 

those obtained by Timmermans et al. [1] (shown also in Fig. 3), who used the leading-order term 

of the soft neutrino-pair bremsstrahlung amplitude. 

 In Fig. 3 the cross section differences between the nnνν  and ppνν  processes are not 

discernible. The npνν  cross sections are seen to be generally smaller than the identical particle 

cross sections over the range of p in the figure, the difference decreasing at low and high 

p values. The difference in the sign of the axial vector term in nn
μΓ  of Eq. (8a) as compared with 

pp
μΓ  of Eq. (8b), which is associated with the isotopic spin 3T  dependence of the corresponding 

neutral current, is correlated with this behavior. Indeed, we verified that were this not the case, 

the npνν  cross section d
d

σ
ω

 would be larger than that for the  nnνν  and ppνν  processes. It is 
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likely that cancellations are occurring between complementary diagrams in Figs. (2a) and (2b) 

which contain Znn  and Zpp  vertices, respectively, due to this difference of sign. 

 A plot similar to Fig. 3, which contains only the axial vector contributions A
μΓ  of the 

respective μΓ  vertex functions given in Eqs. (8a) and (8b), would not differ discernibly from 

that of Fig. 3. The complete dominance of the axial vector term in the cross section at these 

neutrino-pair energies ω  has been previously noted for the nnνν  process [1, 2], and is found to 

also be the case for the ppνν  and npνν  processes. 

 Table 1 at 250 MeV/cp =  shows the three cross sections d d
σ

ω , which would be 

individually obtained from the vector, the axial vector, and the tensor parts of the vertex function 

μΓ . Table 2 at 250 MeV/cp =  demonstrates explicitly the axial vector dominance.  The reason 

for this dominance is elucidated in Appendix A; in particular, a coherence in the axial vector 

amplitudes leads to a significant enhancement.  That the axial vector contributions to the nnνν  

and ppνν  cross sections are identical accounts for the equality of the two cross sections in the 

energy range considered. Examination of Table 2 shows virtually no deviation of this behavior at 

neutrino-pair energies ω  as high as 50 MeV . The axial vector dominance for npνν  is seen in 

Table 2 to be not quite as complete; i.e. there are slight contributions to the cross section 

associated with other elements in the vertex functions nn
μΓ  and pp

μΓ  expressed in Eqs. (8a) and 

(8b), respectively. The relative size of these contributions is seen in Table 2 to grow with 

increasing neutrino-pair energy ω .  In contradistinction to the ω  results shown in Fig. 3, the 

npνν  cross section at 50 MeVω =  given in Table 2 is larger than the corresponding nnνν  and 
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ppνν  cross sections.  The calculation was extended to 50 MeV to explore whether vector 

contributions might reveal themselves; such is largely not the case. 

 In order to glean information as to the region of ω  in which our numerical results are 

valid (the low energy region), we compare in Appendix B our results at 250 MeV/cp =  with 

those obtained in leading order (1 / )O ω .  The commensurate results differ significantly only for 

50ω >  MeV.  Because the curves in Fig. 3 are relatively flat over the range of p , this 

conclusion should hold over the range. 

IV. Summary and Conclusions 

Free cross sections d
d

σ
ω

 for the nnνν , ppνν , and npνν  bremsstrahlung processes have  

been calculated for representative values of the neutrino-pair energy ω . These cross sections 

have been calculated over a wide range of the center-of-mass incident-nucleon momentum p  

using the ROBE model.  Results for the nnνν  process at 1 MeVω =  were previously found [11] 

to be in quantitative agreement with those obtained by Timmermans et al. [1] using the leading-

order term of the soft neutrino-pair bremsstrahlung amplitude. 

 The cross sections increase with increasing values of the neutrino-pair energy ω , and are 

of a similar order of magnitude at a given ω . The nnνν  and ppνν cross sections are virtually 

identical in magnitude for neutrino-pair energies as high as 50 MeVω = . The npνν  cross 

sections are somewhat smaller at low and moderate neutrino-pair energies, but this behavior is 

modified at higher values of ω , so that at 50 MeVω =  the npνν  cross section exceeds that of  

nnνν  and ppνν .  The neutrino-pair bremsstrahlung cross sections are completely dominated by 
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the axial vector component A
μΓ  of the weak interaction nucleon vertex functions nn

μΓ  and pp
μΓ , 

which accounts for the qualitative difference from those of photon bremsstrahlung, where non 

axial vector terms dominate. The reason for this dominance was investigated in detail in 

Appendix A.  Furthermore, the axial vector dominance allowed us to introduce in Appendix B a 

method to characterize the low energy region.  Small contributions from other elements of the 

vertex function become evident in the npνν  cross section at high values of ω . 
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Figure and Table Captions in main text 

Fig. 1. Diagrams for the nnνν  ( ppνν ) processes. 

Fig. 2(a). Neutral-meson exchange diagrams for the npνν  process.  

Fig. 2(b). Charged-meson exchange diagrams for the npνν  process. 

Fig. 3. The cross sections d
d

σ
ω

 for the nnνν  ( ppνν ) and npνν  processes as a function of the 

incident neutrino-pair energies ω  of (a) 0.5, (b) 1, (c) 2, and (d) 10 MeV, respectively. The 

dashed curve corresponds to the nnνν  ( ppνν ) processes, and the solid curve corresponds to the 

npνν  processes. Also shown is the soft neutrino-pair bremsstrahlung result for the nnνν  

process at ω  = 1 MeV obtained in Ref. [1]. 

