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We present results of analyses of two-pion interferometry in Au+Au collisions at
√

sNN = 7.7, 11.5, 19.6, 27,

39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The

extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the

reaction plane, centrality, and transverse mass (mT ) of the particles. The azimuthal analysis allows extraction of

the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected

to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method

to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease

with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively

consistent with a hadronic transport model.
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PACS numbers: 25.75.Gz, 25.75.Nq

I. INTRODUCTION

The Beam Energy Scan program performed at the Relativis-

tic Heavy Ion Collider (RHIC) in 2010 and 2011 was designed

to map features expected to appear in the QCD phase diagram

[1]. At the highest RHIC energies evidence suggests that the

matter formed in heavy ion collisions is a hot, strongly cou-

pled fluid of deconfined quarks and gluons (sQGP) [2–5], with

rather low chemical potential, µB. The nature of this phase

transition is likely a smooth, rapid cross-over transition [6–

9]. As the beam energy is lowered, the matter produced near

mid-rapidity evolves through regions of the phase diagram at

larger µB. At higher chemical potentials there are predictions

from lattice calculations of a change to a first-order phase

transition with an associated latent heat [10–16] and a criti-

cal point at some intermediate chemical potential [17]. The

relative amounts of time the matter spends in an sQGP, mixed

or hadronic phase may imprint a signal on observables that

are sensitive to the equation of state [18]. It is important,

therefore, to study such observables as a function of beam

energy both to search for possible non-monotonic behavior

(which could indicate interesting physical changes in some

aspect of the collisions) and to provide more stringent exper-

imental guidance to theory and models. The sizes and shapes

that describe the matter produced in the collisions at freeze-

out provide just this type of observable [19].

Results of two-pion interferometry analyses (often referred

to as HBT analyses) are presented in this paper as a function of

beam energy. Hanbury Brown and Twiss invented the inten-

sity interferometry technique to measure sizes of nearby stars

[20]. The technique was extended to particle physics [21] to

study angular distributions of pion pairs in pp̄ annihilations,

finding that quantum statistics caused an enhancement in pairs

with low relative momentum. In subsequent HBT analyses

the method has evolved into a precision tool for measuring

space-time properties of the regions of homogeneity at kinetic

freeze-out in heavy ion collisions [22]. Two-pion interferom-

etry yields HBT radii that describe the geometry of these re-

gions of homogeneity (regions that emit correlated pion pairs).

The observation that HBT radii increase for more central col-

lisions is attributed to the increasing volume of the source, an

example of how HBT can probe spatial sizes and shapes [22].

In addition to the spatial shape and size of these regions from

which particle pairs are emitted, space-momentum correla-

tions induced by collective (and anisotropic) flow [23] may

imprint patterns on the results. For instance, the HBT radii

exhibit a systematic decrease with mean pair transverse mo-

mentum, kT , which has been attributed to transverse and lon-

gitudinal flow [23, 24]. The presence of flow induces space-

momentum correlations so that the size of the regions emit-

ting particles does not correspond to the entire fireball created

in a collision [22–24]. In standard HBT analyses, integrated

over azimuthal angle relative to the reaction plane, the ex-

tracted source sizes correspond only to some smaller region

of the total volume; the higher the transverse momentum, kT ,

the smaller the radii describing the volume emitting the par-

ticles [22]. However, in HBT analyses performed relative to

the reaction plane, sinusoidal variations in the shape of these

smaller source regions can be connected to the overall shape

of the entire fireball [23, 24].

Previous HBT analyses from various experiments have led

to a large world data set for standard, non-azimuthal HBT re-

sults at AGS [25–27] and SPS [28–31], as well as top RHIC

energies [32–35], and at the LHC [36–38]. In contrast, only

a few azimuthal HBT results have been reported previously

by E895 [39], STAR [40], PHENIX [41], and CERES [42].

While the results suggested possible non-monotonic behavior

in the freeze-out shape of the collisions with a minimum ap-

pearing around a collision energy per nucleon of 17.3 GeV,

the sparse amount of data coming from several different ex-

periments could not allow one to draw a definite conclusion

[42]. In this paper, the results of azimuthally integrated HBT

analyses are placed in the context of the world data set repro-

ducing the low energy and high energy results and filling in the

intermediate energy region with results from a single detector

and identical analysis techniques. The azimuthally differen-

tial HBT results are also presented across this wide range of

energies allowing extraction of the beam energy dependence

of the transverse eccentricity at freeze-out.

In the case of the azimuthally differential analysis, a new

global fit method is developed. The technique, described in

this paper, uses a Gaussian parameterization. However, sev-

eral correlation functions constructed in azimuthal bins rela-

tive to the reaction plane are fit simultaneously. This allows

direct extraction of Fourier coefficients that describe the ob-

served sinusoidal variations in the shape of the regions of ho-

mogeneity that emit pion pairs. This technique avoids cor-

related errors that arise from a correction for finite-bin-width

and event plane resolution effects and it is more robust in some

cases where statistics and event plane resolutions are low. The

global fit method provides the most reliable estimate of the

shape of the fireball at kinetic freeze-out which, as described

in the next section, is used to search for a change in the type

of phase transition at lower energies. The experimental results

of this study are presented in Sec. VI B 3.

II. COLLISION EVOLUTION AND FREEZE-OUT SHAPE

A primary theme explored in this analysis is the connec-

tion between the type of phase transition the system experi-

ences and the shape of the collision during kinetic freeze-out.

Therefore, in this section we explore the relationship between

the underlying physics and the final shape achieved in the col-

lisions. In non-central collisions, the second order anisotropy

of the participant zone (in the transverse plane) is an ellipse

extended out of the reaction plane (the plane containing the

impact parameter and beam direction). Initial state fluctua-

tions in positions of participant nucleons may cause deviations

from a precise elliptical shape [43]. Nevertheless, the initial
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shape is approximately elliptical and can be estimated using

Monte Carlo Glauber calculations. Due to the anisotropic

shape and the speed of sound, c2
s = ∂p/∂e (where p is pres-

sure and e is energy density), larger initial pressure gradients

appear along the short axis. These stronger in-plane pressure

gradients drive preferential in-plane expansion, thereby reduc-

ing the eccentricity. The system must evolve to a less out-of-

plane extended freeze-out shape. Longer lifetimes, stronger

pressure gradients, or both, would lead to expansion to an

even more round or even in-plane extended (negative eccen-

tricity) shape at kinetic freeze-out. It would be expected that

increasing the beam energy would lead to longer lifetimes and

pressure gradients and so a monotonically decreasing excita-

tion function for the freeze-out eccentricity would be expected

[19]. In fact, all transport and hydrodynamic models predict a

monotonic decrease in the energy ranges studied here.

There is, however, another consideration related to the

equation of state. If the nature of the phase transition changes

from a smooth cross-over at high energy to a first-order tran-

sition at lower energy, the matter will evolve through a mixed-

phase regime (associated with a latent heat) during which the

pressure gradients vanish (c2
s = 0). Outside of a mixed-phase

regime, the equation of state has even stronger pressure gra-

dients (c2
s = 1/3) in the sQGP phase than the hadronic phase

(c2
s = 1/6) [44, 45]. As the collision energy is varied, the

collisions evolve along different trajectories through the T -µB

phase diagram. At low energy the system may evolve through

a first-order phase transition and the length of time spent in

the various phases may alter the amount of expansion that

takes place prior to freeze-out [45]. It is possible that a non-

monotonic freeze-out shape might be observed as a result. In

fact, it was speculated in [19] that the possible minimum ob-

served in the previously available freeze-out eccentricity mea-

surements might be caused by entrance into a mixed-phase

regime around a minimum, followed by a maximum at higher

energy above which the system achieves complete deconfine-

ment (and the strong pressure gradients reappear). Measuring

the energy dependence of the freeze-out shape therefore al-

lows one to probe interesting physics related to both the equa-

tion of state and dynamical processes that drive the evolution

of the collisions.

III. EXPERIMENTAL SETUP AND EVENT, TRACK, AND

PAIR SELECTIONS

A. STAR detector

The STAR detector [46] was used to reconstruct Au+Au

collisions provided at
√

sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and

200 GeV as part of a first phase of the Beam Energy Scan pro-

gram. The main detector used in this analysis is the Time Pro-

jection Chamber (TPC) [47, 48], which allows reconstruction

of the momentum of charged particles used for event plane

determination, including the charged pions used in the HBT

analyses. The TPC covers the pseudorapidity range |η| < 1

and has full 2π azimuthal acceptance. It is located inside a 0.5

T solenoidal magnetic field for all energies to aid in identi-

√
sNN (GeV) |VZ | (cm) Nevents (106)

7.7 < 70 3.9

11.5 < 50 10.7

19.6 < 30 15.4

27 < 30 30.8

39 < 30 8.8

62.4 < 30 10.1

200 < 30 11.6

TABLE I: Number of analyzed events and z-vertex range, VZ , at each

energy.

fying the charge, momentum, and species of each track. Zero

Degree Calorimeters, Beam-Beam Counters and/or Vertex Po-

sition Detectors, located at large rapidities near the beam line,

were tuned online to collect high statistics, minimum bias data

sets at each energy. Measuring coincidences of spectator par-

ticles in the subsystems allows selection of collisions that oc-

cur near the center of the detector.

B. Event selection

Events included in the analysis were selected using the re-

constructed vertex position. The radial vertex position (VR =
√

V 2
X +V 2

Y ) was required to be less than 2 cm to reject colli-

sions with the beam pipe. The vertex position along the beam

direction, VZ , was required to be near the center of the detector

as summarized in Table I, with larger ranges at 7.7 and 11.5

GeV to maximize statistics. The number of events at each

energy used in this analysis are also listed in Table I.

The events were binned in different centrality ranges based

on multiplicity as described in [49]. For the azimuthal HBT

analysis, data in the 0-5%, 5-10%, 10-20%, 20-30%, and 30-

40% centrality bins were used. For the non-azimuthal HBT

analysis, additional 40-50%, 50-60% and 60-70% bins were

also studied.

C. Particle selection

Tracks were selected in three rapidity ranges: −1 < y <
−0.5 (backward rapidity), −0.5< y < 0.5 (mid-rapidity), and

0.5 < y < 1 (forward rapidity). Each track was required to

have hits on more than 15 (out of 45 maximum) of the rows

of TPC readout pads to ensure good tracks. A requirement on

the distance of closest approach (DCA) to the primary vertex,

DCA < 3 cm, was imposed to reduce contributions from non-

primary pions.

Particle identification is accomplished by measuring energy

loss in the gas, dE/dx, for each track and comparing to the
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FIG. 1: (Color online) The energy loss in the TPC, dE/dx. The

colored region highlights the pions selected for this analysis. The

gaps in the colored region at |p| ≈ 0.2 GeV/c are caused by the cut to

eliminate electrons from the analysis in the region where the electron

and pion bands overlap. This example is from 0-5% central, 27 GeV

Au+Au collisions.

expected value for each species (i = e±,π±,k±,p, p̄) using the

equation

nσi =
1

σi

log

(

dE/dxmeasured

dE/dxexpected,i

)

(1)

where σi is the dE/dx resolution of the TPC. Tracks with

|nσπ| < 2 allow identification of pions for use in the analy-

sis. An additional requirement that |nσe|, |nσk|, and |nσp|> 2

supresses contamination from other particles. Additionally,

a transverse momentum cut, 0.15 < pT < 0.8 GeV/c, further

ensures particles come from the region where the pion band

is separated from the kaon band. Any contamination is esti-

mated to be less than 1.7% even before the nσ cut to reject

kaons. Figure 1 demonstrates that these cuts effectively re-

move particles other than pions.

D. Pair kT cuts and binning

Similar to previous analyses [33–35, 40] pairs were re-

quired to have average transverse pair momenta, kT = |~pT1 +
~pT2|/2, in the range 0.15 < kT < 0.6 GeV/c. For the non-

azimuthal HBT analyses four kT bins were used: [0.15,0.25]

GeV/c, [0.25,0.35] GeV/c, [0.35,0.45] GeV/c, [0.45,0.6]

GeV/c. This binning allows the presentation of results as a

function of mean kT (or mT =
√

k2
T +m2

π) in each bin. These

bins yield mean kT values similar to those in the data from

previous analyses allowing direct comparison of certain quan-

tities to previously observed trends.

