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Background:: Dynamic core excitation effects have been found to be of importance in breakup reactions and
may be of relevance when obtaining spectroscopic information from transfer reactions.

Purpose:: In this paper we extend the distorted-wave Born approximation (DWBA) formalism in order to allow
for non-central components in the core-core term appearing in the transition operator, which allows for dynamic
core excitation effects. Then we study these effects applying the formalism to different (d, p) reactions.

Methods:: The expression of the non-local kernels required for the evaluation of the DWBA amplitudes has
been extended so as to include non-central parts in the core-core interaction. The DWBA scattering amplitude
has been then obtained by solving the corresponding inhomogeneous equation, with the new computed kernels,
and the usual outgoing boundary conditions. A new DWBA code has been developed for this purpose.

Results:: For 10Be(d, p)11Be, core excitations effects are found to be almost negligible (< 3%). The importance
of this effect has been found to depend to a large extent on the excitation energy of the core. This has been
confirmed in the 30Ne(d, p)31Ne case, for which the excitation energy of the first 2+ state is 0.8 MeV, and the
effect of core excitation increases to 10%

Conclusions:: We find dynamic core excitation effects in transfer reactions to have small contributions to cross
sections, in general. However, they should not be neglected, since they may modify the spectroscopic information
obtained from these reactions and may become of importance in reactions with nuclei with a core with high
deformation and low excitation energy.

I. INTRODUCTION

Transfer reactions have for decades been one of the
main sources of information on the structure of stable
and, more recently, also of exotic nuclei. The angular dis-
tribution of the outgoing particles produced in these pro-
cesses is very sensitive to the transferred orbital angular
momentum between the projectile and target, whereas
the magnitude depends on the product of the initial and
final spectroscopic factors (the normalization of the over-
lap functions in the initial and final nuclei).
Extraction of accurate structure information from

these measurements relies on the comparison of the data
(often angular distributions) with calculations using a
suitable reaction formalism. Traditionally, the analysis
of transfer reactions has been carried out in terms of
the distorted-wave Born approximation (DWBA). Cor-
rections and improvements of this method have also been
used. For example, when the initial or final nuclei contain
collective excited states, multistep processes involving ex-
citations and deexcitations among these states can be
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suitably incorporated within the coupled-channels Born
approximation (CCBA) method [1]. Moreover, when one
the colliding nuclei is weakly bound, such as in the case
of (d, p) reactions, coupling effects to breakup channels
can also influence the transfer cross sections and hence
the inclusion of these couplings become important. This
has been done within the CDCC (Continuum-Discretized
Coupled Channels) approximation [2–6] or, more simply,
within the adiabatic approximation, such as in the adi-
abatic distorted wave approximation (ADWA) of John-
son and Tandy [7]. More recently, the Alt-Grasberger-
Sandhas (AGS) formulation of the Faddeev equations
[8, 9] has also been successfully applied to transfer re-
actions (see [10] for a recent review of these methods).

In a simple picture, a transfer reaction can be modelled
in a three-body model, in which a nucleon, or group of
nucleons, is transferred from one nucleus to another. For
example, a stripping reaction of the form b(d, p)B can
be viewed as a process in which the incident deuteron
transfers a neutron to the target nucleus b, producing a
composite nucleus B = b+ n in a given state defined by
the relative wavefunction of neutron and core b. However,
this naive interpretation of the transfer process, which is
the basis of the DWBA approximation, neglects possible
effects derived from the excitation of the subsystems. In-
deed, it is well known that core excitations can affect the
transfer process in several ways. First, the interaction

mailto:mgomez40@us.es
mailto:moro@us.es
mailto:gomez@us.es
mailto:thompson97@llnl.gov


2

between the transferred particle and the core b will not
be given by a simple spherical potential, but will contain
non-central terms that will give rise to core-excited ad-
mixtures in the states of the composite nucleus B. The
weight of each component can be regarded as a spectro-
scopic factor. This is a structure effect, not related to
the reaction mechanism, and will be referred to as static
core excitation. In actual calculations, this effect can be
included using some particle-core model (particle-rotor,
particle-vibrator, Nilsson, etc) or, more commonly, by
simply multiplying some single-particle wavefunctions by
appropriate spectroscopic amplitudes. This is the usual
procedure followed in the DWBA method.

