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We have determined the structure function ratio Rd
EMC = F d

2 /(F
n
2 +F p

2 ) from recently published
Fn
2 /F d

2 data taken by the BONuS experiment using CLAS at Jefferson Lab. This ratio deviates
from unity, with a slope dRd

EMC/dx = −0.10 ± 0.05 in the range of Bjorken x from 0.35 to 0.7, for
invariant mass W > 1.4 GeV and Q2 > 1 GeV2. The observed EMC effect for these kinematics
is consistent with conventional nuclear physics models that include off-shell corrections, as well as
with empirical analyses that find the EMC effect proportional to the probability of short-range
nucleon-nucleon correlations.

PACS numbers: 21.45.Bc, 25.30.Fj, 24.85.+p, 13.60.Hb

I. INTRODUCTION

In the early 1980s the European Muon Collaboration
(EMC) discovered that deep-inelastic scattering from
atomic nuclei is not simply the incoherent sum of scat-
tering from the constituent nucleons [1]. Their data sug-
gested that quarks with longitudinal momentum fraction
x in the range 0.35 to 0.7 were suppressed in bound
nucleons, and their observations were quickly confirmed
at SLAC [2, 3]. The deep-inelastic structure function
FA
2 (x) for a nucleus with A nucleons was compared to

the equivalent quantity F d
2 (x) for the deuteron, such that

RA
EMC = (FA

2 /A)/(F d
2 /2). At intermediate x, RA

EMC is
less than unity, and this deviation grows with A. Over
the following three decades, subsequent dedicated mea-
surements [4–8] confirmed the EMC effect with ever-
increasing precision for a wide range of nuclei. Drell-
Yan data from Fermilab [9], however, which were largely
sensitive to sea quarks, showed no modifications of the
anti-quark sea for 0.1 < x < 0.3, contrary to models
predicting anti-quark enhancement. Despite many theo-
retical papers on the EMC effect, no universally accepted
explanation has emerged. For reviews, see Refs. [10–12].

The precise, new measurements from Jefferson Lab on
light nuclei [8] have generated a renewed interest in un-
derstanding the EMC effect. The slopes |dRA

EMC/dx| for
0.35 < x < 0.7 increase with A, however, the 9Be slope
is anomalously large, suggesting perhaps that the EMC
effect is dependent on local density and that 9Be might
be acting like two tightly bound α particles and a neu-
tron. A recent analysis [13] suggests that dRA

EMC/dx is
proportional to the probability of finding short-range cor-
relations in nuclei [14–19]. Recent work on this subject
[20–25] concludes that although binding and Fermi mo-
tion effects contribute, some modification of the bound
nucleon’s structure appears to be required to explain the

EMC effect. Whether this is caused by the nuclear mean
field, short-range correlations, or both is still open to de-
bate.
EMC ratios are usually taken with respect to the

deuteron, which is the best proxy for an isoscalar nu-
cleon (neutron plus proton), but the deuteron too may
exhibit an EMC effect. Several data-driven, model-
dependent attempts [7, 13, 26] have been made to deter-

mine Rd
EMC = F d

2 /(F
n
2 + F p

2 ), in which F
n(p)
2 is the free

neutron (proton) structure function. However, the lack of
knowledge about the free neutron’s structure has clouded
these efforts. Theoretical estimates of the deuteron EMC
ratio have also been made [27–39], often with the goal of
isolating Fn

2 /F
p
2 .

A clean measurement of Rd
EMC is greatly needed. The

deuteron is weakly bound (by 2.2 MeV), and the nucleons
are governed only by the pn interaction. Therefore, a pre-
cise measurement of Rd

EMC can shed light on the cause of
the EMC effect. Because the deuteron has a weak mean
field (1 MeV/nucleon binding versus 8 MeV/nucleon for
heavier nuclei), but a substantial contribution from high-
momentum pn pairs, it is a good test-case.