In earlier azimuthal HBT studies by CERES [42] and STAR

[40] the analysis was performed in similar, narrow kT bins.

For an azimuthally differential HBT analysis the statistics are

spread across at least four additional azimuthal bins. At the

lowest energies this did not allow for sufficient statistics. For

instance, the 7.7 GeV dataset has both the fewest number of

events and the lowest multiplicity per event in each centrality

bin. Reliable results could not be obtained from data split

into both multiple kT and multiple bins relative to the reaction

plane. Instead, a single kT -integrated analysis was performed

using all pairs in the combined range 0.15 < kT < 0.6 GeV/c

with 〈kT 〉 ≈ 0.31 GeV/c. The eccentricity at kinetic freeze-out

exhibits a systematic decrease by as much as 0.02 when using

a single wide kT range compared to analyses where results

from several narrow kT ranges are averaged. This is simply

because the lowest kT bin appears to give a slightly smaller

eccentricity. When a wide bin is used the results are biased

toward the low kT results due to the much higher statistics of

the low kT pairs. In the earlier analyses, CERES reported a

weighted average of results for different kT bins, while STAR

used an average without statistical weights. In any case, to

compare the present results as a function of
√

sNN the same

kT integrated range was used for all energies.

For the azimuthally differential analysis, the pairs were sep-

arated into four 45◦ wide azimuthal bins relative to the reac-

tion plane direction using the angle Φ = φpair −ψ2. The an-

gle of each pair, φpair, is the azimuthal angle of the average

pair transverse momentum vector,~kT , and ψ2 is the second-

order event plane angle defined in the range [0,π]. This allows

measurement of the oscillations of parameters necessary to

estimate the freeze-out eccentricity as projected on the trans-

verse plane. A first order analysis could provide additional

information at the lowest energies [19, 24]. However, signifi-

cant additional work is needed to obtain first order results due

to complications from relatively low statistics spread across

more bins and with much lower first order (compared to sec-

ond order) event plane resolutions.

IV. ANALYSIS METHOD

A. The correlation function

The experimental correlation function is constructed by

forming the distributions of relative momenta,~q = (~p1 −~p2).
A numerator, N(~q), uses particles from the same event, while

a mixed event denominator, D(~q), uses particles from different

events. The numerator distribution is driven by two-particle

phase space, quantum statistics, and Coulomb interactions,

while the denominator reflects only phase space effects. Since

quantum statistics and final state interactions are driven by

freeze-out geometry [22], the ratio

C (~q) =
N (~q)

D(~q)
(2)

carries geometrical information. In the azimuthally differen-

tial analysis, four correlation functions were formed corre-

sponding to four 45◦ wide angular bins relative to the event

plane centered at 0◦ (in-plane), 45◦, 90◦ (out-of-plane), and

135◦. The angle between the transverse momentum for each

pair and the event plane is used to assign each pair to one of

the correlation functions. The denominators were constructed

with pairs formed from mixed events. Events were mixed only
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with other events in the same centrality bin and with relative

z vertex positions of less than 5 cm. For the azimuthally dif-

ferential case, events were also required to have the estimated

reaction plane within 22.5◦, similar to an earlier analysis [40].

Reducing the width of the mixing bins only changes the rel-

ative normalizations in the different angular bins but has no

effect on the other fit parameters. The correlation functions in

this analysis are formed with like-sign pions and the separate

distributions for π+π+ and π−π− are later combined before

fitting since no significant difference between the two cases

has been observed.

Detector inefficiency and acceptance effects apply to both

the numerator and denominator and so, in taking the ratio

to form the correlation function, these effects largely can-

cel. However, two particle reconstruction inefficiencies allow

track splitting and merging effects which are removed as will

be described.

A single charged particle track may be reconstructed as two

tracks with nearly identical momentum by the tracking algo-

rithm. This so called track splitting can strongly affect corre-

lation measurements by contributing false pairs to the corre-

lation function at small relative momenta, the signal region.

The same algorithm, described in [33], to remove split tracks

is used in the current analysis. Studies analogous to those in

[33] show the same “splitting level” requirement, SL < 0.6, is

also effective at removing track splitting effects in the current

data sets.

On the other hand, two particles with small relative mo-

menta can be reconstructed as a single track, thus reducing

the measured number of correlated particles. In the follow-

ing we briefly recapitulate the technique applied for removing

track merging effects, detailed in Ref. [33]. If two tracks have

hits on the same row of readout pads in the TPC that are too

close together, they would appear as a single “merged” hit.

Two tracks with such “merged” hits on many of the 45 rows

of TPC readout pads are more likely to be reconstructed as

a single merged track. For each pair of tracks, the fraction

of hits that are close enough so they would appear merged is

computed. The allowed fraction of merged hits (FMH) can be

reduced until the effect is eliminated. The same algorithm can

be applied to track pairs from the numerator and denominator.

It was determined that FMH< 10% reduced track merging ef-

fects as much as possible. While this approach eliminates the

potentially large effect of track merging, it introduces a sys-

tematic uncertainty due to the non-Gaussianess of the correla-

tion function. The azimuthal HBT analysis is more sensitive

to the track merging cut and allows the systematic uncertainty

associated with this requirement to be estimated in Sec.IV E.

Analogous studies to those in [33] using current low energy

data sets lead to the same dependence of the radii on FMH, so

in the present analyses the same requirement that FMH< 10%

is imposed to remove effects of track merging.

B. Bertsch-Pratt parameterization

The relative pair momentum, ~q, is projected onto the

Bertsch-Pratt [50–52], out-side-long (or o-s-l), coordinate

system so that qout lies along the direction of the average trans-

verse pair momentum,~kT , while qlong lies along the “longitu-

dinal” beam direction, and qside is perpendicular to the other

directions and is therefore also in the transverse plane. The

relative momentum is expressed in the longitudinal co-moving

system (LCMS) in which the longitudinal component of the

pair velocity vanishes.

To extract the bulk shape of the particle emitting regions, a

Gaussian parameterization is typically used:

C (~q) = (1−λ)+KCoul(qinv)λ

× exp
(

−q2
oR2

o − q2
s R2

s − q2
l R2

l − 2qoqsR
2
os − 2qoqlR

2
ol

) (3)
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FIG. 2: Two dimensional projections of a correlation function in the

qo-qs, qs-ql and qo-ql planes for like-sign pions at mid-rapidity in

20-30% central, 27 GeV collisions with 0.15 < kT < 0.6 GeV/c. All

scales are in GeV/c. In each case the third component is projected

over ± 0.03 GeV/c. The emission angles relative to the event plane

are within ±22.5◦ of the bin centers indicated along the right side.

The tilt in the qo-qs plane is clearly visible. Contour lines represent

projections of the corresponding fit.

The λ parameter accounts for non-primary particles that

may come from resonance decays and misidentified particles

[33]. The parameter R2
ol in equation 3 is relevant when analyz-

ing rapidity slices not centered at midrapidity [53]. It was not

used in [33], which focused exclusively on midrapidity pions.

The values of KCoul account for the Coulomb interaction as

discussed in the next section. An overall normalization of the
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correlation function, also determined during the fitting proce-

dure, scales the correlation function to a value of unity at large

values of |~q|.
The R2

ol term vanishes at mid-rapidity, but becomes positive

(negative) at forward (backward) rapidity in both azimuthal

and non-azimuthal analyses [52]. For the azimuthally inte-

grated analysis R2
os vanishes, while in an azimuthally differ-

ential analysis a second order sinusoidal variation appears rel-

ative to the reaction plane. Parametrically, a non-zero cross

term corresponds to a tilt of the correlation function in ~q-

space. This can be seen clearly in Fig. 2 in the qout-qside

plane. At 45◦ there is a tilt resulting in a positive R2
os cross

term. At 135◦ there is an opposite tilt corresponding to a neg-

ative R2
os cross term. The interplay between the cross terms

and the inherent non-Gaussianess of the correlation function

is discussed later in an appendix, where folding the relative

momentum distributions allows covariations in the fit param-

eters that would strongly affect the results. In this analysis, no

folding of~q-space is performed, eliminating this effect.

In the azimuthally differential analysis, several correlation

functions are constructed for different angular bins. These are

each fit with Eq. 3 to extract the fit parameters. The relation-

ship between these fit parameters describing the regions of

homogeneity and the shape of the source region (the collision

fireball at kinetic freeze-out) has been described in several ref-

erences, such as [23, 24, 53], for boost invariant systems.

C. Coulomb interaction

Particles that are nearby in phase space and carry the sig-

nal in the correlation function will also experience Coulomb

interactions. This effect must be taken into account when ex-

tracting the HBT radii. Different methods of accounting for

the Coulomb interaction were studied systematically in [33].

This analysis uses the Bowler-Sinyukov method [54, 55]. The

Coulomb interaction is computed for each pair with relative

momentum components, (qo,qs,ql), that enters the analysis.

The average interaction in each (qo,qs,ql) bin is included as a

constant, KCoul, in the fit parameterization. The quantity KCoul

is the squared Coulomb wave function integrated over the en-

tire spherical Gaussian source. The same radius, 5 fm, is used

as in earlier analyses. In Eq. 3, KCoul only applies to the pairs

nearby in phase space (the exponential term) and not to other

particles accounted for by the (1−λ) term.

In principle, correction for the Coulomb interaction be-

tween each particle and the mean field could also be taken

into account. However, at the energies studied here, this inter-

action has been found to be negligible [56, 57].

D. Event plane calculations

The azimuthal analysis requires determining the event

plane for each event, including applying appropriate meth-

ods to make the event plane distribution uniform [58]. Un-

certainty in the event plane reduces the extracted oscillation

amplitudes of the HBT radii. The event plane resolutions must

Centrality (%)
0 10 20 30 40 50 60 70

)]
>

2
ψ-

E
P

ψ
<c

os
[2

(

0

0.2

0.4

0.6

0.8

1

200 GeV

62.4 GeV

39 GeV

27 GeV

19.6 GeV

11.5 GeV

7.7 GeV

FIG. 3: (Color online) The event plane resolutions for Au+Au col-

lisions at
√

sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV as a

function of collision centrality. The resolutions, computed using the

TPC (|η|< 1), enter into both the correction algorithm and the global

fit method. Statistical errors are smaller than the symbols.

be computed in order to correct for this effect later in the anal-

ysis. The nth order event plane angle, ψn, is determined using

charged particles measured in the TPC according to the equa-

tion

ψn =
1

n
arctan

(

Qy

Qx

)

+∆ψn (4)

where the components of the event plane vector are

Qx =
1

N
∑

i

(wi cos(nφi)−〈Q〉x) (5)

Qy =
1

N
∑

i

(wi sin(nφi)−〈Q〉y) . (6)

Here, φi is the angle of the ith track and N is the total number

of tracks used to determine the event plane. The shift correc-

tion [58] is given by

∆ψn =
αmax

∑
α=1

2

α
(−〈sin(nαψn)〉cos(nαψn)

+ 〈cos(nαψn)〉sin(nαψn))

(7)

where α determines the order (nα) that each correction term

flattens. This analysis is performed relative to the second-

order (n = 2) event plane.
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For 7.7-39 GeV, the φ-weighting method [58–61] was used

to flatten the event plane. The inverse, single particle, az-

imuthal distribution is used to weight each particle in the event

plane determination so that inefficiencies do not affect the

event plane determination. The φ-weight, φwgt,i, is selected

from this distribution for the ith particle using the direction of

the particle’s transverse momentum vector, ~pT,i. In this case

wi = φwgt,i · pT,i while the recentering terms 〈Q〉x and 〈Q〉y, as

well as the shift term ∆ψn, are all zero.