 

Table 1. Comparison of the NNνν  cross sections calculated from the amplitudes for the 

separated vector, axial vector and tensor parts of the vertex function μΓ . The cross sections are 

evaluated at the incident center-of-mass 250 MeV cp =  for neutrino-pair energies 

1, 10, 25, and 50 MeVω = . 

 Table 2. Comparison of the NNνν  cross sections calculated from the amplitudes for both the 

total amplitude and the axial vector amplitude alone. The cross sections are evaluated at the 

incident center-of-mass 250 MeV cp =  for neutrino-pair energies 1, 10, 25, and 50 MeVω = . 
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Table 3. Comparison of the percent deviations iD  ( , , )i pp nn np=  calculated using Eq. (B2).  

The percent deviations iD  are evaluated at incident center-of-mass p = 250 MeV/c for neutrino-

pair energies 1,10,25,50,60ω = and 65.3 MeV. 

      

 

 

p = 250 MeV c-1 

ω  
 

(MeV) 
dσ

nn
(Γ

µ

A
) 

dω  
(mb MeV

-1
) 

dσ
nn

(Γ
µ

V
) 

dω  
(mb MeV

-1
) 

dσ
nn

(Γ
µ

T
)

 
 

dω  
(mb MeV

-1
)

dσ
pp

(Γ
µ

A
) 

dω  
(mb MeV

-1
)

dσ
pp

(Γ
µ

V
) 

dω  
(mb MeV

-1
)

Dς
pp

(Γ
µ

T
)

 
 

dω  
(mb MeV

-1
)

dσ
np

(Γ
µ

A
) 

dω  
(mb MeV

-1
) 

dσ
np

(Γ
µ

V
) 

dω  
(mb MeV

-1
)

dσ
np

(Γ
µ

T
) 

dω  
(mb MeV

-1
)

1
 
 9.11x10

-24
 7.32x10

-28
 1.24x10

-30
9.11x10

-24
3.00x10

-30
1.41x10

-30
4.67x10

-24
 3.96x10

-26
6.99x10

-31

10
 
 9.21x10

-21
 6.83x10

-25
 1.27x10

-25
9.21x10

-21
2.80x10

-27
1.44x10

-25
4.71x10

-21
 4.08x10

-23
7.10x10

-26

25  1.40x10
-19

 1.15x10
-23

 1.26x10
-23

1.40x10
-19

4.71x10
-26

1.42x10
-23

7.72x10
-20

 8.28x10
-22

7.40x10
-24

50
 
 7.13x10

-19
 1.49x10

-22
 3.47x10

-22
7.13x10

-19
6.12x10

-25
3.89x10

-22
8.55x10

-19
 1.32x10

-20
3.41x10

-22

 

 

 

Table 1 
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p = 250 MeV c-1 

ω 
 

(MeV) 

 

dσ
nn

 
dω 

(mb MeV
-1

) 

dσ
nn

(Γ
µ

A
) 

dω 
(mb MeV

-1
)

 

dσ
pp

 
dω 

(mb MeV
-1

)

dσ
pp

(Γ
µ

A
) 

dω 
(mb MeV

-1
)

 

dσ
np

 
dω 

(mb MeV
-1

) 

dσ 
np

(Γ
µ

A
) 

dω 
(mb MeV

-1
)

1 9.10x10
-24

  9.11x10
-24

  9.11x10
-24

  9.11x10
-24

  4.71x10
-24

  4.67x10
-24

  

10 9.20x10
-21 

 9.21x10
-21 

 9.21x10
-21

  9.21x10
-21

  4.76x10
-21

  4.71x10
-21

  

25  1.39x10
-19 

 1.40x10
-19

  1.40x10
-19

  1.40x10
-19

  7.78x10
-20

 7.72x10
-20

 

50 7.12x10
-19

  7.13x10
-19

  7.13x10
-19

  7.13x10
-19

  8.75x10
-19

  8.55x10
-19

  

 

 

 

Table 2 
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p = 250 MeV c-1 

ω 
 

(MeV) 

ppvv

ppD  
(%) 

nnvv   
nnD  

(%) 

npvv   

npD  
(%) 

1 0.5  0.5  1.5 

10 1.0
 
 0.9

 
 2.3 

25 1.4
 
 1.4  4.4 

50 2.1  2.0  6.2 

60 11.2 11.1 20.4 

65.3 19.2 19.1 37.4 

 

Table 3  
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 Appendix A.  Axial Vector Dominance 

 We investigate in detail why the respective NNνν  processes are dominated by the axial 

vector part of μΓ . This dominance of the axial vector part has been noted previously [5]. The 

axial vector part alone is employed in a recent paper [36] which calculates rates for neutrino 

processes involving two nucleons using chiral effective field theory. The leading order single-

pion exchange is suppressed to higher order. The authors point out that the results obtained are 

similar to those obtained using a phase shift treatment. The latter has been used previously [3] to 

calculate neutrino-pair and axion emissivities from nucleon-nucleon scattering. 

 The amplitudes for the ppνν , nnνν  and npνν  processes can be obtained from Eq. (6). 