II. DATA ANALYSIS

A new extraction of Rd
EMC with smaller uncertainties

on Fn
2 is now possible thanks to the high-quality data

from the BONuS experiment [40–42] using CLAS at Jef-
ferson Lab with electron beams up to 5.26 GeV. BONuS
was designed to measure the high-x structure function ra-
tio Fn

2 /F
p
2 using a model-independent extraction of Fn

2

that relies on the spectator tagging technique. The ex-
periment used a 7-atmosphere gaseous deuterium target
surrounded by a radial time projection chamber capable
of detecting recoil protons in the range 70-200 MeV/c
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FIG. 1: (color online). BONuS data for Fn
2 /F d

2 vs. Bjorken
x taken with a 5.26 GeV beam. Only data for Q2 ≥ 1 GeV2

are shown. The red points (W > 1.4 GeV) are used in this
analysis. Error bars are statistical only. Each spectrum is
shifted upward by 1.0 from the set below it.

[40]. By selecting backward-going and low-momentum
spectators, final-state pn interactions and off-shell effects
were minimized, respectively [42]. Detection of the spec-
tator proton ensured that the electron scattered from the
neutron. The initial-state kinematics of the neutron were
then calculated from the spectator momentum. This
technique enabled the extraction of Fn

2 /F
d
2 over a wide

range of x for 4-momentum transfer squared Q2 between
0.7 and 4.5 GeV2, which covers the resonance region and
part of the deep-inelastic region. For the present anal-
ysis we have used the published data from the 4.22 and
5.26 GeV beam energies with Q2 ≥ 1 GeV2 and invariant
final-state mass W > 1.4 GeV to determine Rd

EMC.

The primary data from BONuS are the ratios Fn
2 /F

d
2

obtained from measuring tagged neutron event rates in
CLAS and dividing them by the untagged deuteron rates
recorded simultaneously at the same kinematics [42].
Consequently, detector acceptance and other systematic
effects largely cancel, and the accuracy of this ratio is far
better than that of Fn

2 alone.

The overall normalization of the BONuS data, which
takes into account the spectator proton detection effi-
ciency, was initially chosen [41] to make Fn

2 /F
p
2 at x = 0.3

agree with the CTEQ-Jefferson Lab (CJ) [43] global fit
for this point. There is a 3% normalization uncertainty
associated with this choice. For the final BONuS results

[42], which include the resonance region, the normaliza-
tion minimized the χ2 of the full data set with respect
to the most recent update [44] of the Christy and Bosted
(CB) fits [45, 46]. In this case, the convolution model of
Ref. [25, 36] allowed for a self-consistent extraction of Fn

2

from F p
2 and F d

2 and better control over the relative nor-
malization of Fn

2 and F d
2 . The new model produced no

change in the 5 GeV normalization, but a 10% increase
in the magnitude of the 4 GeV data.
Figure 1 shows the BONuS Fn

2 /F
d
2 data set taken with

a 5.26 GeV beam. The red points correspond to values
of the struck neutron’s invariant mass W above 1.4 GeV,
whereas the black points (W < 1.4 GeV) are excluded
from this analysis to eliminate the ∆ resonance.
With the new normalization, both the 5.26 and 4.22

GeV data sets yield consistent results within the sta-
tistical uncertainties. To explore the region x > 0.45
we pushed our analysis into the resonance region (1.4 <
W < 2.0 GeV). Available data, albeit at slightly higher
Q2, suggest that RA

EMC in the resonance region is similar
to that in the deep-inelastic scattering region at the same
x [47]. Therefore, we expect that an average over many
different Q2 values washes out any resonance structure
and that duality ensures Rd

EMC at fixed x, averaged over
W , approaches the deep-inelastic limit. These assump-
tions were tested and confirmed within statistical and
systematic uncertainties by looking for a Q2 dependence
of Rd

EMC within each x-bin and by considering variations
in Rd

EMC among four kinematic cases:

1. W > 1.4 GeV and Q2 > 1 GeV2;

2. W > 1.8 GeV and Q2 > 1 GeV2;

3. W > 2.0 GeV and Q2 > 1 GeV2; and

4. W > 2.0 GeV and Q2 > 2 GeV2.

The Fn
2 /F

d
2 data were sorted into 20-MeV-wide W bins

and into logarithmic Q2 bins (13 per decade) with edges
at 0.92, 1.10, 1.31, 1.56, 1.87, 2.23, 2,66, 3.17, 3.79, 4.52,
and 5.40 GeV2.
The analysis consisted of forming the quantity

r(W,Q2) =
Fn
2

F d
2

+
F p
2

F d
2

, (1)

in which the first term is the measured BONuS ratio and
the second term is the parameterization of world data
[44–46]. All data falling within one of the 20 x-bins of
width 0.05 were combined using

〈x〉 =
∑

i

xi

σ2
i

/
∑

i

1

σ2
i

, (2)

〈r〉 =
∑

i

ri
σ2
i

/
∑

i

1

σ2
i

, (3)

∆rstat =

√

1/
∑

i

1

σ2
i

, and (4)

∆rsys =
∑

i

∆rsys,i
σ2
i

/
∑

i

1

σ2
i

, (5)
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in which σi are the statistical uncertainties and ∆rsys,i
are the corresponding systematic uncertainties for the ith
Fn
2 /F

d
2 datum.

The final values for Rd
EMC were then calculated as

Rd
EMC = 1/〈r〉, (6)

∆Rstat
EMC = ∆rstat/〈r〉

2, and (7)

∆Rsys
EMC = ∆rsys/〈r〉

2. (8)

III. UNCERTAINTIES

Several checks on our results were made. First, the
analysis was performed by directly calculating Rd

EMC =
〈1/r〉 using the same 20 x-bins. The final answers were
nearly identical to those in which inversion was the last
step. The statistical spread in the ratio r in each x-bin
was used to calculate a standard error. This error agreed
very well with ∆rstat, which supports the hypothesis that
variations in r within a bin are purely statistical. System-
atic bias was also studied using a cut for Q2 > 2 GeV2,
which in the region of comparison showed no significant
deviation from the data that include lower Q2 values.
Overall systematic uncertainties were estimated by

varying the models for F p
2 /F

d
2 and the kinematic cuts.

The model dependence was explored using the published
CB fits and two later improvements applied to kinematic
Case 1 using the 5 GeV data. The kinematic-dependence
was explored using kinematic Cases 1–4 for the 5 GeV
data and Case 1 for the 4 GeV data. In order to separate
the overall normalization uncertainty from other system-
atic uncertainties, we fit the EMC slope in the range
0.35 < x < 0.7 and rescaled the data such that the linear
fit intersected unity at x = 0.31. This value was obtained
from a global analysis of the EMC effect in all nuclei [13].
The scaling factors ranged from 0.99 to 1.01 for the dif-
ferent cases. The average variation in Rd

EMC(x) at fixed
x for the different cases, the 1% scale uncertainty, and
the BONuS systematic uncertainty ∆Rsys

EMC were added
in quadrature to yield ∆Rsys

tot , which is listed in Table I
and shown as the blue band in Figure 2. The systematic
uncertainties of the BONuS data themselves dominate
at large x, whereas the model uncertainties of the global
fits dominate at low x (high W ). The mid-x region is
dominated by the normalization uncertainty. For Case
2 with x > 0.4, Rd

EMC tends to be higher than for Case
1. This arises in a region of significantly lower statis-
tics on account of the higher W -cut and fewer kinematic
points available for resonance averaging. Although the
slope dRd

EMC/dx in this case is consistent with zero, we
find this result unstable to small changes in kinematics.
Case 2 at high x figures into the systematic errors on our
quoted Rd

EMC values, however.
Since the data span a large and relatively low Q2 range

starting at 1 GeV2, one needs to worry about whether
Rd

EMC is simply an artifact of structure function evolu-
tion. To study this we looked at the contents of each
x-bin separately. Figure 1 shows that each x-bin covers

a wide enough Q2 range to study Q2 variations within
that bin. For this study each data point was converted
into Rd

EMC as described above, and instead of averaging,
all values were fit to a straight line vs. Q2. Fitting to a
constant slope yields dRd

EMC/dQ
2 = 0.0037(45), which is

consistent with no observable Q2 variation.
Although the BONuS F2 data were extracted assuming

that the longitudinal-to-transverse cross section ratio R
cancels in the neutron to deuteron ratios, the associated
uncertainty is included in the published results. Some
nuclear dependence to R could, however, slightly modify
our EMC results [48].