For 62.4 and 200 GeV a problematic sector of the TPC was

turned off causing a rather non-uniform azimuthal distribu-

tion. In this case the recentering and shift methods [58, 60, 62]

were required to determine the event plane accurately. In this

case, φ-weights were not applied so wi = pT,i. Here, the av-

erage offset in the direction of the pT weighted flow vector,
~Q, is used to compute 〈Q〉x and 〈Q〉y. After this correction

is applied, a shift method is needed to correct the event plane

values for effects due to other harmonics. The shift term ∆ψn

is determined by computing the correction terms 〈sin(nαψn)〉
and 〈cos(nαψn)〉 from α = 1 up to α = 20 terms, although

generally αmax = 2 would be sufficient for a second order

analysis [58].

The event plane resolution, 〈cos[2(ψEP −ψ2)]〉, due to dif-

ferences between the reconstructed (ψEP) and actual (ψ2) re-

action planes, is also needed as it enters the correction algo-

rithm described later. The calculation begins by determin-

ing two event planes for two independent subevents which in

this analysis correspond to the η < 0 and η > 0 regions, so

called η subevents. These subevent plane estimates are pro-

cessed through an iterative procedure to solve for the full event

plane resolution as outlined in [58]. Resolutions are reduced

for lower multiplicity (and therefore lower energy) as well as

more round (less anisotropic) cases. The values at each energy

that enter this specific analysis are included in Fig. 3.

E. Systematic uncertainties

The sources of systematic uncertainty have been studied in

previous HBT analyses such as [33–35, 40]. Similar stud-

ies have been used to estimate the systematic uncertainty due

to the Coulomb correction, fit range, and fraction of merged

hits (FMH) cut discussed earlier. The azimuthal analysis is

most sensitive to the fraction of merged hits requirement and

this is used to estimate the systematic uncertainty. For lower

energies the dependence of the fit parameters on the allowed

fraction of merged hits is consistent with earlier results at√
sNN = 200 GeV. Reduction of the Coulomb radius from 5

fm to 3 fm and variation of the fit range from 0.15 GeV/c

to 0.18 GeV/c, also leads to results similar to earlier studies.

Track splitting is effectively eliminated. The uncertainties are

estimated to be the same for each
√

sNN reported here and are

summarized in Table II, for each source, for the HBT radii and

freeze-out eccentricity (defined in Sec. VI B 3).

Earlier STAR analyses [33–35, 40] found, for various col-

lision species (p+p, Cu+Cu, Au+Au) and data sets that the

systematic uncertainty is approximately 10% or less for the

HBT radii in all centrality and kT bins studied. Analogous

Source Rout Rside Rlong εF

Coulomb 4% 3% 4% 0.004

Fit Range 5% 5% 5% 0.002

FMH 7% 3% 3% 0.003

Total 9.5% 6.5% 7% 0.005

TABLE II: The approximate systematic uncertainty on the HBT radii

and freeze-out eccentricities.

studies lead to the same conclusion for the data sets used in

the current analysis and suggest the uncertainties are virtually

independent of beam energy.

It should be noted that there is also an inherent uncertainty

in the general method used to extract the eccentricity. The

theoretical framework assumes a static, Gaussian region of

homogeneity that corresponds to the entire volume of the col-

lision at kinetic freeze-out. Flow-induced space-momentum

correlations reduce this correspondence which could affect the

reliability of the equations. However, several different model

studies [23, 24] find consistently that the results are still reli-

able to within 30%, even in the presence of strong flow. This

would not affect any conclusions regarding the shape of the

excitation function in regards to whether or not it is mono-

tonic.

V. EXTRACTING RADIUS OSCILLATIONS

In azimuthally differential analyses, correlation functions

are constructed for pairs directed at different angles relative

to the event plane. The HBT radii that describe these regions

exhibit sinusoidal variations relative to the event plane direc-

tion. Second order oscillations of these radii can be described

in terms of Fourier coefficients which have been related to the

eccentricity of the collision fireball at kinetic freeze-out. Due

to finite-bin-width and event plane resolution, the amplitude

of these oscillations is reduced from the actual value. In order

to determine the true amplitudes, these effects must be taken

into account. Three methods of correcting for these effects

will be described later in this section.

In the azimuthal HBT analysis, four correlation functions

are constructed, for pairs directed in four different angular

bins centered at Φ = 0◦, 45◦, 90◦, and 135◦ relative to event

plane. This allows extraction of the second order sinusoidal

variations of the HBT radii. Figure 4 shows an example of

these oscillations. The Φ dependence of the HBT radii for a

given beam energy, centrality, and kT are described by:

R2
µ (Φ) = R2

µ,0

+ 2 ∑
n=2,4,6...

R2
µ,n cos(nΦ) (µ = o,s, l,ol) (8)
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FIG. 4: (Color online) Examples of the angular oscillations of the

HBT radii relative to the event plane from 20-30% central, 19.6 GeV

Au+Au collisions for 0.15 < kT < 0.6 GeV/c. Open circles show

the radii before correction for finite-bin-width and event plane reso-

lution. Open cross symbols demonstrate that correcting these effects

increases the oscillation amplitude. The corrected and uncorrected

results are obtained with the HHLW fit method (see text) before and

after the correction algorithm (Sec.V B) is applied. The points at 0◦

are repeated on the plot at 180◦ for clarity. The solid bands show the

Fourier decomposition directly extracted using a global fit (Sec. V C)

to all four angular bins; the width of the bands represent 1-sigma

uncertainties from the fit. The value of λ is consistent for the two

methods.

and

R2
µ (Φ) = R2

µ,0

+ 2 ∑
n=2,4,6...

R2
µ,n sin(nΦ) (µ = os) (9)

where R2
µ,n are the nth-order Fourier coefficients for radius

term µ. These coefficients are computed using

R2
µ,n =

{

〈R2
µ (Φ)cos(nΦ)〉 (µ = o,s, l,ol)

〈R2
µ (Φ) sin(nΦ)〉 (µ = os)

(10)

The 0th-order Fourier coefficients are expected to be nearly

identical to radii extracted in an azimuthally integrated analy-

sis. The 2nd-order terms correspond to half the amplitude of

the second order oscillations for a second order, n = 2, analy-

sis.

The extracted HBT radii display the expected [53] symme-

tries expressed in equations 10. The 3-σ difference between

the R2
long values at 45◦ and 135◦ is eye-catching, but is statis-

tical in nature.

Imperfect event plane resolution smears the difference be-

tween neighbouring azimuthal bins and it also causes the

peaks of the extracted oscillations of the HBT radii to appear

smaller than they ideally should be. These effects must be

corrected for in order to extract the true 2nd-order oscillation

amplitudes needed to compute the kinetic freeze-out eccen-

tricities, εF , which are discussed in Sec. VI B 3. In the follow-

ing discussion, two methods that have been applied in earlier

analyses (which we refer to as the E895 and HHLW methods)

are reviewed. A third method used in this analysis, dubbed the

global fit method, is then introduced.

A. E895 method

In an earlier azimuthal HBT analysis performed by the

E895 collaboration [39] and a later analysis by the CERES

collaboration [42], the radii were extracted from correlation

functions that were uncorrected for finite-bin-width and res-

olution effects. These uncorrected radii were then used to

compute the Fourier coefficients described above. The un-

corrected, 2nd-order Fourier coefficients were then scaled by

dividing by the event plane resolution, as is done when cor-

recting a v2 measurement for event plane resolution effects.

While this is found to give consistent results to other methods

described below, it is formally incorrect because it is not the

radii that are smeared, but rather each q-space bin for each

of the numerator, denominator and Coulomb weighted mixed

event distributions separately. This method will be referred to

as the E895 method.

B. HHLW method

In this method, used first in [40], a model independent cor-

rection algorithm is applied to compute the corrected numer-

ator, denominator, and Coulomb weighted denominator his-

tograms for each angular bin. The radii extracted from these

corrected distributions are then used to compute the Fourier

coefficients. This method will be referred to as the HHLW

method after the authors of the paper in which it was devel-

oped [53]. We briefly summarize this correction procedure

below.

The derivation, detailed in Ref. [53], requires first decom-

posing mathematical expressions for the true (corrected) and

experimental distributions as Fourier series. The true distribu-

tions are then convolved with a (Gaussian) distribution of the

reconstructed event plane centered about the reaction plane,

and a function to account for the finite azimuthal bin width.

Finally, each coefficient from the series for the true distribu-

tion is equated with the corresponding coefficient from the

series expansion of the experimental distribution. This leads
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to the following relationship between coefficients for the true

and experimentally observed distributions:

A
exp
α,n (~q) = Aα,n (~q)

sin(n∆/2)

n∆/2
〈cos[n(ψEP −ψ2)]〉. (11)

The quantities Aα,n(~q) and A
exp
α,n(~q) are the coefficients for

the Fourier series representation of the true and experimen-

tal distributions respectively. The formula applies separately

to the numerator (A=N) and the denominator (A=D) of Eq. 2

and the Coulomb weighted mixed event (A=KCoul) distribu-

tions. The factors multiplying Aα,n(~q) come from the con-

volution of the true series mentioned previously. The quanti-

ties 〈cos[n(ψEP−ψ2)]〉 are the reaction plane resolutions. The

symbol ∆ is the width of each angular bin and n is the order

of the Fourier coefficient. The experimental coefficients can

be computed from the experimentally measured distributions

in each angular bin using the standard definition for Fourier

coefficients so that

A
exp
α,n(~q) =

{

〈Aexp
n (~q,Φ)cosnΦ〉 (α = c)

〈Aexp
n (~q,Φ)sin nΦ〉 (α = s)

(12)

are the coefficients for the cosine (α = c) or sine (α = s) terms

in the series expansion.

The corrected distributions can be computed from the ex-

perimental distributions using

A(~q,Φ j) =Aexp (~q,Φ j)+ 2
nbins

∑
n=1

ζn (∆)

× [Aexp
c,n (~q)cos(nΦ j)+Aexp

s,n (~q)sin(nΦ j)].

(13)

In this analysis, only the 2nd-order event plane, ψ2, is mea-

sured, and so only the n= 2 terms are required. The correction

parameter ζn(∆) is given by

ζn (∆) =
n∆/2

sin(n∆/2)〈cos[n(ψEP −ψ2)]〉
− 1. (14)

Substituting Eq. 14 into Eq. 13 leads to an identity, with only

experimentally measured quantities on the right hand side.

Once the corrected numerator, denominator, and Coulomb

weighted mixed-event distributions are computed for each an-

gular bin, fits are performed to extract the radii. As in [40],

the λ parameter from the four angular bins are averaged (for

each centrality) and set as a constant for all four bins; the 〈λ〉
values are nearly identical to the non-azimuthal cases. The

correlation functions are refit to extract the radii. The λ-fixing

procedure reduces the number of independent fit parameters

needed. We have checked that removing this restriction from

the fits results in no significant Φ-dependence of λ, but only

results in slightly larger errors for the radii, due to the increase

of parameters.

In any case, the HBT radii extracted from these corrected

distributions exhibit the true, larger oscillation amplitude.

This is clearly demonstrated in Fig. 4. One deficiency in this

approach is that the uncertainties on the corrected distribu-

tions are correlated, leading to an underestimate of the uncer-

tainties for the extracted radii. We have developed a global fit

method, described next, to avoid this issue.

C. Global fit method

A new global method of fitting was developed that avoids

correlated errors and provides more reliable results in cases

of low statistics and poor event plane resolution. The method

begins with the same Gaussian parameterization as in Eq. 3.

The Fourier representation of the radii from Eqs. 8 and 9 are

substituted, keeping only the 0th- and 2nd-order terms. In this

method, the fit parameters are the Fourier coefficients that de-

scribe the oscillations of the radii relative to the event plane,

and so the Fourier coefficients are extracted directly rather

than the radii. Using this parameterization, the theoretical es-

timate of the true numerator, Ntrue, is then smeared for event

plane resolution and finite-binning effects by applying the cor-

rection algorithm in reverse, as described below. In this way, a

theoretical estimate of the values expected in each uncorrected

numerator, Nsmeared, is obtained which can then be compared

to the uncorrected numerators that are experimentally mea-

sured, Nexp.