As shown in Eq. (9), the weak interaction nucleon vertex function μΓ  in Eq. (6) contains vector 

( V
μΓ ), axial vector ( A

μΓ ), and tensor ( T
μΓ ) terms. By using the following vertex functions, 

 ( )2
1 1

1 4sin
2

V p
Vpp Vpp wF Fμ μ μγ θ γΓ ≡ Γ = − ,      (A1) 

( )2
1 1

1 4sin
2

V n
Vnn Vnn wF Fμ μ μγ θ γΓ ≡ Γ = − + ,      (A2) 

5 51
2App App AG

μ μ μγ γ γ γΓ ≡ Γ = ,        (A3) 

5 51
2Ann Ann AG

μ μ μγ γ γ γΓ ≡ Γ = − ,       (A4) 

We can define six special amplitudes: 
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(i) The special amplitude VppM μ  (or VnnM μ ), which depends only on the vector vertex function, 

can be obtained from Eq. (6) for the ppνν  (or nnνν ) process if μΓ  in Eq. (6) is 

replaced by Vpp
μΓ  (or Vnn

μΓ ). 

(ii) The special amplitude VnpM μ , which depends only on the vector vertex function, can be 

obtained from Eq. (6) for the npνν  process if μΓ  in Eq. (6) is replaced by Vpp
μΓ  

(when the νν -pair is emitted from the proton leg) or Vnn
μΓ  (when the νν -pair is 

emitted from the neutron leg). 

(iii) The special amplitude AppM μ  (or AnnM μ ), which depends only on the axial vector vertex 

function, can be obtained from Eq. (6) for the ppνν  (or nnνν ) process if μΓ  in Eq. 

(6) is replaced by App
μΓ  (or Ann

μΓ ). 

(iv)  The special amplitude AnpM μ , which depends only on the axial vector vertex function, can 

be obtained from Eq. (6) for the npνν  process if μΓ  in Eq. (6) is replaced by App
μΓ  

(when the νν -pair is emitted from the proton leg) or Ann
μΓ  (then the νν -pair is 

emitted from the neutron leg). 

 The main purpose of introducing these new amplitudes 

( VppM μ , VnnM μ , VnpM μ , AppM μ , AnnM μ , AnpM μ ) is to explain why the calculated NNνν  cross sections, using 

the general vertex function μΓ  given by Eq. (9) for all three different NNνν  processes, are 

dominated by the axial vector component of μΓ . In order to do this, we have to find the leading 

terms for each of these new amplitudes. We first expand each amplitude and then regroup the 

expanded terms in such a way that the leading terms can be identified. Let the ( )i IM μ  (i=Vpp, 



24 

 

Vnn, Vnp, App, Ann, Anp) be the leading terms of the amplitudes iM
μ ; we find the following 

expressions for the ( )i IM μ : 

(1) The leading terms of the amplitude VppM μ  can be written as 

{

( ) ( ) ( )

( )

( ) ( )

2
24

,

3 1
3 1 4 2

3 1

2
13 3 1

4 2
4 2

4 2

23

( )

( )( )

2 2        ( )
2 2

        + ( )( ) ( )

2 2        
2 2

( )(

o o
o

o o

o

Vpp I

VppA NA N
A

VppA NA N

A N

M

F t g

p pu p u p u p u p
p q p q

F t g u p u p

p pu p u p
p q p q

F u g

μ

α

α μ α μ

α

α

μ μ
α α

λ λ λ

λ

λ λ

= Γ

⎡ ⎤⎛ ⎞
× −⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

Γ

⎫⎡ ⎤⎛ ⎞ ⎪× − ⎬⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠ ⎪⎣ ⎦⎭

−

∑

{

( ) ( ) ( )

( )

( ) ( )

2

,

4 1
4 1 3 2

4 1

2
14 4 1

3 2
3 2

3 2

)

2 2        ( )
2 2

        + ( )( ) ( )

2 2        
2 2

o
o

o o

VppA N
A

VppA NA N

p pu p p u p u p
p q p q

F u g u p u p

p pu p u p
p q p q

α

α μ α μ

α

α

μ μ
α α

λ λ λ

λ

λ λ

Γ

⎡ ⎤⎛ ⎞
× −⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

Γ

⎫⎡ ⎤⎛ ⎞ ⎪× − ⎬⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠ ⎪⎣ ⎦⎭

∑

   (A5) 

The ( )Vpp IM μ  has been used to calculate the ppνν  cross section /I
Vppd dσ ω  at 1ω =  MeV for 

p=250 MeV/c. The calculated value of /I
Vppd dσ ω  is 303.00 10−×  mb/MeV. When we use the 

complete special amplitude VppM μ  to calculate the ppνν  cross section, we obtain exactly the 

same value. [See Table 1 under the heading ( ) /pp Vd dμσ ωΓ .] This implies that the contributions 

from other terms [of  order 0( )O q ] are negligible. Thus, we verify that the ( )Vpp IM μ  indeed 

contains the leading terms of the special amplitude VppM μ . 
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(2) The leading terms of the amplitude VnnM μ  have the same expression as Eq. (A5), except 

that VppΓ  is replaced by VnnΓ . That is, we have  

( ) ( )Vnn
Vnn I Vpp I

Vpp

M Mμ μ⎛ ⎞Γ= ⎜ ⎟⎜ ⎟Γ⎝ ⎠
        (A6) 

The nnνν  cross section /I
nnd dσ ω , at 1ω =  MeV for p=250 MeV/c, can be calculated from 

( )Vnn IM μ . Using 30/ 3.00 10I
ppd dσ ω −= ×  mb/MeV, 0.032VppΓ = , and | | 0.5VnnΓ = , we find  

2

30

2
30

/

3.00 10 /

0.5 3.00 10 /
0.032

I
Vnn

Vnn

Vpp

d d

mb MeV

mb MeV

σ ω

−

−

⎛ ⎞Γ= × ×⎜ ⎟⎜ ⎟Γ⎝ ⎠

⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

 

287.32 10 /mb MeV−≈ × ,        (A7) 

which is the value shown in Table 1 under the heading ( ) /nn Vd dμσ ωΓ  (calculated using the 

special amplitude VnnM μ ). 