IV. RESULTS
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FIG. 2: (color online) The deuteron EMC ratio Rd
EMC =

F d
2 /(F

n
2 + F p

2 ) as extracted from the BONuS data. Total
systematic uncertainties are shown as a band arbitrarily po-
sitioned at 0.91 (blue). The yellow band shows the CJ12 [49]
limits expected from their nuclear models. The black points
are the combined 4 and 5 GeV data, whereas the red points
are the 4 GeV data alone. The dashed blue line shows the
calculations of Ref. [36]. The solid line (black) is the fit to
the black points for 0.35 < x < 0.7.

Our final result uses the new self-consistent convolu-
tion model [44] for F p

2 /F
d
2 , which was used to determine

the absolute normalization of the final published BONuS
Fn
2 /F

d
2 data [42]. It provides an excellent representa-

tion of F2 for our kinematics. Our result uses the com-
bined 5.26 and 4.22 data with cuts Q2 > 1 GeV2 and
W > 1.4 GeV. A linear fit for 0.35 < x < 0.7 yields
dRd

EMC/dx = −0.10± 0.05 where the uncertainty comes
from the χ2 fit. Figure 2 shows these results together
with comparisons to various models. For x < 0.5 the
EMC ratios Rd

EMC agree within uncertainties with those
obtained using more stringent cuts in W . The ratio for
x > 0.5 continues the trend of the lower-x data, with a
hint of the expected rise above x = 0.7 as seen in RA

EMC

for heavier nuclei, but these high-x values are more un-
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certain because there are fewer data points for resonance
averaging. The black circles are the combined results for
4 and 5 GeV, which are clearly dominated by the 5 GeV
data. The 4 GeV data by themselves (red triangles), are
consistent with the combined data set. The two points
between x = 0.5 and 0.6 seem to be off the trend, one be-
ing high and the other low. Because this is consistent for
the two beam energies, we suspect that there is a slight
mismatch between the model form factors and the data
in this region.
Table I gives our numerical results, in which N is

the number of Fn
2 /F

d
2 points contributing to a bin with

average kinematic values 〈x〉 and 〈Q2〉. Here ∆Rstat
EMC

and ∆Rsys
EMC are the statistical and systematic uncertain-

ties that come from the BONuS data themselves, and
∆Rsys

tot is the total systematic uncertainty that includes
∆Rsys

EMC plus the modeling and normalization uncertain-
ties in F p

2 /F
d
2 .

TABLE I: EMC results for the deuteron. The columns corre-
spond to the number of kinematic points, average x and Q2,
the EMC ratio, the statistical and systematic errors from the
BONuS data, and the total systematic error including mod-
eling of F p

2 /F
d
2 .

N 〈x〉 〈Q2〉 Rd
EMC ∆Rstat

EMC ∆Rsys
EMC ∆Rsys

tot

(GeV2)

28 0.177 1.09 0.995 0.003 0.002 0.015

55 0.224 1.24 0.991 0.003 0.003 0.010

65 0.273 1.39 0.997 0.003 0.003 0.007

71 0.323 1.50 0.994 0.003 0.004 0.007

70 0.373 1.63 1.000 0.003 0.005 0.007

70 0.422 1.71 0.992 0.003 0.007 0.009

71 0.472 1.85 0.983 0.004 0.009 0.009

56 0.523 2.01 0.967 0.004 0.011 0.012

47 0.572 2.30 0.994 0.006 0.013 0.014

41 0.619 2.54 0.974 0.007 0.017 0.017

26 0.670 2.97 0.984 0.011 0.020 0.021

21 0.719 3.39 1.019 0.019 0.023 0.025

11 0.767 4.03 1.075 0.041 0.024 0.029

The current results can be compared to the SLAC
model-dependent extraction from Ref. [7]. Here Rd