For each bin ~q =(qo,qs,ql), a value of the correlation func-

tion, Ctrue(~q), is computed. An estimate for the denominator is

obtained from the “true” denominator, D(~q) (i.e., the denom-

inator for a given Φ bin run through the correction algorithm

described in the last section). The estimate for the true numer-

ator, for each ~q bin, is simply Ntrue(~q) = D(~q)Ctrue(~q). This

value is then run through the correction algorithm in reverse.

A series similar to Eq. 13,

Nsmeared (~q,Φ j) = Ntrue (~q,Φ j)+ 2
nbins

∑
n=1

ζ
′
n (∆)

× [Ntrue
c,n (~q)cos(nΦ j)+Ntrue

s,n (~q) sin(nΦ j)],

(15)

is used to compute the value expected to appear in the un-

corrected numerator, Nexp, for each (qo,qs,ql) bin and each Φ
bin. The quantity Nsmeared is the value expected in the uncor-

rected numerator, Nexp, based on the value, Ntrue, predicted by

the current values of the fit parameters during each iteration

of the fit algorithm. All fit parameters (including normaliza-

tions) obtained in this method correspond to the true correla-

tion function even though the fit is applied to the uncorrected

numerators. As in Eq. 13, only n = 2 terms are used for an

analysis relative to the second order event plane.

A factor similar to Eq. 14, from the same relationship be-

tween true and experimental values,

ζ
′
n(∆) =

sin(n∆/2)〈cos[n(ψEP −ψ2)]〉
n∆/2

− 1 (16)

smears the true amplitude according to the resolution and

finite-bin-width when substituted into Eq. 15.
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relative to the reaction plane. Results from the HHLW fit method and the global fit method are shown for direct comparison. These projections

are from results for 10-20% central, 19.6 GeV Au+Au collisions with 0.15 < kT < 0.6 GeV/c.

In this way, an estimate, Nsmeared, of the value that should

be found in the uncorrected, raw numerator histogram, Nexp,

for each (qo,qs,ql) bin in each Φ bin is obtained from the fit

function. The value expected by the fit function is compared

to the value actually observed in each (qo,qs,ql) bin in the four

uncorrected numerator histograms for all four Φ bins in a sin-

gle simultaneous “global” fit.

A separate normalization is used for each Φ bin since there

will be differences in the number of tracks, and therefore

pairs, in the different bins. A single λ parameter is used for

all four angular bins, as is done in the HHLW fit method. The

global fit method significantly reduces the number of param-

eters needed to describe the data from 21 parameters (λ + 5

radii x 4 Φ bins) in the HHLW method to 11 parameters (λ +

10 Fourier coefficients), not counting the four normalization

parameters.

The HHLW correction algorithm computes a corrected his-

togram from all of the uncorrected histograms. Therefore, the

uncertainties in each corrected histogram depend on the un-

certainties in all the uncorrected histograms. While the un-

certainties are independent in the uncorrected histograms, the

uncertainties in the “corrected” histograms are not. However,

the fit assumes the uncertainties are independent and, as a re-

sult, underestimates the true uncertainty. The new method,

by fitting directly to the uncorrected numerator histograms,

avoids this problem.

A disadvantage of the new algorithm is that the normaliza-

tions obtained correspond to the “true” correlation function,

Ctrue(~q) = Ntrue(~q)/Dtrue(~q), but the fit uses the corrected de-

nominator histogram, D(~q), as in the HHLW method, and

the uncorrected numerator histogram, Nexp(~q). To compare

the fit to the distributions that are actually used in the fit,

C′(~q) = Nexp(~q)/D(~q) is projected onto the out, side and long

axes, but the normalizations do not correspond exactly. They

do put the projections on a common scale however. The 0◦

and 90◦ projections are shifted away from unity at large ~q.

Examples of the projections using the global fit method are

shown in Fig. 5 for the same centrality and energy as the fits

using the HHLW fit method, also shown in Fig. 5 for com-

parison. As a check, if instead one projects N(~q)/D(~q) and

Nfit(~q)/D(~q), where Nfit(~q) is the unsmeared fit numerator

computed from the extracted Fourier coefficients (from the

global fit method), the projections look essentially identical

to the HHLW fit method projections for all four angular bins.

For most centralities and fit parameters, the results agree

quite well. However, the amplitude describing the R2
long oscil-

lation, R2
l,2, is larger when obtained using the new fit method.

This is demonstrated most clearly in Fig. 4 by comparing the

solid band for the oscillation extracted using the global fit

method to the corrected radii using the HHLW method. The
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difference in R2
l,2 for the two parameterizations means that the

second order oscillation that best fits the data from all angu-

lar bins simultaneously is not consistent with the Gaussian

Rlong values that best describe the regions of homogeneity in

each angular bin separately. While Gaussian fits are useful for

characterizing overall system scales, it has been shown [33]

that the correlation function at these energies is least Gaussian

in the longitudinal direction. Hence, 5-10% discrepancies in

R2
long from different Gaussian fits is perhaps unsurprising.

The difference may be exacerbated by a subtle interdepen-

dence of the fit parameters in the HHLW fit method that con-

strains the Rlong values. Also, the new fit method has diffi-

culties in all central 0-5% cases and in a few 5-10% cases

when the statistics become low. These cases are excluded, for

instance, from Fig. 12 as well as all other figures for the az-

imuthally differential analysis. For some of the 0-5% cases

the fit could never converge even with high statistics. For

these unreliable cases, while the R2
ol,2 values are close to zero

in the HHLW fit results for all centralities, a large R2
ol,2 sud-

denly appears in this most central bin when using this global

fit method. This is likely non-physical because, for a symmet-

ric acceptance window around mid-rapidity, R2
ol must average

to zero. Additionally, because the different angular bins are

most similar in central events any second order oscillation of

R2
ol,2 should decrease in the most central bin due to symmetry,

not appear suddenly. In fact when R2
ol,2 is varied, the χ2 value

between the fit and the data becomes quite flat for the central

data compared to other centralities allowing R2
ol,2 to take on a

wide range of values without constraint. Additionally, when

this happens the oscillations extracted for some, or sometimes

all, of the other parameters (R2
o,2, R2

s,2, R2
l,2) change sign in this

central case, even when statistics are high.

Due to the symmetry of the almost round central events,

the distributions for different angular bins are quite similar

compared to other centralities. The global fit method extracts

oscillations, not radii, from all four bins simultaneously, and

when the distributions are similar it seems to have the freedom

to find a wider variety of solutions. The HHLW fit method,

with separate fits in each azimuthal bin, has no such freedom,

but is found to be less reliable when statistics and resolutions

are low. For the global fit method, for other centralities, the re-

sults are rather stable. The 0th-order coefficients remain con-

sistent with the azimuthally integrated results, which is even

true for 0-5% centrality. The behavior for central data appears

to be the result of the relationship between the fit parameters

used, the similar shape of the emission regions for all the an-

gular bins in the central data, and the very shallow minimum

in χ2 that develops for R2
ol,2 at the same time. There are no

other differences in the global fit algorithm compared to the

HHLW fit method.

VI. RESULTS

The azimuthally integrated HBT results are discussed first

and compared to historical data from earlier experiments and

recent results from ALICE. Later, the azimuthally differential

analysis is presented for a wide range of beam energies. The

azimuthally differential analysis is also performed in three ra-

pidity bins allowing extraction of the excitation function for

the R2
ol parameter and direct comparison of the freeze-out ec-

centricity in the same forward rapidity window as an earlier

measurement by the CERES collaboration. Finally, the ex-

citation function for the freeze-out eccentricity is discussed

along with its implications for the relevant underlying physics

as outlined in Sec. II.

A. Azimuthally integrated HBT

There is a wealth of earlier HBT data demonstrating the

systematic behavior of the HBT radii as a function of beam

energy, kT (or mT ), and centrality. Trends have been estab-

lished despite the measurements having been performed by

various experiments and with differences in the analysis tech-

niques. In this paper, the results are presented across a wide

range of beam energies, overlapping previously measured re-

gions and filling in previously unmeasured regions of
√

sNN .

Figure 6 shows the beam energy dependence of the λ pa-

rameter, the HBT radii, and the ratio Rout/Rside for like-sign

pions in central collisions at low kT . All the STAR results are

from the most central 0-5% and lowest 〈kT 〉 (≈ 0.22 GeV/c)

data. The ALICE point is also from 0-5% central data, but has

a slighly larger 〈kT 〉≈ 0.26 GeV/c. Results from earlier exper-

iments come from a range of central data sets, as narrow as 0-

7.2% to as wide as 0-18% centrality, as well as a range of 〈kT 〉
values, from 0.17 GeV/c to 0.25 GeV/c. The earlier data are

from π−-π− correlation results in which various methods of

accounting for the Coulomb interaction were employed. The

new STAR results are from combined π−-π− and π+-π+ cor-

relation functions. No significant difference between the two

cases has been observed so the combination simply leads to

higher statistics. Our high-statistics analysis, with identical

acceptance for all
√

sNN , yields a well-defined smooth excita-

tion function consistent with the previous trends.

The λ parameter primarily represents the fraction of cor-

related pairs entering the analysis, as described in Sec. IV B.

It decreases with increasing
√

sNN relatively rapidly at lower,

AGS, energies while changing rather little from 7.7 to 200

GeV. This suggests that the fraction of pions in this 〈kT 〉 range

from long-lived resonances increases at lower energy but re-

mains rather constant at higher energies. The value of λ is

larger than our earlier reported results for 200 GeV [33] which

is related to our implementation of an anti-electron cut that

reduces contamination in this analysis. The Rout parameter

similarly shows little change over a wide range of RHIC ener-

gies. It does appear to rise noticeably at the LHC. The values

of Rside show a very small increase at the higher RHIC ener-

gies and a more significant increase at the LHC. The values of

Rlong, on the other hand, appear to reach a minimum around

5 GeV, rising significantly at RHIC and the ALICE point is

once again higher than the trend observed at STAR.

The radius Rside is primarily associated with the spatial ex-

tent of the particle emitting region, whereas Rout is also af-

fected by dynamics [23, 24] and is believed to be related to

the duration of particle emission [63, 64].
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FIG. 6: (Color online) Energy dependence of the HBT parameters

for central Au+Au, Pb+Pb, and Pb+Au collisions at mid-rapidity and

〈kT 〉 ≈ 0.22 GeV/c [26–31, 36]. The text contains discussion about

variations in centrality, kT , and analysis techniques between experi-

ments. Errors on NA44, NA49, WA98, CERES, and ALICE points

include systematic errors. The systematic errors for STAR points at

all energies (from Table II) are of similar size to error bar for 39 GeV,

shown as a representative example. Errors on other results are statis-

tical only, to emphasize the trend. For some experiments the λ value

was not specified.

It has long been suggested [50, 51, 63] that a long particle-

emission duration could result in Rout becoming much larger

than Rside. In the simplest scenario of a static, non-flowing
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FIG. 7: Top panel: The difference between the squared transverse

HBT radii are plotted as a function of the collision energy for STAR

and ALICE measurements of the most central heavy ion collisions.

Bottom panel: The ratio of the out and side HBT radii fror STAR and

ALICE are plotted for the same collisions.

In both cases, statistical errors are shown by solid error bars. Sys-

tematic errors are shown only for the data at mT = 0.33 GeV (mT =
0.38 GeV) for STAR (ALICE); systematic errors are common for

all mT cuts. The systematic errors are driven by two-track cuts that

are common to all STAR energies and so are drawn only for the√
sNN = 62.4 GeV data.

source, the emission time is given by [84]

(β∆τstatic) = R2
out −R2

side, (17)
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where β= kT
mT

is the speed of one of the pions in the source rest

frame. For a flowing source such as those created at RHIC,

however, equation 17 is unreliable [22] as the dimensions of

the homogeneity region probed by low-q pion pairs is affected

differently in the out and side directions. Indeed, for some

sources Rout may be smaller than Rside [23], in which case

equation 17 would yield imaginary emission times.