Another core excitation effect that may influence this
reaction arises from the initial state interaction of the
incoming deuteron with the target b. Before the neu-
tron is transferred, the deuteron may induce excitations
on the core b, thus altering the population probability
of the different core states. These dynamic core excita-
tion effects can be conveniently treated within the CCBA
method, and are commonly referred to as multistep or
coupled-channels effects. In presence of these additional
couplings, the cross sections for the different final states
will no longer be proportional to the corresponding spec-
troscopic factors.

Finally, another way in which core excitation can af-
fect transfer dynamics is through the interaction of the
proton with the core b. In the DWBA and CCBA for-
malisms, this interaction appears in the so-called rem-

nant term of the transition operator, and gives rise to
a core-recoil effect. Standard calculations consider only
the central part of this core-core interaction. However,
the presence of non-central parts (e.g. inelastic couplings)
in this interaction will give an additional contribution to
the transfer cross section, even in Born approximation.
In our previous example, these non-central terms could
connect different states of the core b, thus affecting the
cross sections leading to these states. We will refer to
this mechanism as transfer induced by prompt core exci-
tation, to distinguish it from the aforementioned dynamic

(multistep) and static core excitation effects.

This problem of prompt core excitation in transfer re-
actions has been scarcely studied in the literature. In
Ref. [11], the problem was studied within the zero-range
DWBA approximation and for (d, p) reactions only. The
contribution of transfer induced by prompt core excita-
tion was found to be very small (∼6%) in most cases
studied but the calculations were done with many ap-
proximations (the transfer amplitude was evaluated in
zero-range, a closed-shell model was used for the core
nucleus, and the bound state wavefunctions were approx-
imated by harmonic-oscillator functions) and so the con-
clusions must be taken with some caution. In Ref. [12],
Kozlowsky and de-Shalit proposed a zero-range core-
excitation DWBA model for the (3He,d) case. The trans-
fer was also treated in zero-range and core excitation was
modelled within the vibrational model. The angular dis-
tribution via core excitation was found to be very simi-

lar to that of ordinary stripping due to a single-particle
mechanism but the calculated magnitude underpredicted
the experimental data by about one order of magnitude.
However, this magnitude was found to depend very crit-
ically on the radius of the particle-core potential, which
is directly linked to the distance at which the stripping
mechanism is assumed to occur.

Recently, the problem has been addressed [13] within
the AGS formulation of the Faddeev equations [8, 9]. The
method was applied to several (d, p) and (p, d) reactions
involving the nuclei 11Be and 24Mg. Dynamic core ex-
citation effects were found to be important, often im-
proving the description of the experimental data. More-
over, these effects could not be reproduced by a simple
reduction of the cross section by the corresponding spec-
troscopic factor. It is worth noting however that these
calculations include, in an non-trivial way, effects aris-
ing from the different sources of core excitation discussed
above. In particular, dynamic multistep and prompt core
excitation effects will appear entangled in this approach,
and so the assessment of their relative importance is not
straightforward from the final cross sections.

In view of these results, we believe that it is useful
to investigate (and isolate) the phenomenon of prompt
core excitation within the much simpler DWBA frame-
work. To avoid the limitations of previous calculations
of this kind [11, 12], we aim at performing full-fledged
DWBA calculations, including finite-range effects and a
more realistic model of the core+valence system. With
this premise in mind, in this work we present the theo-
retical formulation of the problem, and apply this model
to the 10Be(d,p)11Be and 30Ne(d,p)31Ne reactions.

We finally note that this work follows a series of previ-
ous works aimed at understanding the effect of core exci-
tation in the different reaction channels. In Refs. [14–16],
the study was focused on the breakup channels, and for
that purpose appropriate extensions of the DWBA and
Continuum-Discretized Coupled-Channels method were
developed and applied to several physical cases. Dynamic
core excitation effects were found be small for the case of
the scattering with heavy targets but, on the other hand,
sizable effects were found for light targets, typically en-
hancing the breakup cross sections with respect to the
inert core case.