EMC

was estimated assuming the hypothesis of Ref. [50] that
1 + REMC is proportional to the nucleon density. The
SLAC slope dRd

EMC/dx = −0.098 ± 0.005 is similar to
our own, but its quoted uncertainty takes no account
of the model-dependence. The assumption of density-
dependence gives consistent results with our measure-
ments for the deuteron. Semi-empirical models like that
of Ref. [36] (blue dashed curve in Figure 2), which include
Fermi motion, binding, and off-shell effects, are able to
describe the shape of Rd

EMC quite well. Our data are also
consistent with the CJ12 [49] band in yellow.
We have explored whether the Nachtmann variable

ξ = 2x/(1 +
√

1 + 4M2x2/Q2) (with M the nucleon

mass) would be better suited than x to represent Rd
EMC,

since our data are at relatively low Q2. The authors of
Refs. [8, 47] too have addressed this question. They and
we prefer x, which has been the common variable of dis-
course and calculation. Our EMC ratios are determined
using data and model at precisely the same values of W
and Q2. Therefore, plotting versus ξ merely redistributes
the EMC points along the x axis. Generally, ξ is smaller
than x. Consequently, more of the high-x resonances in
the data-set now contribute to the EMC slope. Thus, us-
ing ξ to reduce the effect of resonances, actually increases
their influence. A fit over the rescaled interval [0.35,0.65]
yields dRd

EMC/dξ = −0.08 ± 0.06. The slope is slightly
smaller and the uncertainty slightly larger than when we
plot versus x. Resonance states above x = 0.7 drive the
slope to slightly smaller values than the fit versus x.

The analysis of Ref. [13] finds a linear relationship of
the EMC slopes dRA

EMC/dx versus the relative short-
range correlation probability R2N (A/d) in a nucleus A
with respect to the deuteron. From that analysis the au-
thors conclude that the deuteron EMC slope should be
dRd

EMC/dx = −0.079 ± 0.006. This value is somewhat
smaller than our result of −0.10± 0.05 but is consistent
within 1σ. A more recent analysis along these same lines
brackets the slope between −0.079 and −0.106 [19], and
suggests that the uncertainties of Ref. [13] are underesti-
mated.

V. Rd
EMC AND SHORT-RANGE CORRELATIONS
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We are able to use our results to estimate the in-
medium correction RA

IMC = 2FA
2 /A(Fn

2 + F p
2 ) with

slope dRA
IMC/dx, for which the normalizing factor is

the isoscalar free nucleon. We write RA
EMC = 1 +

(dRA
EMC/dx)(x0 −x) assuming that all nuclei have ratios

of unity at x0 = 0.31±0.04, as found in Ref. [13]. The nu-
clear EMC ratio RA

EMC can be multiplied by the deuteron
EMC ratio Rd

EMC to obtain RA
IMC. Hence, to good

approximation, dRA
IMC/dx = dRA

EMC/dx + dRd
EMC/dx.

Figure 3 shows the results. The data are consistent
with the ansatz that dRA

IMC/dx is directly proportional
to R2N (A/d), the short-range correlation probability,
with a proportionality constant 0.105± 0.004 (χ2/dof =
1.22). This effect persists for the isospin and nuclear-x-
corrected data from Ref. [20] (blue points), which have
the same uncertainties as the red points. The linear
relationship between short-range correlations and EMC
slopes, with the shift for the deuteron EMC effect, is now
consistent with an intercept of zero, and the relationship
becomes a straight proportion described by a single free
parameter.

VI. SYNOPSIS

In summary, we find an EMC-like slope in the ratio of
deuteron to free nucleon structure functions, using the

BONuS data (which are partially in the nucleon reso-
nance region above the ∆ resonance). This slope is con-
sistent with conventional nuclear physics models that in-
clude off-shell corrections, as well as with short-range-
correlation models of the EMC effect. This first, direct
measurement of the magnitude of the EMC effect in deu-
terium demonstrates that the new BONuS experiment at
11 GeV using CLAS12, with its better precision, larger
average Q2, and deep-inelastic kinematics, will be able
to determine Rd

EMC with good accuracy.
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