It is interesting to note that the excitation function of this

quantity shows a clear peak at
√

sNN ≈ 20 GeV, as seen in the

top panel of figure 7. Clearly, equation 17 cannot be used,

since R2
out−R2

side becomes smaller as β increases and even be-

comes negative at higher
√

sNN and mT . Extracing timescales

from the quantity R2
out−R2

side is necessarily model-dependent.

Prompted by Rischke and Gyulassy [63], the ratio

Rout/Rside is frequently studied [22]. This ratio has the ad-

vantage of removing the overall scale of the system. Since

Rout and Rside are both reduced by flow [23, 67], their ra-

tio is slightly more robust against flow effects. The ratio is

also somewhat more natural to calculate in ideal (zero vis-

cosity) hydrodynamic theory which has no intrinsic scale.

Finally, extracting radii from dynamical model calculations

depends on the algorithm used [22]. Calculations that rely

strictly on freezeout distributions and bypass calculation of

the momentum-space correlation function, often yield HBT

radii that are much too large, whereas the ratios between them

are closer to experimental values. [22, 85]

In the hydrodynamic calculation of Rischke and Gyulassy,

which included flow, Rout/Rside exhibited a peak as the en-

ergy density of the system nears the threshold of a first-order

phase transition or rapid crossover transition [63]. This ratio is

shown in the bottom panel of figure 6 for the world’s dataset.

A small peaking behavior in the STAR data is obscured by

the historical SPS and AGS data. The excitation function is

clearer if the STAR and ALICE data are viewed separately, as

seen in the bottom panel of figure 7.[86] For all mT ranges,

the ratio peaks at
√

sNN ≈ 20 GeV.

It is not unreasonable to examine the RHIC and LHC data

on their own. Femtoscopic techniques, including various

methods for accounting for the Coulomb repulsion between

the pions, have evolved over time [22]; STAR and ALICE use

the Bowler-Sinyukov formalism [54, 55], which affects par-

ticularly the outward radius [33]. Furthermore, the detector

acceptance and two-track efficiency change as a function of

collision energy in a fixed-target experiment, which can com-

plicate detection of a subtle trend in an observable with
√

sNN .

Mid-rapidity measurement with collider experiments such as

STAR and ALICE are performed with uniform coverage in-

dependent of collision energy. Finally, systematic errors vary

from one experiment to another. While the systematic error on

Rout/Rside (shown as a grey band in figure 7) is significant, it

is common for all
√

sNN , so the peak in the ratio is statistically

significant.

The peak in R2
out −R2

side and Rout/Rside is intriguing, espe-

cially since it occurs around a collision energy where several

other observables [87–90] show non-trivial trends that may in-

dicate a change in the underlying physics at these energies.

However, conclusive interpretation of the femtoscopic data
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for each energy and multiple centralities. Errors are statistical only.

For 7.7 GeV and 11.5 GeV, the results for 60-70% centrality are ex-

cluded due to lack of statistics.

presented here must await comparison with theoretical calcu-

lations.

The value of Rlong has been related to the kinetic freeze-out

temperature, T , and lifetime, τ, of the system by the relation

[23, 65, 66]

Rlong = τ

√

T

mT

K2(mT/T )

K1(mT/T )
(18)

where K1(mT/T ) and K2(mT/T ) are modified Bessel func-

tions. The kinetic freeze-out temperature is not expected to

change much with
√

sNN . Therefore, the rise of Rlong suggests

that the total lifetime of the system is increasing with energy.

At the end of this section Eq. 18 will be used to extract τ as a
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CERES [28], Pb+Pb at ALICE [36], and Si+A at E802 [25]. Errors
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function of
√

sNN given certain assumptions.

The systematic errors for STAR points at all energies (from

Table II) are of similar size to error bar for 39 GeV, shown as

a representative example. Errors on other results are statistical

only to emphasize the trend.

Figure 8 shows the 〈mT 〉 dependence of the HBT param-

eters for each energy. As mentioned earlier, the decrease in

transverse and longitudinal radii at higher mT are attributed to

transverse and longitudinal flow [23, 67]. Larger mT pairs are

emitted from smaller emission regions with less correspon-

dence to the size of the entire fireball. For both Rout and Rside

the different beam energies show similar trends both in magni-

tude and slope. For Rlong, the slopes appear to remain similar

for the different energies, but the magnitude of Rlong increases

with energy for all centralities. From these observations, and

  [GeV]   NNs
10 210 310

]  
   

   
 

3
   

 [f
m

lo
ng

R
2 si

de
R

3/
2

)π
(2

1000

2000

3000

4000

5000

6000

7000 E895

E866
NA49

CERES

WA98

NA44

PHOBOS

STAR

ALICE
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netic freeze-out in central Au+Au, Pb+Pb and Pb+Au collisions with

〈kT 〉 ≈ 0.22 GeV/c [26–32, 36]. The systematic errors for STAR

points at all energies (from Table II) are of similar size to error bar for

39 GeV, shown as a representative example. Errors on other results

are statistical only, to emphasize the trend. The PHOBOS points are

offset in
√

sNN for clarity. The text contains some discussion about

variations in centrality, 〈kT 〉, and analysis techniques between differ-

ent experiments.

considering Fig. 6 showed the beam energy dependence for

a single kT and centrality bin, it is apparent that similar de-

pendencies on
√

sNN exist for all the studied centrality and kT

ranges.

The multiplicity dependence of the HBT radii are presented

in Fig. 9 for two kT ranges with 〈kT 〉 ≈ 0.22 GeV/c and

〈kT 〉 ≈ 0.39 GeV/c. A few earlier measurements with simi-

lar 〈kT 〉 are shown as well. It was observed in [34] that Rside

and Rlong both follow a common universal trend at 62.4 and

200 GeV independent of the collision species. ALICE has

recently shown p+p collisions exhibit a different multiplicity

dependence with a smaller slope [37, 38]. The difference may

be due to the interactions in the bulk medium formed in heavy

ion collisions.

The results from ALICE are at different 〈kT 〉 values. To get

a similar 〈kT 〉 ≈ 0.39 GeV/c estimate, the ALICE data points

[36] reported for 〈kT 〉 ≈ 0.35 GeV/c and 〈kT 〉 ≈ 0.44 GeV/c

are averaged and plotted on Fig. 9. There is some ambiguity in

this approach as the different pair statistics at different kT are

not accounted for when averaging this way. As demonstrated

in [36–38], the universal trends for Rside and Rlong continue up

to LHC energies.

When comparing different datasets from previous analyses

[25, 28, 36], there is an uncertainty on the centrality caused by

the different techniques that were used to compute the average

charged track multiplicity 〈dNch/dη〉. In this analysis, the
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FIG. 11: (Color online) The lifetime, τ, of the system as a function

of beam energy for central Au+Au collisions assuming a temperature

of T = 0.12 GeV at kinetic freeze-out. Statistical uncertainties from

the fits are smaller than the data points. For all experiments except

E895, which did not report systematic uncertainties, errorbars indi-

cate systematic uncertainties, based on reported systematic uncer-

tainty on Rlong. The line extrapolates between the lowest and highest

energy. The text contains a discussion about variations in centrality

and analysis techniques between different experiments. The yellow

band demonstrates the effect on τ of varying the assumed tempera-

ture by ±0.02 GeV.

standard STAR centrality definition was used at all energies,

where 〈dNch/dη〉 is computed using all events that pass the

event selection cuts. However, it should be noted that this is an

uncorrected value of 〈dNch/dη〉 that underestimates the true

value, thus allowing for a qualitative comparison only with

other experiments.

An estimate of the volume of the homogeneity regions,

V = (2π)3/2
R2

sideRlong, can be computed using the data in

Fig. 6. These values are plotted in Fig. 10 as a function of√
sNN . The STAR results are all for 0-5% central collisions

with 〈kT 〉 ≈ 0.22 GeV/c. Since the values are computed using

the data in Fig. 6, all the same variations in centrality ranges

and 〈kT 〉 values are present in the volume estimates too. Ear-

lier results from other experiments suggest a minimum be-

tween AGS and SPS energies. The STAR results show a no-

ticeable increase in volume at the higher energies while the

7.7 and 11.5 GeV points are almost the same, consistent with

a minimum in the vicinity of 7.7 GeV. The ALICE point rises

even further suggesting the regions of homogeneity are signif-

icantly larger in collisions at the LHC.

The CERES collaboration [68] has found that a constant

mean free path at freeze-out,

λF ≈ V

(Nπσππ +NNσπN)
≈ 1 f m, (19)

leads naturally to a minimum in the energy dependence of the

volume that is observed, assuming that the cross sections σππ

and σπN depend weakly on energy, since the yields of pions

and nucleons, Nπ and NN , change with energy. Above 19.6

GeV, the ratio of Nπσππ/NNσπN remains rather constant and

the denominator in Eq. 19 increases with energy similar to

the volume. Below 11.5 GeV, the NNσπN term becomes the

dominant term and it increases at lower energies as does the

volume. At higher energies, this scenario is consistent with

the nearly universal trend of the volume on 〈dNch/dη〉 and,

therefore, Rside and Rlong on 〈dNch/dη〉1/3 [34]. It is interest-

ing that the multiplicity dependence for Rside begins to deviate

slightly from this trend for 7.7 and 11.5 GeV in Fig. 9 which

is the same region where the system changes from π-N to π-

π dominant. Also, the argument above neglects the influence

from less abundant species including kaons, but it has been

observed that strangeness enhancement occurs in this same

region of
√

sNN [69].

Another change that occurs in this region is the rapid in-

crease of v2 around
√

sNN = 2-7 GeV. In the region around

7.7 to 11.5 GeV, the slope of v2

(√
sNN

)

begins to level off

[70, 71]. A possibility is that the deviation of Rside for 7.7

and 11.5 GeV is related to the onset of flow induced space-

momentum correlations. The E802 results at 4.8 and 5.4 GeV

in the right column of Fig. 9 are qualitatively similar to the

STAR 7.7 GeV results for Rside, but considering the STAR

〈dNch/dη〉1/3 values are slightly underestimated, the E802

results probably deviate slightly more relative to the higher

energies than even the 7.7 GeV data. For Rout, on the other

hand, the E802 results are significantly larger than the STAR

7.7 GeV points. This could be consistent with the effects of

flow. Transverse flow should reduce the size of the regions of

homogeneity and is expected to affect Rout much more than

Rside. This was reflected already in the larger slope for the

〈mT 〉 dependence of Rout relative to Rside in Fig. 8. It would

be interesting to study these trends at lower energies with a

single detector where many interesting physical changes are

occuring simultaneously.

An alternative explanation of the minimum observed in

the volume measurement in Fig. 10 is provided by Ultra-

relativistic Quantum Molecular Dynamics (UrQMD) calcula-

tions. In [72], UrQMD also finds a minimum between AGS

and SPS energies but, in this case, the cause is related to

a different type of change in the particle production mech-

anism. At the lowest energies pions are produced by reso-

nances, but as the energy increases more pions are produced

by color string fragmentation (accounting for color degrees of

freedom) which freeze-out at an earlier, smaller stage (thus

a smaller volume is measured). At even higher energies, the

large increase in pion yields cause the volume to increase once

more. This explanation suggests that a change from hadronic

to partonic degrees of freedom cause the minimum in the vol-

ume measurement. Allowing a mean field potential to act on

these pre-formed hadrons (the color string fragments) leads

UrQMD to predict Rout/Rside values near the observed val-

ues (≈ 1) for the whole energy range from AGS to SPS [73].

Simultaneously, inclusion of the mean field for pre-formed

hadrons causes UrQMD to reproduce the net proton rapidity

distribution and slightly improves its prediction for v2(pT ) at

intermediate pT .
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FIG. 12: (Color online) Centrality dependence of the Fourier co-

efficients that describe azimuthal oscillations of the HBT radii, at

mid-rapidity (−0.5 < y < 0.5), in 7.7 GeV collisions with 〈kT 〉 ≈
0.31 GeV/c. Open symbols are results using separate Gaussian fits

to each angular bin, the HHLW method. Solid circles represent re-

sults using a single global fit to all angular bins to directly extract the

Fourier coefficients. Crosses directly compare the azimuthally inte-

grated radii and the 0th-order Fourier coefficients. Error bars include

only statistical uncertainties. The 0-5% and 5-10% global fit points

have been excluded.