The paper is structured as follows. In section II, we
present an extended DWBA formalism including prompt
core excitation effects. In Sec. III, the method is applied
to the 10Be(p,d)11Be and 30Ne(p,d)31Ne reactions and
compared with recent data in the former case. The effect
of the excitation energy of the core is also studied using
a model with a fictitious 11Be nucleus with reduced core
excitation energy. In Sec. IV we summarize the main
conclusions of this work.
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II. THEORETICAL FORMULATION

Let us consider the transfer reaction A(a + v) + b →
a + B(b + v) in which a composite projectile A trans-
fers a particle v to the target nucleus b giving rise to the
ejectile a and the residual composite nucleus B. This is
a many-body scattering problem which, under suitable
approximations [10, 17], can be reduced to an effective
three-body problem. We will consider that nucleus b has
internal degrees of freedom (ξ) which are relevant in the
reaction. The effective three-body Hamiltonian describ-
ing this problem can be expressed in two different forms,
depending on whether one chooses the prior or post rep-
resentations, i.e.,

Hprior = TR +HA(~r) + Uab(~rc, ξ) + Vvb(~r
′, ξ), (1)

Hpost = TR′ +HB(ξ, ~r
′) + Uab(~rc, ξ) + Vva(~r), (2)

where TR and TR′ represent the kinetic energy operators
for the projectile–target relative motion before and after
the transfer reaction, respectively. HA and HB are the
internal Hamiltonians of the composite systems formed
by the valence particle and the core to which it is bound.
The real interactions Vva and Vvb are the binding poten-
tials for the transferred particle in the initial and final
nucleus, respectively. Finally, the potential Uab, complex
in general, represents the effective interaction between
the two cores. Note that possible excitations of a are
not considered explicitly (this is indeed justified for the
applications presented in the next section, in which a rep-
resents a proton). The relevant coordinates are shown in
Fig. 1 and obey the following relations

~r = a~R+ b ~R′; ~r′ = a′ ~R+ b′ ~R′; ~rc = ac ~R+ bc ~R′

νA = ma/mA; νB = mb/mB; ω =
1

1− νAνB
a = νBω; b = −ω
a′ = ω; b′ = −νAω
ac = −ω(1− νB); bc = −ω(1− νA) (3)

Since b is allowed to be excited during the transfer
reaction, its wavefunction as well as the interactions Uab

and Vvb will depend on ξ. Using the post representation,
the exact transition amplitude can be expressed as (see,
for instance, Refs. [1, 18])

Tβα = 〈Φ(−)
β (~r′, ~R′, ξ)|Uab(~rc, ξ) + Vva(~r)

−Uβ(R
′) |Ψ(+)

α (~r, ~R, ξ)〉 , (4)

where Ψ
(+)
α (~r, ~R, ξ) corresponds to the full three-body

wave function of the system and Uβ(R
′) is an arbitrary

potential, which is usually chosen to reproduce the elastic
scattering of the a+ B system. The final wave function

Φ
(−)
β (~r′, ~R′, ξ) is an eigenstate of the Hamiltonian Hf =

TR′ + HB + Ha and can therefore be expressed in the
factorized form:

Φ
(−)
β (~r′, ~R′, ξ) = χ

(−)
β (~R′)ψB(~r

′, ξ)ψa, (5)

FIG. 1. Relevant coordinates involved in the calculation. a
and b are the cores to which the valence particle v is bound
before and after the transfer reaction.

where ψB and ψa correspond to the internal wave-

functions of B and a, and χ
(−)
β is the distorted wave

with incoming boundary conditions obtained by solving
Schrödinger equation with the potential Uβ .
In the DWBA approximation, the total three-body

wave function Ψ
(+)
α is approximated by an expression

analogous to (5):

Ψ(+)
α (~r, ~R, ξ) ≃ χ(+)