(3) The leading terms of the amplitude VnpM μ  can be written as 
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{

( ) ( ) ( )

( )

( ) ( )

2
24

,

3 1
3 1 4 2

3 1

2
13 3 1

4 2
4 2

4 2

23

( )

( )( )

2 2        ( )
2 2

        + ( )( ) ( )

2 2        
2 2

2 ( )(

o o
o

o o

Vnp I

VnnA NA N
A

VppA NA N

A

M

F t g

p pu p u p u p u p
p q p q

F t g u p u p

p pu p u p
p q p q

F u

μ

α

α μ α μ

α

α

μ μ
α α

λ λ λ

λ

λ λ

+

= − Γ

⎡ ⎤⎛ ⎞
× −⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

Γ

⎫⎡ ⎤⎛ ⎞ ⎪× − ⎬⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠ ⎪⎣ ⎦⎭

−

∑

{

( ) ( ) ( )

( )

( ) ( )

2

,

4 1
4 1 3 2

4 1

2
14 4 1

23
3 2

3 2

)

2 2        ( )
2 2

        + ( )( ) ( )

2        
2 2

NA N
A

Vpp Vnn

A NA N

VppVnn

g

p pu p u p u p u p
p q p q

F u g u p u p

ppu p u p
p q p q

α

α μ α μ

α

α

μμ
αα

λ λ λ

λ

λλ

+
+

+ +

⎡ ⎤⎛ ⎞Γ Γ× −⎢ ⎥⎜ ⎟⋅ ⋅⎢ ⎥⎝ ⎠⎣ ⎦

⎫⎡ ⎤⎛ ⎞ΓΓ ⎪× −⎢ ⎥⎜ ⎟ ⎬⋅ ⋅⎢ ⎥⎝ ⎠ ⎪⎣ ⎦⎭

∑

   (A8) 

The ( )Vnp IM μ has been used to calculate the npνν cross section /I
Vnpd dσ ω  at 1ω =  MeV for 

p=250 MeV/c. The calculated value of /I
Vnpd dσ ω  is 263.96 10−×  mb/MeV. Using the complete 

special amplitude VnpM μ , we have also calculated the npνν  cross section ( ) /np Vd dμσ ωΓ  at 

1ω =  MeV for p=250 MeV/c. The calculated value of ( ) /np Vd dμσ ωΓ  is 263.97 10−×  mb/MeV. 

This value is shown in Table 1 under the heading ( ) /np Vd dμσ ωΓ . The difference between the 

calculated values for /I
Vnpd dσ ω  and ( ) /np Vd dμσ ωΓ  is extremely small, about 0.2%. Again, we 

verify that ( )Vnp IM μ  contains the leading terms of the special amplitude VnpM μ . 

(4) The leading terms of the special amplitude AppM μ  can be written as 
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{

( ) ( ) ( )

( )

( ) ( )

2
24

,

5 5
3 1

3 1 4 2
3 1

2
13 3 1

5 5
4 2

4 2
4 2
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( ) ( )

2 2        ( )
2 2

        + ( ) ( ) ( )

2 2        
2 2

       

o o
o

o o

App I

AppA NA N
A

AppA NA N

M

F t g

p pu p u p u p u p
p q p q

F t g u p u p

p pu p u p
p q p q
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α

μ α μ α

α

α

μ μ
α α

γ λ λ γ λ

λ

γ λ λ γ

= Γ

⎡ ⎤⎛ ⎞
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Γ
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× − +⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

∑

( ) ( ) ( )

( )
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2
23

5 5
4 1

4 1 3 2
4 1

2
14 4 1

5 5
3 2

3 2
3 2

 ( ) ( )

2 2        ( )
2 2

        ( ) ( ) ( )

2 2        
2 2

o o

o o

AppA NA N

AppA NA N

F u g

p pu p u p u p u p
p q p q

F t g u p u p

p pu p u p
p q p q

μ α μ α

α

α

μ μ
α α

γ λ λ γ λ

λ

γ λ λ γ

− Γ

⎡ ⎤⎛ ⎞
× − +⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦
− Γ

⎫⎡ ⎤⎛ ⎞ ⎪× − + ⎬⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠ ⎪⎣ ⎦⎭
   (A9) 

The ( )App IM μ  has been used to calculate the ppνν  cross section /I
Appd dσ ω  at 1ω =  MeV for 

p=250 MeV/c. The calculated value of /I
Appd dσ ω  is 249.09 10−×  mb/MeV. Using the complete 

special amplitude AppM μ , the calculated ppνν cross section ( ) /pp Ad dμσ ωΓ  gives a value of 

249.11 10−×  mb/MeV, which can be seen in Table 1. Because the difference between the 

calculated value for /I
Appd dσ ω  and ( ) /pp Ad dμσ ωΓ  is only about 0.2%, ( )App IM μ  indeed 

contains the leading terms of the special amplitude AppM μ . 