As one last application of the data, the lifetime of the col-

lisions is extracted in a study analogous to Ref. [36]. We also

assume a kinetic freeze-out temperature of T = 0.12 GeV and

fit the data in Fig. 8 using Eq. 18. The results are plotted in

Fig. 11. The STAR results are all for 0-5% collisions with

〈kT 〉 ≈ 0.22 GeV/c. Again, there are some variations in the

centrality ranges, as in Fig. 6, for the historical data. The

extracted lifetime appears to increase from around 4.5 fm/c

at the lowest energies to around 7.5 fm/c at 200 GeV, an in-

crease of an approximate factor of 1.7. The ALICE point sug-

gests a much longer lived system, above the trend observed at

lower energies. Varying the temperature assumed in the fits

to T = 0.10 GeV to T = 0.14 GeV causes the lifetimes to in-

crease by 13% and decrease by 10%, respectively, for all ener-

gies, as indicated by the yellow band. As noted in [36], due to

effects from non-zero transverse flow and chemical potential

for pions, the use of Eq. 18 may significantly underestimate

the actual lifetimes.
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FIG. 13: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 7.7 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using

the global fit method. Error bars include only statistical uncertain-

ties. The 0-5% and two 5-10% points have been excluded.

B. Azimuthally differential HBT

The detailed results of the azimuthally differential analy-

sis are presented in Figs. 12 through 27. Earlier, Fig. 4 pre-

sented an example of the second order oscillations of the HBT

radii relative to the event plane for a single energy, centrality,

and rapidity. These second order oscillations are represented

by 0th- and 2nd-order Fourier coefficients, as described in

Sec. V A. The Fourier coefficients are presented as a function

of Npart in two figures for each energy, starting with Figs. 12

and 13 for 7.7 GeV and continuing through Figs. 24 and 25

for 200 GeV. For each energy, the first figure compares mid-

rapidity results from the HHLW and global fit methods while

the second compares forward, backward, and mid-rapidity re-

sults obtained using the global fit method. Each set of Fourier

coefficients for a given Npart (centrality), rapidity, and energy

encodes all the information for oscillations similar to those in

Fig. 4.

In each of the figures showing the Fourier coefficients, the

0th-order coefficients are presented in the middle column, for

the squared radii in the out, side and long directions (R2
o,0,

R2
s,0, R2

l,0) and the out-side cross term (R2
os,0). These values

are expected to correspond to radii from the azimuthally inte-

grated analysis. This correspondence is demonstrated in the

first Fourier coefficient figure for each energy which also in-
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FIG. 14: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at mid-

rapidity (−0.5 < y < 0.5), in 11.5 GeV collisions with 〈kT 〉 ≈ 0.31

GeV/c. The symbols have the same meaning as in Fig. 12. Error

bars include only statistical uncertainties. The 0-5% global fit point

is excluded.

cludes the azimuthally integrated results (red crosses) for di-

rect comparison. As in the azimuthally integrated case, the di-

agonal radii increase with centrality while the R2
os,0 cross term

remains about zero for all centralities. In the right column of

these figures, ratios of 2nd-order to 0th-order coefficients are

presented, also for the out, side, long and out-side parame-

ters. The ratios that are presented have been connected to the

freeze-out geometry, especially for the R2
s,2/R2

s,0 case. The left

column of each of the figures contains the parameters for the

out-long cross term. The 0th-order values, R2
ol,0, are non-zero

away from mid-rapidity and show interesting dependence on

energy and centrality that will be discussed later.

1. Comparison of fit methods

This section provides a comparison of the HHLW fit

method and the global fit method used in the azimuthally

differential analysis at mid-rapidity. The first Fourier coef-

ficient figure for each energy is relevant for this discussion.

For Sec. VI B 2, the second Fourier coefficient figure for each

energy is relevant for the discussion of centrality and rapidity

dependence of the Fourier coefficients.

The results using the two fit methods are generally consis-

tent for most of the parameters. For each energy, the first fig-

ure compares the Fourier coefficients from the two fit methods
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FIG. 15: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 11.5 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using

the global fit method. Error bars include only statistical uncertainties.

The 0-5% and two 5-10% points have been excluded.

at mid-rapidity. Forward and backward rapidity results are not

included as some of the results become unreliable in a few

cases. The reason is that at the lowest energies statistics lim-

its the reliability, ofthe HHLW fit method, especially for 7.7

GeV which has the fewest events and the lowest multiplicity

per event. The forward and backward rapidity regions have

even lower statistics due to the narrower window of rapidity,

∆y = 0.5 rather than ∆y = 1. As seen in Fig. 3, the event plane

resolutions are much lower at these energies as well which can

amplify noise in the correlation function when the correction

algorithm is applied. The correction algorithm does not distin-

guish between a real signal and a statistical variation. The am-

plitude of the variations is increased in either case. The global

fit method was designed to minimize this problem by only ap-

plying the correction algorithm to the denominator which has

an order of magnitude higher statistics than the numerator.

The 0th-order Fourier coefficients are expected to be con-

sistent with the radii in the azimuthally integrated analy-

sis. Therefore, the 0th-order, squared radii should increase

smoothly with Npart (as in the middle column of Figs. 12

through 25). For the 0th-order terms good agreement with the

azimuthally integrated results is observed for both the HHLW

and global fit methods, except a few cases at the lowest en-

ergies. Especially for 7.7 GeV, with the HHLW fit method,

several points, primarily the most peripheral and more cen-
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FIG. 16: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at mid-

rapidity (−0.5 < y < 0.5), in 19.6 GeV collisions with 〈kT 〉 ≈ 0.31

GeV/c. The symbols have the same meaning as in Fig. 12. Error

bars include only statistical uncertainties. The 0-5% global fit point

is excluded.

tral (lowest statistics and resolution) points, were found to de-

viate quite significantly from this trend. All of these points

are excluded in the figures since they are unreliable. In the

same cases, however, the global fit method remains consistent

with the non-azimuthal radii. Projections of the fits on the

out, side, and long axes show the HHLW fit method results

do not match well with the data in such cases. In particular,

the 90◦ bin suffers most from low statistics (fewer tracks are

directed out of the reaction plane) which affects both the 0th-

and 2nd-order coefficients when each bin is fit separately. The

global fit method results are somewhat more reliable in these

low statistics and low resolution cases.

As noted earlier, there is a difference in the oscillation am-

plitude for the long direction, R2
l,2, obtained from the two

methods. This is shown clearly in Fig. 4 where the global fit

method extracts a larger oscillation amplitude. From the first

Fourier coefficient figure at each energy, the ratio R2
l,2/R2

l,0
is systematically further below zero for the global fit method

results. This is a systematic difference, independent of cen-

trality and energy, related to the different parameterizations in

the two fit methods.

For reasons discussed in Sec. V C, results using the global

fit method are not shown for the most central 0-5% data, as

well as a few 5-10% cases for 7.7 and 11.5 GeV where the

statistics are low. Still, in all cases, the fit projections from the

global fit method better match the data, there is better agree-
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FIG. 17: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 19.6 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using

the global fit method. Error bars include only statistical uncertainties.

The 0-5% global fit point is excluded.

ment between forward and backward as well as mid-rapidity

results and, as discussed in Sec. V C, the errors are not under-

estimated as they are for the HHLW fit method. Therefore,

results using the global fit method are used later when dis-

cussing the freeze-out shape.

2. Fourier components

The trends exhibited by the Fourier coefficients are quali-

tatively similar for all energies. The 0th-order coefficients are

consistent with the non-azimuthal results. Like in the non-

azimuthal results, the increase of the 0th-order coefficients for

more central data is related to the increasing volume of the ho-

mogeneity regions in more central events. Since the ratios of

2nd- to 0th-order results are related to the freeze-out shape, the

trends are expected to extrapolate toward zero for more cen-

tral, more round collisions. The right column of the Fourier

coefficient figures for each energy demonstrate that this be-

havior is observed. For each HBT radius, the ratios of 2nd-

to 0th-order coefficients follow similar trends for all energies,

rapidities, and centralities. This means that the 2nd-order coef-

ficients (half the oscillation amplitudes) have the same sign in

all these cases. Therefore, the data requires that all energies,

rapidity ranges, and centralities must exhibit oscillations of
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FIG. 18: (Color online) Centrality dependence of the Fourier co-

efficients that describe azimuthal oscillations of the HBT radii, at

mid-rapidity (−0.5 < y < 0.5), in 27 GeV collisions with 〈kT 〉 ≈
0.31 GeV/c. The symbols have the same meaning as in Fig. 12. Er-

ror bars include only statistical uncertainties. The 0-5% global fit

method point is excluded.

the HBT radii that are qualitatively similar to those in Fig. 4.

The Fourier coefficients for all three rapidities are similar in

most cases, especially in the R2
s,2/R2

s,0 values for 10-20% and

20-30% centralities used later in the excitation function for

the freeze-out eccentricity.

One interesting feature occurs in the R2
ol,0 parameter at for-

ward and backward rapidity. This parameter exhibits both

centrality and energy dependence that may be relevant for

constraining future model studies. The centrality depen-

dence is shown in the upper panels in the left column of

Figs. 13, 15, 17, 19, 21, 23, and 25. As discussed earlier, this

term averages to zero for results centered at mid-rapidity, but

is otherwise non-zero. At the lowest energy, the R2
ol,0 offset

is quite large (Fig. 13) and increases in a linear manner with

Npart. At higher energies, although the linear trend with Npart

remains, the slope decreases for larger
√

sNN . For the 200

GeV results in Fig. 25, the slope and values are quite small

compared to the 7.7 GeV case, for instance. As discussed in

Sec. III B, this non-zero cross term corresponds to a tilt in the

qout-qlong plane. The non-zero value of the cross term means

there is a correlation between the relative momentum of parti-

cle pairs in the out and long directions.

Two considerations affect how R2
ol,0 (or any of the radii) are

related to physical parameters of interest. One is the frame

in which the correlation function is constructed (fixed cen-

5
10
15
20
25
30
35

5
10
15
20
25
30
35

]2 [fmo,0
2R

100 200 300

5

10

15

20

25

5

10

15

20

25
]2 [fms,0

2R

100 200 300

10

15

20

25

30

10

15

20

25

30]2 [fml,0
2R

     
100 200 300

100 200 300

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
]2 [fmos,0

2R

-0.3

-0.2

-0.1

0

0.1

-0.3

-0.2

-0.1

0

0.1

s,0
2/Ro,2

2R

100 200 300

-0.05

0

0.05

0.1

0.15

-0.05

0

0.05

0.1

0.15

s,0
2/Rs,2

2R

100 200 300

-0.1

-0.05

0

0.05

-0.1

-0.05

0

0.05

l,0
2/Rl,2

2R

   ñ
part

 Ná
100 200 300

100 200 300

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2
s,0
2/Ros,2

2R

     
100 200 300

100 200 300

-2

-1

0
1
2

-2

-1

0
1
2]2 [fmol,2

2R
100 200 300

-5

0

5

-5

0

5]2 [fmol,0
2R

1

2

3

4

5

6

7

8

9

10

        Global Fit
-1.0 < y < -0.5
-0.5 < y < 0.5
 0.5 < y < 1.0

±π-±π     Au+Au    

    27 GeV 

FIG. 19: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 27 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using the

global fit method. Error bars include only statistical uncertainties.

The 0-5% global fit point is excluded.

ter of mass, LCMS, etc.) [52, 74]. The other involves the

assumptions that enter a particular analytical model of the

source distribution (static, longitudinal flow, transverse flow,

boost-invariance, etc.) that is required to relate the extracted

fit parameters (radii) to physical quantities such as freeze-out

duration or total lifetime [52, 74].

Assume for the moment that radii are measured in the

LCMS frame, as in this analysis. In models with longitudinal

expansion, breaking of boost-invariance results in non-zero

values of the R2
ol,0 cross term away from mid-rapidity [52, 74].