α (~R)ψA(~r)ψb(ξ), (6)

where ψA,b are equivalent to ψB,a and χ
(+)
α is the dis-

torted wave with outgoing boundary conditions obtained
by solving the Schrödinger equation with an optical po-
tential Uα between projectile and target in the incident
channel. The DWBA transition amplitude results

TDWBA
βα = 〈χ(−)

β (~R′)ψB(~r
′, ξ)ψa|Uab(~rc, ξ) + Vva(~r)

− Uβ(R
′) |χ(+)

α (~R)ψA(~r)ψb(ξ)〉 . (7)

Expanding this expression in partial waves, for a cer-
tain total angular momentum JT , one obtains:
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TDWBA
βα,JTMT

=
(4π)2

kαkβ

∑

LM,JMJ

L′M ′,J′M ′

J

iL−L′

Y ∗
LM (k̂α)YL′M ′(k̂β)e

i(σL+σL′)

× 〈LJpMMp|JMJ〉〈L′J ′
pM

′M ′
p|J ′M ′

J〉〈JJtMJMt|JTMT 〉〈J ′J ′
tM

′
JM

′
t |JTMT 〉

×
∫

dR dR′χ
(−)
β,L′,J′(R

′)Kαβ(R,R
′)χ

(+)
α,L,J(R), (8)

where σL are the Coulomb phase shifts, YLM denote the

spherical harmonics and χ
(+)
α,L,J and χ

(−)
β,L′,J′ are the ra-

dial parts of the distorted waves introduced in Eqs. (5)
and (6), respectively. Jp and Jt are the spin of the pro-
jectile and target respectively in the initial partition, and
J ′
p and J ′

t are the spins of ejectile and residual nucleus
in the final partition. J and J ′ are the result of cou-
pling L ⊗ Jp and L′ ⊗ J ′

p respectively. Note that the
S-matrix elements, from which the scattering observ-
ables can be computed, are related to the T -matrix as
Sβα,JTMT

= −2iπTβα,JTMT
. The quantities Kαβ(R,R

′),
usually referred to as non-local kernels [1], are defined as

Kαβ(R,R
′) =

∫

[[

YL′(R̂′)⊗ ψ
J′

p
a

]

J′

⊗ ψ
J′

t

B

]∗

JTMT

(Uab

+Vva − Uβ)
[[

YL(R̂)⊗ ψ
Jp

A

]

J
⊗ ψJt

b

]

JTMT

.

(9)

They include integration over the angular parts of ~R

and ~R′ and the internal degrees of freedom of the reacting
particles, remaining functions of R and R′ only (in mod-
ulus). These kernels encompass the transition potential,
the internal wave functions of projectile and target in the
incoming and outgoing channels and the angular part of
the distorted waves in both channels.
The wavefunction of the composite system A (a+ v) is

expanded as follows

ψ
Jp

A =
∑

l,j,sa

ϕl,j,sa(r)
[

[Yl ⊗ χs]j ⊗ ψa
sa

]

Jp

, (10)

where χs is the spin function of the valence particle, sa
the intrinsic angular momentum of the core a and l the
orbital angular momentum between valence particle and
core. Likewise, for the composite nucleus B (b+ v),

ψ
J′

t

B =
∑

l′,j′,I′

ϕ′
l′,j′,I′(r′)

[

[Yl′ ⊗ χs]j′ ⊗ ψb
I′(ξ)

]

J′

t

. (11)

The potential Uab depends on ~rc and ξ. Since it is a
scalar, it can be expanded in multipoles, in a way analo-
gous to [19]:

Uab =
∑

Q

Q̂ UQ
ab(rc, ξ)

∑

q

CQq(r̂c)T ∗
Qq(ξ), (12)

where CQq = Q̂YQq/
√
4π, Q̂ =

√
2Q+ 1 and TQq is a

function with the same tensorial rank as CQq. Let us
remark that, since the transition potential depends on ξ
and is not central in its dependence on ~rc, the transition
between different states of the core b, with different an-
gular momenta I, I ′, is possible during the reaction, in
the process which we call prompt core excitation. Insert-
ing the multipole expansion (12) in Eq. (9) it is possible
to express the complete kernels Kαβ(R,R