(5) The leading terms of the special amplitude AnnM μ  have the same expression as Eq. (A9), 

except that AppΓ  is changed to AnnΓ . That is, we have 

( ) ( )Ann
Ann I App I

App

M Mμ μ⎛ ⎞Γ= ⎜ ⎟⎜ ⎟Γ⎝ ⎠
        (A10) 
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The nnνν  cross section /I
Annd dσ ω  can be written as  

2 II
AppAnn Ann

App

dd
d d

σσ
ω ω

⎛ ⎞Γ= ⎜ ⎟⎜ ⎟Γ⎝ ⎠
        (A11) 

Since 

1
2Ann App GΓ = −Γ = −          (A12) 

 

Eq. (11) gives 

II
AppAnn dd

d d
σσ

ω ω
=  ,         (A13) 

which implies that the nnνν  cross section /I
Annd dσ ω  must be identical with the ppνν  cross 

section /I
Appd dσ ω  for the same values of ω  and p. 

(6) The leading terms of the amplitude AnpM μ  can be written as 
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{

( ) ( ) ( )

( )

( ) ( )

2
24

,

5 5
3 1

3 1 4 2
3 1

2
13 3 1

5 5
4 2

4 2
4 2

( )

1( )( )
2

2 2        ( )
2 2

1        + ( )( ) ( )
2

2 2        
2 2

o o
o

o o

Anp I

A NA N
A

A NA N

M

F t g G

p pu p u p u p u p
p q p q

F t g G u p u p

p pu p u p
p q p q

μ

α

μ α μ α

α

α

μ μ
α α

γ λ λ γ λ

λ

γ λ λ γ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
× − +⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎛ ⎞
× − +⎜ ⎟⋅ ⋅⎝ ⎠

∑

{

( ) ( ) ( )

( )

( )

2
23

,

5 5

4 1 3 2
4 1

2
14 4 1

5 5

3
3 2

1  2 ( )( )
2

2 2        ( )
2 2

1        + ( )( ) ( )
2

2 2        
2 2

A NA N
A

A NA N

F u g G

m mu p u p u p u p
p q p q

F u g G u p u p

m mu p u p
p q p q

α

μ α α μ

α

α

μ μ
α α

γ γ λ λ γ γ λ

λ

γ γ λ λ γ γ

+ +
+

+ +

⎫⎤⎪
⎬⎢ ⎥
⎪⎣ ⎦⎭

⎛ ⎞− ⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
× +⎢ ⎥⎜ ⎟⋅ ⋅⎝ ⎠⎣ ⎦

⎛ ⎞−⎜ ⎟
⎝ ⎠
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× +⎜ ⎟⋅ ⋅⎝ ⎠

∑

( )2

⎫⎡ ⎤⎪
⎬⎢ ⎥
⎪⎣ ⎦⎭

   (A14) 

The ( )Anp IM μ  has been used to calculate the npνν  cross section /I
Anpd dσ ω  at 1ω =  MeV for 

p=250 MeV/c. The calculated value of /I
Anpd dσ ω  is 244.66 10−×  mb/MeV. Using the complete 

special amplitude AnpM μ , the value of the calculated npνν  cross section ( ) /np Ad dμσ ωΓ  is 

244.67 10−×  mb/MeV, which can be seen in Table 1. Because the difference between the values 

for /I
Anpd dσ ω  and ( ) /np Ad dμσ ωΓ  is extremely small, about 0.2%, ( )Anp IM μ  indeed contains the 

leading terms of the amplitude AnpM μ . 

Now, we utilize all six ( )i IM μ  [ ( )Vpp IM μ  Eq. (A5), ( )Vnn IM μ  Eq. (A6), ( )Vnp IM μ  Eq. (A8), 

( )App IM μ  Eq. (A9), ( )Ann IM μ  Eq. (A10) or Eq. (A13), ( )Anp IM μ  Eq. A(14)] to explain why the 
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axial vector contribution is so dominant. Before getting into a more complicated realistic 

situation, let us first discuss a simple property, which has already been used (and tested) to 

identify the six leading ( )i IM μ . Suppose we consider the following two amplitudes 

( ) ( ) ( )Vij i Vi Vj jM u p M M u pμ μ μ= − ,        (A15) 

( ) ( ) ( )Aij i Ai Aj jM u p M M u pμ μ μ= +        (A16) 

where 

Vi iM Mμ μ αλ= ,  5
Ai iM Mμ μ αγ λ= , 

Vj jM Mμ μ αλ= ,  5
Aj jM Mμ μ αγ λ= . 

A key difference between these two amplitudes is that the amplitude VijM μ  in Eq. (A15) involves 

a “minus” sign between ViM μ  and VjM μ  while the amplitude AijM μ  in Eq. (A16) involves a “plus” 

sign between AiM μ  and AjM μ . The “plus” sign in Eq. (A16) implies that AiM μ  and AjM μ  add 

coherently to enhance the cross section. We shall call this kind of amplitude the plus-type 

amplitude. On the other hand, the “minus” sign in Eq. (A15) implies that there is a cancellation 

between ViM μ  and VjM μ  to reduce the cross section. We shall call this kind of amplitude the 

minus-type amplitude. Observing this simple property in examining all six ( )i IM μ , the reason 

why the axial vector vertex contribution is dominant can be ascertained. Some important results 

can be summarized as follows: 
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(i) For the ppνν  case, we compare the leading ( )Vpp IM μ  [Eq. (A5)] with the leading 