The reason is that the LCMS and local rest frame of the source

only coincide in the boost-invariant model [74]. This is one

example of how changing the model assumptions leads to a

different relationship between the radii (including R2
ol,0) and

physical parameters.

Alternatively, if the same analytical model is assumed but

the measurement is performed in different frames, the depen-

dence of the radii on the physical parameters will also change.

Ref. [74] demonstrates that, assuming boost invariant longitu-

dinal expansion, measurement in a fixed frame, the LCMS

frame, and a generalized Yano-Koonin frame lead to three

different relationships between the fit parameters (radii) and

physical quantities. In Ref. [52], a similar analytical model

leads to a quite complex dependence of R2
ol,0 on various phys-

ical quantities in the center of mass frame. However, the ex-
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FIG. 20: (Color online) Centrality dependence of the Fourier co-

efficients that describe azimuthal oscillations of the HBT radii, at

mid-rapidity (−0.5 < y < 0.5), in 39 GeV collisions with 〈kT 〉 ≈
0.31 GeV/c. The symbols have the same meaning as in Fig. 12. Er-

ror bars include only statistical uncertainties. The 0-5% global fit

method point is excluded.

pression greatly simplifies in the LCMS frame, leaving R2
ol,0

directly proportional to the freeze-out duration and other pa-

rameters.

Fig. 26 shows that, for each centrality, R2
ol,0 decreases

smoothly toward zero at higher collision energy. It has been

suggested [52, 74] that the quantity R2
out −R2

side is sensitive

to the duration of particle emission, ∆τ, which provided the

main motivation for the past studies of Rout/Rside, summarized

in Fig. 6. The R2
ol offset has also been associated with the

duration of freeze-out and other parameters in a mathemati-

cally different way [52, 74]. Within the framework of a given

model, this new data may allow an estimate of ∆τ, (and also

other parameters described in the references) as a function of

beam energy, using a variable that has different dependence on

∆τ than does the more commonly studied quantity R2
out−R2

side.

One other observation can be made because the R2
ol,0 values

in Fig. 26 are measured in the LCMS frame. As mentioned

above, non-zero values of R2
ol,0 suggest boost-invariance may

be broken. The higher absolute values of R2
ol,0 at lower

√
sNN

may thus reflect that the assumption of boost-invariance be-

comes less valid at lower energies.

5
10
15
20
25
30
35

5
10
15
20
25
30
35

]2 [fmo,0
2R

100 200 300

5

10

15

20

25

5

10

15

20

25
]2 [fms,0

2R

100 200 300

10

15

20

25

30

10

15

20

25

30]2 [fml,0
2R

     
100 200 300

100 200 300

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
]2 [fmos,0

2R

-0.3

-0.2

-0.1

0

0.1

-0.3

-0.2

-0.1

0

0.1

s,0
2/Ro,2

2R

100 200 300

-0.05

0

0.05

0.1

0.15

-0.05

0

0.05

0.1

0.15

s,0
2/Rs,2

2R

100 200 300

-0.1

-0.05

0

0.05

-0.1

-0.05

0

0.05

l,0
2/Rl,2

2R

   ñ
part

 Ná
100 200 300

100 200 300

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2
s,0
2/Ros,2

2R

     
100 200 300

100 200 300

-2

-1

0
1
2

-2

-1

0
1
2]2 [fmol,2

2R
100 200 300

-5

0

5

-5

0

5]2 [fmol,0
2R

1

2

3

4

5

6

7

8

9

10

        Global Fit
-1.0 < y < -0.5
-0.5 < y < 0.5
 0.5 < y < 1.0

±π-±π     Au+Au    

    39 GeV 

FIG. 21: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 39 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using the

global fit method. Error bars include only statistical uncertainties.

The 0-5% global fit point is excluded.

3. Kinetic freeze-out eccentricity

Once the Fourier coefficients are extracted the eccentricity,

defined as

εF =
σ′2

y −σ′2
x

σ′2
y +σ′2

x

≈ 2
R2

s,2

R2
s,0

(20)

can be simply computed [23]. The variances σ′
y and σ′

x corre-

spond to the widths of the collision fireball at kinetic freeze-

out in the out-of-plane and in-plane directions, respectively.

This definition allows negative eccentricities if σ′
y < σ′

x which

would indicate the system expanded enough to become in-

plane extended. Whether or not that happens is related to

the collision dynamics and equation of state as described in

Sec. II. The ratio R2
s,2/R2

s,0 is used to estimate εF because

Rside is less affected by flow, and hence it carries primarily

geometric information [23].

Figure 27 shows the eccentricities at kinetic freeze-out, εF ,

defined in Eq. 20, for all centralities and energies. They are

plotted against the initial eccentricity relative to the participant

plane obtained from the Glauber model [49], defined as
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FIG. 22: (Color online) Centrality dependence of the Fourier co-

efficients that describe azimuthal oscillations of the HBT radii, at

mid-rapidity (−0.5 < y < 0.5), in 62.4 GeV collisions with 〈kT 〉 ≈
0.31 GeV/c. The symbols have the same meaning as in Fig. 12. Er-

ror bars include only statistical uncertainties. The 0-5% global fit

method point is excluded.

εPP =

√

(σ2
y −σ2

x)
2 + 4σ2

xy

σ2
x +σ2

y

. (21)

The variances σ2
x = {x2}−{x}2 and σ2

y = {y2}−{y}2 gauge

the widths of the distributions of participant nucleons in and

out of the reaction plane direction, respectively. The sym-

bol {. . .} denotes averaging of participant nucleons, with po-

sitions x and y, in each event. The covariance σxy = {xy}−
{x}{y} accounts for event-by-event fluctuations in the distri-

bution of participant nucleons. The line has a slope of one

(εF = εPP), so points further below the line have evolved more

toward a round shape (εF = 0). These results demonstrate that,

at all energies studied, the freeze-out shape remains an out-

of-plane extended ellipse (εF > 0). In no case does extended

lifetime or stronger flow result in the shape becoming in-plane

extended (εF < 0). However, there is always some evolution

toward a more round shape, as expected, and there tends to

be slightly more evolution for the higher energies. The same

observations apply at forward and backward rapidity because

of the similar trends observed for the ratio R2
s,2/R2

s,0 (= εF/2).

The excitation function for the freeze-out shape is presented

in Fig. 28. The new STAR results for three rapidities are com-

pared to earlier measurements from other experiments and to

several models. The results use the global fit method and
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FIG. 23: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 62.4 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using

the global fit method. Error bars include only statistical uncertainties.

The 0-5% global fit point is excluded.

are for mid-peripheral (10-30%) collisions where the initial

anisotropic shape is large but there is still significant overlap

of the nuclei. The larger differences between in-plane and

out-of-plane pressure gradients in these collisions and larger

initial spatial anisotropy could admit more varied results in

the change in shape, if that where to happen at different ener-

gies. The new STAR results exhibit a monotonic decrease in

the freeze-out eccentricity with increasing beam energy for all

three rapidity regions.

The freeze-out eccentricity values from CERES and STAR

at similar energy and centrality are not consistent. There are

some differences in analyses from these different experiments

such as correction for event plane resolution, fitting in one kT

bin versus averaging several smaller kT bins, and centrality

ranges. These could potentially be important and were stud-

ied. The CERES point at 17.3 GeV suggested a possible mini-

mum in the historical data. The new STAR results at 11.5 and

19.6 GeV at mid-rapidity were significantly higher suggest-

ing a monotonic decrease in the freeze-out shape. To check

that the difference was not due to the different rapidity win-

dows the STAR analysis was extended to include the same

rapidity region as CERES, 0.5 < |y| < 1. The forward and

backward rapidity results remained consistent with the mid-

rapidity measurement. The CERES point for 10-25% central-

ity is consistent with the (smaller) eccentricities for the 0-5%
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FIG. 24: (Color online) Centrality dependence of the Fourier co-

efficients that describe azimuthal oscillations of the HBT radii, at

mid-rapidity (−0.5 < y < 0.5), in 200 GeV collisions with 〈kT 〉 ≈
0.31 GeV/c. The symbols have the same meaning as in Fig. 12. Er-

ror bars include only statistical uncertainties. The 0-5% global fit

method point is excluded.

and 5-10% centrality ranges in STAR results at 19.6 GeV, so

it seems rather unlikely that large enough differences in cen-

trality definitions could occur to cause such a large difference

in the eccentricities for STAR and CERES. Event, track, and

pair selection quantities have rather little effect on the results.

Another difference is the range of kT values included in the

fits. In the CERES and earlier STAR result [40], the azimuthal

analysis was done in narrow kT bins and the εF values aver-

aged. This was problematic at the lowest energies due to lower

statistics when the analysis was additionally differential in kT .

Using a single, wide kT bin biases the results slightly toward

smaller εF values, as discussed in Sec.III D. Therefore, to be

consistent, the same (wide kT bin) method is used for all the

STAR points. The CERES results used a weighted average of

results in narrow kT bins which should be equivalent to using

a single, wide kT bin. It seems unlikely that this is the cause of

the discrepency. The E895 correction algorithm was used in

the CERES and E895 cases to correct for the event plane res-

olution while in the STAR case the histograms were corrected

or the fit function smeared in the global fit case. The differ-

ence in the results is rather tiny for these different methods

and also cannot explain the difference.

As discussed in Sec. II, non-monotonic behavior in the ex-

citation function would have strongly suggested interesting

changes in the equation of state. The observed monotonic de-
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FIG. 25: (Color online) Centrality dependence of the Fourier coeffi-

cients that describe azimuthal oscillations of the HBT radii, at back-

ward (−1 < y <−0.5), forward (0.5 < y < 1) and mid (−0.5 < y <
0.5) rapidity, in 200 GeV collisions with 〈kT 〉 ≈ 0.31 GeV/c using

the global fit method. Error bars include only statistical uncertain-

ties. The 0-5% global fit point is excluded.
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crease excludes the scenario described in reference [19] and

is consistent with increased lifetime and/or pressure gradients

at higher energy. The energy dependence of Rlong from the

non-azimuthal analysis, and the lifetimes shown in Fig. 11,

suggest also that the system is longer-lived at higher energy.

Still, these results will allow to probe equation of state effects
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FIG. 27: The eccentricity of the collisions at kinetic freez-out, εF ,

as a function of initial eccentricity relative to the participant plane,

εPP, at mid-rapidity. All results are for 〈kT 〉 ≈ 0.31 GeV/c. Error

bars include only statistical uncertainties. The line has a slope of one

indicating no change in shape. Points further below the line evolve

more to a round shape.

by comparing to various models.

The currently available model predictions [19, 45, 75] for

the energy dependence of the freeze-out eccentricity are also

shown in Fig. 28. All models predict a monotonic decrease

in the freeze-out shape at higher energies similar to the data.

The older (2+1)D, ideal hydrodynamical models [45], labeled

EOS-H, EOS-I, and EOS-Q, all overpredict the data. As was

noted in [75], in comparison to the historical data, the model

with a first order phase transition, EOS-Q, gets close to the

200 GeV point. The predictions of the freeze-out shape are

sensitive to the equation of state used in the hydrodynamic

models. This is clear by comparing the curves for EOS-I

(ideal, massless quark gluon gas) and EOS-H (hadronic gas).

For EOS-Q, the slope changes, following EOS-H at low en-

ergies, but dropping more rapidly at higher energies. This

is attributed to passage through a mixed-phase regime which

extends the lifetime allowing the system to evolve to a more

round state at higher energies [19].