( )App IM μ  [Eq. (A9)]. (a) From Eq. (A5), we find that the ( )Vpp IM μ  involves four minus-type 

amplitudes inside the four square brackets of Eq. (A5). The cancellation effects reduce the cross 

section calculated from ( )Vpp IM μ . (b) From Eq. (A9), we find that ( )App IM μ  involves four plus-

type of amplitudes inside four square brackets of Eq. (A9). The combination of the plus-type 

amplitudes greatly enhances the cross section calculated from ( )App IM μ . (c) It is easy to see from 

Eq. (A5) that ( )Vpp IM μ  includes an overall factor of VppΓ . On the other hand, from Eq. (A9), the 

amplitude ( )App IM μ  includes an overall factor of AppΓ . Because 0.032VppΓ =  and 0.629AppΓ = , 

we have ( )/ 386App VppΓ Γ ≈ . This indicates that if we judge just from these overall factors alone 

and ignore all other important aspects, the cross section /I
Appd dσ ω  [calculated from ( )App IM μ ] 

would be 386 times greater than the cross section /I
Vppd dσ ω  [calculated from ( )Vpp IM μ ]. (d) 

Combining all results obtained in (a), (b), and (c), we can conclude that (at 1ω =  MeV for 

p=250 MeV/c) 

/ /I I
Vpp Appd d d dσ ω σ ω<< ,        (A17) 

which implies that 

( ) ( )/ /pp V pp Ad d d dμ μσ ω σ ωΓ << Γ        (A18) 

As shown in Table 1, this is indeed the case! 
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(ii) For the nnνν  case, we have to compare the amplitude ( )Vnn IM μ  [Eq. (A6)] with the 

amplitude ( )Ann IM μ  [Eq. (A10)]. Because the nnνν  process is very similar to the ppνν  process, 

we also have ( )Vnn IM μ , which involves four minus-type amplitudes, and ( )Ann IM μ , which involves 

four plus-type amplitudes. This implies that the cancellation effect will reduce the cross section 

/I
Vnnd dσ ω  calculated from ( )Vnn IM μ  and the coherent addition will enhance the cross section 

/I
Annd dσ ω  calculated from ( )Ann IM μ . This explains why the cross section /I

Annd dσ ω  must be 

greater than the cross section /I
Vnnd dσ ω . However, there is an important difference between the 

ppνν  process and the nnνν  process. We have already pointed out that 0.032VppΓ =  for the 

ppνν  process while 0.5VnnΓ = −  for the nnνν  process. This difference explains, as shown in Eq. 

(A7), that /I
Vnnd dσ ω  is greater than /I

Vppd dσ ω . Thus, we have demonstrated that the results 

(Table 1), 

( ) ( ) ( )/ / /nn A nn V pp Vd d d d d dμ μ μσ ω σ ω σ ωΓ >> Γ > Γ ,     (A19) 

can be understood. 

 For the npνν  case, we compare ( )Vnp IM μ  [Eq. (A8)] with ( )Anp IM μ  [Eq. A14]]. This 

npνν  case is more complicated than the ppνν  [or the Appendix A (iii)] case for the following 

reasons:  

(1) The ( )Anp IM μ  given by Eq. (A14) involves two different kinds of plus-type amplitudes. 

Both of them are defined by Eq. (A16), but they have different expressions for AiM μ  and AjM μ . 
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(a) The first kind of plus-type amplitude involves the following expressions for AiM μ  (i=3 or 

4) and AjM μ  (j=1 or 2): 

( ) ( )52 / 2Ai i iM p p qμ μ αγ λ= ⋅   (i=3 or 4),    (A20) 

( ) ( )52 / 2Aj j jM p p qμ μ αλ γ= ⋅   (j=1 or 2).    (A21) 

(b) The second kind of plus-type amplitude involves the following expressions for AiM μ  (i=3 

or 4) and AjM μ  (j=1 or 2): 

( ) ( )52 / 2Ai iM m p qμ μ αγ γ λ= ⋅  (i=3 or 4),     (A22) 

( ) ( )52 / 2Aj jM m p qμ α μλ γ γ= ⋅  (j=1 or 2).     (A23) 

Because both kinds of plus-type amplitude add AiM μ  and AjM μ  coherently, they will enhance the 

cross section /I
Anpd dσ ω  calculated from ( )Anp IM μ . 

(2) The ( )Vnp IM μ  given by Eq (A8) involves two different types of amplitudes: two minus-

type amplitudes and two plus-type amplitudes. The first two amplitudes [inside the first two 

square brackets of Eq. (A8)] belong to the minus-type class. The last two amplitudes [inside the 

last two square brackets of Eq. (A8)] belong to the plus-type class. Let us explain why the last 

two amplitudes belong to the plus-type class. Using 0.032VppΓ =  and 0.5VnnΓ = − , we find 

( ) ( )4 1
4 1

4 1

2 2
2 2
Vpp Vnnp pu p u p
p q p q

μ α μ αλ λ⎛ ⎞Γ Γ−⎜ ⎟⋅ ⋅⎝ ⎠
 

( ) ( )4 1
4 1

4 1

0.064
2 2
p pu p u p

p q p q

μ α μ αλ λ⎛ ⎞
= +⎜ ⎟⋅ ⋅⎝ ⎠

,      (A24) 
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( ) ( )3 2
3 2

3 2

2
2 2
Vnn VPPp pu p u p
p q p q

μ μ
α αλ λ⎛ ⎞Γ Γ−⎜ ⎟⋅ ⋅⎝ ⎠

 

( ) ( )3 2
3 2

3 2

0.064
2 2
p pu p u p
p q p q

μ μ
α αλ λ⎛ ⎞

= − +⎜ ⎟⋅ ⋅⎝ ⎠
.      (A25) 

We can see that there are two terms in the amplitude given by Eq. (A24) and also in the 

amplitude given by Eq. (A25). Because those two terms are connected by a “plus” sign in each 

amplitude, both amplitudes given by Eqs. (A24) and (A25) are classified as the plus-type. This 

implies that the two terms in each amplitude will add coherently to enhance cross section 

/I
VnPd dσ ω  calculated from ( )VnP IM μ . We should also point out that we do not expect the term 

with a factor of 0.064 to make a significant contribution to the cross section /I
Vnpd dσ ω . 

Combining all results obtained in (1) and (2), we can explain why 

/ / /I I I
Anp Vnp Vnnd d d d d dσ ω σ ω σ ω> > ,      (A26) 

and also  

( ) ( ) ( )/ / /np A np V nn Vd d d d d dμ μ μσ ω σ ω σ ωΓ > Γ > Γ .     (A27) 
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Appendix B:  Low (Soft) Energy Expansion of the NNνν  Amplitudes and Characterization of 

the Low (Soft) Energy Region 

The total neutrino-pair bremsstrahlung amplitude ( )TM
μ  consists of an external amplitude ( )M μ  

and an internal amplitude ( )IM
μ . The external amplitude is well known [see the expression of 

M μ  given by Eq. (6)].  However, our knowledge about the internal amplitude is somewhat 

limited.  In the case of photon bremsstrahlung, we can impose the gauge invariant condition to 

determine the internal contribution, so that a conserved total amplitude can be generated.   

The problem for the neutrino-pair bremsstrahlung case is that the gauge invariant 

condition cannot be applied to obtain an exact conserved axial vector amplitude.  However, 

PCAC can provide an approximate conserved internal amplitude, but it is very difficult to 

calculate in reality.  In fact, there are no existing calculations which include the PCAC 

contribution.  In order words, all neutrino-pair bremsstrahlung calculations employ only the 

external amplitude for the calculation of cross sections or emissivities.   

 The total amplitude TM
μ  can be expanded in powers of q [the magnitude of 

momentum ( ), ,q q qμ ω=
r r

]:  

 1
0 1 ....T

AM A A q
q

μ
μ μ μ−= + + + ,        (B1) 

which is called the low (soft) energy expansion of the amplitude TM
μ .  The most important 

difference between the external amplitude M μ  and the internal amplitude IM
μ  is that the 

amplitude M μ  contributes to all coefficients ( )1 0 1, , ,...A A Aμ μ μ
− , while the amplitude IM

μ  
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contributes to all coefficients except the leading coefficient 1A
μ
− .  This fact has a significant 

implication.  In the low (soft) energy region, the contribution from the internal amplitude IM
μ  

(including PCAC) is expected to be insignificant or negligible, and the calculations using only 

the external amplitude M μ  should be valid.  Now, the question is how to characterize the low 

(soft) neutrino-pair energy region.  There is no standard method which can be applied to 

determine such a low (soft) energy region. 

 The main purpose of this Appendix is to introduce a method which can be applied to 

investigate the contribution of the leading term ( )1 /A qμ
−  of the expansion given by Eq. (B1) and 

which, by using the results of this investigation, can characterize the low (soft) energy region.  

More precisely, our method involves the following steps: 

 (1) Using Eq. (6), we obtain the amplitudes ppM μ , nnM μ , and npM μ  for the ppνν , nnνν , 

and npνν  processes, respectively.   

 (2) We obtain the leading terms ( )ppM μ
l
, ( )nnM μ

l
, and ( )npM μ

l
 of the amplitudes ppM μ , 

nnM μ , and npM μ , respectively.  We emphasize that these leading terms [ ( )iM
μ

l , ( , , )i pp nn np= ] 

contribute only to the leading term ( )1 /A qμ
−  of the expansion given by Eq. (B1). 

 There are at least two different ways to obtain the leading terms ( )iM
μ

l
.  In addition to 

the one explored in Appendix A, an alternative is used in this Appendix.  Here, we use the ppνν  

process as an example to show how the leading term ( )ppM μ
l
 can be directly obtained from the 

expression for the amplitude ppM μ  given by Eq. (6).  The expression for ppM μ  is a sum of four 
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individual external amplitudes, representing the neutrin-pair bremsstrahlung emission from two 

incoming proton legs and two outgoing legs.  Each individual external amplitude has a 

denominator and a numerator.  The denominator involves a ip q⋅  term ( 1,2,3,4)i =  and a 2q  

term, while the numerator involves some q -dependent terms and other q -independent terms.  

The leading term ( )ppM μ
l
 can be obtained by the following procedure:  (i) In all four 

denominators of ppM μ , we keep only the ip q⋅  term and neglect (setting to zero) the 2q  term; 

(ii) In all four numerators of ppM μ , we keep only all those q -independent terms and neglect 

(setting to zero) all q -dependent terms.  In this way we obtain the expression of ( )ppM μ
l
.  