The two more recent (2+1)D predictions, from the

VISH2+1 model, get closer to the data. MC-KLN and MC-

GLB correspond to different initial conditions and are more

realistic than the earlier results as they allow to incorporate

viscous effects [75]. MC-GLB uses a specific shear viscosity

of η/s = 0.08 with Glauber initial conditions. The MC-KLN

model has a much larger specific shear viscosity, η/s = 0.2,

and the initial shape is derived from the initial gluon density

distribution in the transverse plane (which is converted to an

entropy and finally energy density profile). Both models in-

corporate an equation of state based on lattice QCD, named

s95p-PCE [76, 77]. Initial parameters in the models were cal-

ibrated using measured multiplicity distributions (and extrap-

olations to lower energies) and to describe pT -spectra and v2

measurements for 200 GeV Au+Au collisions at RHIC. The

two cases were found to yield similar lifetimes, but in the MC-

KLN case the initial eccentricities are larger (more out-of-

plane extended). The MC-KLN model achieves a less round

shape simply because it starts with larger initial eccentricity

[75]. The excitation function for freeze-out eccentricities has

the potential to resolve ambiguities between models with dif-

ferent initial conditions and values of η/s. In particular, the

two sets of initial conditions and η/s used here yield identi-

cal v2, but very different εF . So the results in Fig. 28 provide

tighter constraints on these models.

The goal of [75] was to map systematic trends in observ-

ables with the two models, not to explain the data precisely.

In fact, the applicability of these models is known to be prob-

lematic at lower energies both because they assume boost-

invariance, which is broken at lower energy, and because the

hadronic phase is expected to become more important at lower

collision energy. A more realistic calculation requires (3+1)D

viscous hydrodynamics. Nevertheless, the new calculations

are able to match more closely the experimental results. Of

the hydrodynamical models, MC-GLB is closest to the data al-

though it still overpredicts the freeze-out eccentricity and the

slope appears too steep. One relevant observation from [75] is

that in these models the decrease in the eccentricity with en-

ergy appears to be due mainly to an extended lifetime rather

than larger anisotropy of pressure gradients. As discussed at

the end of Sec. VI A, the lifetime extracted from Rlong values

also suggest an increase in the total lifetime. However, the

data cannot allow one to determine whether the decrease in

eccentricity is due solely to increased lifetime or whether the

pressure gradients may also play a significant role.

The prediction of the Boltzmann transport model, UrQMD

(v2.3) [78], matches most closely the freeze-out shape at all

energies [19]. UrQMD follows the trajectories and interac-

tions of all hadronic particles throughout the collision, so it

does not require assumptions about how freeze-out occurs.

The model is 3D and does not require boost-invariance, there-

fore it is equally applicable at all the studied energies. This

may be, at least partially, why the predictions from UrQMD

more closely match the energy dependence of the data com-

pared to the hydrodynamic predictions. While it does not ex-

plicitly contain a deconfined state, it does incorporate color
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sNN. This

systematic uncertainty is significantly smaller than statistical uncertainties and so is not drawn, to reduce clutter.

degrees of freedom through inclusion of the creation of color

strings and their subsequent decay back into hadrons.

For the azimuthally integrated results, UrQMD does rather

well at predicting the observed dependence of HBT radii on

〈kT 〉 and centrality [79, 80]. As discussed earlier, inclusion of

a mean field acting between pre-formed hadrons (color string

fragments) predicts Rout/Rside ratios similar to the observed

values and leads naturally to a minimum in the volume simi-

lar to that which is observed experimentally [72, 73]. Such a

repulsive potential between the string fragments would mimic

somewhat an increase in pressure gradients at early stages [73]

similar to the hydrodynamics cases with an equation of state

that includes a phase transition. The UrQMD predictions for

the eccentricities at kinetic freeze-out in Fig. 28 were made

with UrQMD in cascade mode and so do not incorporate this

potential between string fragments.

It should be noted that none of the models predict all

observables simultaneously. The UrQMD model, while it

matches the freeze-out shapes well, matches the momentum

space observables less well [82, 83]. And the hydrodynamic

models, while they are able to describe the momentum space

pT spectra and v2 results, do less well at predicting the ec-

centricity and trends observed in HBT analyses [22, 75]. The

availability of these new experimental results provide an im-

portant opportunity to further constrain models.

VII. CONCLUSIONS

The two-pion HBT analyses that have been presented pro-

vide key measurements in the search for the onset of a first-

order phase transition in Au+Au collisions as the collision en-

ergy is lowered. The Beam Energy Scan program has allowed

HBT measurements to be carried out across a wide range of

energies with a single detector and identical analysis tech-

niques. In addition to standard azimuthally integrated mea-

surements, we have performed comprehensive, high preci-

sion, azimuthally sensitive femtoscopic measurements of like-

sign pions. In order to obtain the most reliable estimates of

the eccentricity of the collisions at kinetic freeze-out, a new

global fit method has been developed.

A wide variety of HBT measurements have been performed

and the comparison of results at different energies is greatly

improved. In the azimuthally integrated case, the beam energy

dependence of the radii generally agree with results from other

experiments, but show a much smoother trend than the earlier

data which were extracted from a variety of experiments with

variations in analysis techniques. The current analyses addi-

tionally contribute data in previously unexplored regions of

collision energy. The transverse mass dependence is also con-

sistent with earlier observations and allows one to conclude

that all kT and centrality bins exhibit similar trends as a func-

tion of collision energy.
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The energy dependence of the volume of the homogene-

ity regions is consistent with a constant mean free path at

freeze-out, as is the very flat energy dependence of Rout. This

scenario also explains the common dependence of Rside and

Rlong on the cube root of the multiplicity that is observed at

higher energy. For 7.7 and 11.5 GeV, Rside appears to deviate

slightly from the trend at the higher energies. Two physical

changes that may potentially be related to this are the effects

of strangeness enhancement (not included in the argument for

a constant mean free path at freeze-out ) and the rapid in-

crease in the strength of v2 that levels off around 7.7 to 11.5

GeV. Both of these physical changes occur in the vicinity of

the minimum. A systematic study with a single detector at

slightly lower energies would be needed to help disentangle

the different effects.

The UrQMD model provides an alternative explanation for

the minimum in the volume measurement in terms of a change

from a hadronic to a partonic state. Including interactions be-

tween color string fragments early in the collision, it not only

can explain the minimum in the volume, but is also able to

find Rout/Rside values close to unity as observed from AGS

through RHIC energies and improves the agreement between

UrQMD and other observables at the same time. It is interest-

ing that such an interaction potential may somewhat mimic an

increase in the pressure gradients, which may correlate with

the observation that v2 increases rapidly with
√

sNN in this re-

gion also.

The lifetime of the collision evolution was extracted using

the 〈mT 〉 dependence of Rlong. Subject to certain assumptions,

the lifetime increases by a factor 1.7 from AGS to 200 GeV

collisions measured at STAR. The lifetime increases by about

1.4 times more between RHIC and the LHC. The magnitude

of the increased lifetime effect is well beyond systematic mea-

surement uncertainties.

A new global fit method was developed and studied in re-

lation to the HHLW fit method. For most centralities, this

method is found to yield more reliable results in cases of low

statistics and poor event plane resolution, although it has prob-

lems in the most central bin related to different parameteriza-

tions. As discussed in section V C, the global fit has the ad-

ditional benefit that each q-bin for all correlation functions is

used precisely once in the fit to extract the parameters R2
µ,n.

This eliminates issues with correlated errors that arise when

q-bins from correlation functions at all Φ values are used to

correct for reaction plane resolution in the HHLW approach.

This global fit method has allowed the extraction of the most

reliable results at the lowest energies studied.

The Fourier coefficients measured away from mid-rapidity

allow one to extract the energy dependence of the R2
ol,0 cross

term. This previously unavailable observable exhibits a mono-

tonic decrease as a function of beam energy. This observable

has been connected to the duration of particle emission in a

way that is different than the more commonly studied quanti-

ties R2
out−R2

side or Rout/Rside. This measurement may provide

constraints for models that relate the radii and physical quan-

tities with different sets of assumptions.

The azimuthally differential results show that, for all en-

ergies, the system remains out of plane extended at freeze-

out, despite the evolution of the collision eccentricity.” In

mid-central (10-30%) collisions, the freeze-out eccentricity

shows a monotonic decrease with beam energy consistent with

expectations of increased flow and/or increased lifetime at

higher energies. This is supported by the azimuthally inte-

grated results which suggest longer lifetimes at higher ener-

gies. The results are consistent qualitatively with the mono-

tonic decrease suggested by all model predictions, but is most

consistent quantitatively with UrQMD. While the hydrody-

namic models can match momentum space observables (pT

spectra, v2) well, they do less well at predicting the HBT re-

sults. At the same time, while the UrQMD model does better

at predicting the HBT results, like the freeze-out shape, it does

less well at predicting the momentum space observables. The

freeze-out eccentricity excitation function provides new, ad-

ditional information that will help to constrain future model

investigations.

Appendix: Non-Gaussian effects on azimuthal HBT analyses

In azimuthally integrated HBT analyses, the cross terms

(Ros, Rol , Rsl) vanish at mid-rapidity. In this case, the sign

of the components of the relative momentum vector,~q, are ar-

bitrary. The three dimensional ~q-space distributions (numer-

ator, denominator, and Coulomb weighted distributions) may

be folded, so that qlong and qside are always positive, for in-

stance, to increase statistics in each (qout,qside,qlong) bin. In

azimuthally differential analyses, however, the relative signs

of components are important in order to extract non-zero cross

terms [33, 81]. At mid-rapidity, the relative sign of qout and

qside must thus be maintained to extract values of R2
os. Away

from mid-rapidity, the R2
ol cross term is also non-zero and qlong

must be allowed to have both positive or negative values. This

way the relative sign of qout and qlong is maintained and the

corresponding cross term can be extracted.

If the “q-folding” procedure is performed and the cross

terms are included as fit parameters, the fit parameters be-

come strongly correlated and the values of the extracted radii

change. The size of this effect varies randomly from one az-

imuthal bin to the next, causing large variations in the ex-

tracted oscillations of the radii. This behavior is related to

the non-Gaussianess of the correlation function. Due to the

necessity of using finite bins in kT and centrality, which are

described by a range of radii, the radii extracted from these

correlation functions are some average value. If too much

q-folding is performed the signs of the relative momentum

components are lost. In cases where the cross terms associ-

ated with these relative momentum components are non-zero,

the covariance of fit parameters that appears allows deviations

from the average values and the results become unreliable.

This is an important consideration for any HBT analysis

performed away from mid-rapidity, or relative to the first or-

der reaction plane, where measurement of cross terms is im-

portant. In this analysis, no folding of ~q-space is performed

and so any possible effects of this phenomena are eliminated.

We thank the RHIC Operations Group and RCF at BNL, the

NERSC Center at LBNL, the KISTI Center in Korea and the



27

Open Science Grid consortium for providing resources and

support. This work was supported in part by the Offices of

NP and HEP within the U.S. DOE Office of Science, the U.S.

NSF, CNRS/IN2P3, FAPESP CNPq of Brazil, Ministry of Ed.

and Sci. of the Russian Federation, NNSFC, CAS, MoST

and MoE of China, the Korean Research Foundation, GA and

MSMT of the Czech Republic, FIAS of Germany, DAE, DST,

and CSIR of India, National Science Centre of Poland, Na-

tional Research Foundation (NRF-2012004024), Ministry of

Sci., Ed. and Sports of the Rep. of Croatia, and RosAtom of

Russia.

[1] M. M. Aggarwal et al. (STAR Collaboration) (2010),

arXiv:1007.2613.

[2] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102

(2005).

[3] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757,

184 (2005).

[4] B. B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757,

28 (2005).

[5] I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757,

1 (2005).

[6] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong,

W. Schaffer, L. I. Unger, and A. Vaccarino, Phys. Rev. Lett.

65, 2491 (1990).

[7] Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, Nature

443, 675 (2006).

[8] S. Borsanyi et al. (Wuppertal-Budapest Collaboration), JHEP

09, 073 (2010).

[9] M. Cheng (HotQCD Collaboration), PoS LAT2009, 175

(2009).

[10] A. Masayuki and Y. Koichi, Nucl. Phys. A 504, 668 (1989).

[11] A. Barducci, R. Casalbuoni, G. Pettini, and R. Gatto, Phys. Rev.

D 49, 426 (1994).

[12] J. Berges and K. Rajagopal, Nucl. Phys. B 538, 215 (1999).

[13] M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov,

and J. J. M. Verbaarschot, Phys. Rev. D 58, 096007 (1998).
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