Obviously, this resulting term ( )ppM μ
l
 can contribute only to the leading term ( )1 /A qμ

−  of the 

expansion given by Eq. (B1). 

 It is easy to check that those results obtained in Appendix A [such as ( )vppM μ
l
 given in Eq. 

(A5) and ( )AppM μ
l
 given by Eq. (A9)] can be reproduced from the expression for ( )ppM μ

l
. 

 We should also point out another advantage of using the leading term ( )ppM μ
l
.  This 

leading term yields the following two different amplitudes (both of them depend on the axial 

vector vertex function A
μΓ ):  (A) the first one is the plus-type amplitude ( )AppM μ

l
 given by Eq. 

(A9).  The cross section ppd
d
σ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠l

 is completely dominated by this plus-type amplitude.  (B) The 
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second one is the minus-type amplitude, which is not discussed in Appendix A.  This minus-type 

amplitude makes a minor (almost negligible) contribution to the cross section ppd
d
σ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠l

. 

 (3) The cross sections ppd
d
σ
ω

, nnd
d
σ
ω

, and npd
d
σ
ω

 are calculated using the amplitudes ,ppM μ  

,nnM μ  and npM μ , respectively, at 250P =  MeV/c for ω = 1, 10, 25, 50, 60, and 65.3 MeV.  Note 

that ω = 65.3 MeV is the maximum kinematically allowed energy for 250P = Mev/c. 

 (4) The cross sections ppd
d
σ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠l

, nnd
d
σ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠l

, and npd
d
σ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠l

 are calculated using the leading 

terms ( )ppM μ
l
, ( )nnM μ

l
, and ( )npM μ

l
, respectively, at 250P = Mev/c for ω = 1, 10, 25, 50, 60, 

65.3 MeV. 

 The leading term ( )ppM μ
l
 includes the leading term ( )vppM μ

l
 and the leading term 

( )AppM μ
l
.  The cross section ppd

d
σ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠l

, which is calculated from the leading term ( )ppM μ
l
, is 

completely dominated by the leading term ( )AppM μ
l
.  This implies that the contribution from the 

term ( )*

vppM μ
l
 ( ),vppM μ l

 is completely negligible.  However, we emphasize that the interference 

terms, ( ) ( ) ( ) ( )* *

, ,vpp App App vppM M M Mμ μ
μ μ

⎡ ⎤+⎢ ⎥⎣ ⎦l l l l
, are not negligible. 

 (5) The percent deviations ( , , )iD i pp nn np=  are calculated,  
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 1 100%i i
i

i

d dD d d d
d

σ σ
σ ω ω
ω

⎛ ⎞= − ×⎜ ⎟
⎝ ⎠l

.       (B2) 

The results are shown in Table 3. 

 Some important results of our investigation can be summarized as follows: 

 (i) As shown in Table 3, at ω = 25 MeV, the calculated values of the percent deviation 

are 1.4% for both the ppvv  and the nnvv  processes, and 4.4% for the npvv process.  All values 

are less than 5%.  Moreover, in the energy region where ω ≤  25 MeV, our detailed analysis 

indicates that the calculated cross sections for all three NNvv  processes are completely 

dominated by the leading term ( )1 /A qμ
−  of the expansion Eq. (B1) [i.e., the leading term ( )iM

μ
l
 

( , , )i pp nn np=  of the external amplitude ( )iM
μ given by Eq. (6)].  We have also found that the 

leading term ( )1 /A qμ
− , in turn, is dominated by the axial vector component ( )AμΓ  of the vertex 

function μΓ .  

 (ii) At ω = 50 MeV, the calculated values of the percent deviation are 2.1% for the ppvv  

process, 2.0% for the nnvv  process, and 6.2% for the npvv  process.  All values are less than 7%.  

Again, the calculated cross sections for all three processes are dominated by the leading term 

( )1 /A qμ
− . 

 (iii) The calculated values of the percent deviation for all three NNvv  processes start 

increasing around ω = 60 MeV and reach their maximum values (19.2%, 19.1%, and 37.4% for 

ppvv , nnvv , and npvv , respectively) at ω = 65.3 MeV.  In other words in the energy region 
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where ω ≥  60 MeV, the contribution from the higher order terms [0 ( )0A
μ ] of Eq. (B1) becomes 

significant. 

 From the results summarized above, we can now discuss the characterization of the low 

(soft) energy region.  If we set 5% to be the maximum limit of the percent deviation for the low 

(soft) energy region, then the low (soft) energy region will be ω ≤ 25 MeV.  On the other hand, if 

we choose the maximum limit to be 7%, then the low (soft) energy region will become 

ω ≤  50 MeV. 

 Finally, it is very important to remember that our results are based on only the external 

amplitude, without taking into account the contribution from the internal term IM
μ .  However, 

the following two facts are true: 

 (a)  The internal amplitude IM
μ  does not contribute to the leading term ( )1 /A qμ

−  of the 

expansion given by Eq. (B1), and 

 (b)  The calculated cross sections for all three NNvv  processes are completely dominated 

by the leading term ( )1 /A qμ
−  of the expansion Eq. (B1) [i.e., the leading term ( )iM

μ
l
 

( , , )i pp nn np=  of the external amplitude iM
μ ] in the low (soft) energy region (ω ≤ 25 MeV or 

ω ≤  50 MeV).  Based upon (a) and (b) it seems plausible that the contribution from the internal 

amplitude would be negligible in the low (soft) energy region. 
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