′) as a sum of
terms with different multipoles Q:

Kαβ(R,R
′) = K

(Q=0)
αβ (R,R′) +K

(Q>0)
αβ (R,R′) (13)

Standard DWBA and CCBA calculations consider only
the term withQ = 0, and hence they exclude prompt core
excitation effects. These effects are induced by the Q > 0
terms, which are considered in detail in the following.
Since the angular momentum of the core b is no longer

conserved in the reaction and there are non-central com-
ponents of the potential Uab, it is necessary to recouple
the relevant angular momenta in a somewhat more com-
plex way for the kernels with Q 6= 0 than in the standard
case [20] (see Appendix B).
We now present the resulting form of the kernels and

refer to appendix A for more details on their construc-
tion. We remark that the particle is transferred from the
projectile to the target and the target is a deformed core,
with angular momentum I in the incoming channel and
I ′ in the exit channel. This calculation assumes all po-
tentials but Uab to be central, and therefore excludes the
spin-orbit terms. Nevertheless, we believe that this sim-
plification will not affect our conclusions regarding the
importance of core excitation.
With this simplification, the kernels can be expanded

as

Kαβ(R,R
′) =

∑

ΛΛ′SsΣV

PΛΛ′SsΣV ssa
γ,γ′ FΛΛ′Σ

γ,γ′ (R,R′) (14)

where γ represents the set of angular momenta {l, j, I, L},
being l and j the orbital and total angular momentum
of the valence particle, L the orbital angular momentum
between projectile and target and I the state of the core
nucleus b. The unprimed values correspond to the incom-
ing channel and the primed ones to the outgoing channel.

PΛΛ′SsΣV ssa
γ,γ′ is a factor that appears due to the recou-

pling needed to separate the angular momenta which are
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spectators in the reaction (the spins of the valence par-
ticle, s, and of core a, sa) from those that actively par-
ticipate in it (l, L, and I). All the other new angular
momenta (Λ, Λ′, V , Ss and Σ) appear due to this recou-

pling. The radial formfactors FΛΛ′Σ
γ,γ′ (R,R′) include the

actual integration over R̂, R̂′ and ξ.

The recoupling factors PΛΛ′SsΣV ssa
γ,γ′ have the following

expression

PΛΛ′SsΣV ssa
γ,γ′ = (−)s+sp+Jp+L+I−JT+Λ′+L′+l′+Ss

× Λ̂Λ̂′Σ̂2V̂ 2Ŝs
2
ĵĵ′Ĵ Ĵ ′ĴpĴt

′
{

l s j
sp Jp Ss

}

×
{

Ss l Jp
L J Λ

}{

Ss Λ J
I JT Σ

}







l′ L′ Λ′

s sp Ss

j′ J ′ V







×
{

I ′ Λ′ Σ
Ss JT V

}{

I ′ j′ J ′
t

J ′ JT V

}

, (15)

whereas the formfactors FΛΛ′Σ
γ,γ′ have the form

FΛΛ′Σ
γ,γ′ (R,R′) =

∑

(−)Λ+I′+l′+T+L+ΣqTγ′Qγ(R,R
′)

×
(

l′

N ′

)(

Q
NC

)(

l
N

)

Q̂2T̂ 2Î ′ l̂2 l̂′2Λ̂Λ̂′L̂L̂′F̂ 2F̂ ′2Ĝ2Ĝ′2Ĥ2R̂2

×(a′R)N
′

(acR)
NC (aR)N (b′R′)l

′−N ′

(bcR
′)Q−NC (bR′)l−N

×
(

NC T F
0 0 0

)(

L′ F G
0 0 0

)(

N N ′ G
0 0 0

)(

Q−NC T F ′

0 0 0

)

×
(

L F ′ G′

0 0 0

)(

l −N l′ −N ′ G′

0 0 0

){

Q Λ Λ′

Σ I ′ I

}

×
{

F F ′ Q
Q−NC NC T

}{

G F ′ H
Q L′ F

}{

l′ Λ H
Q L′ Λ′

}

×
{

l l′ R
H L Λ

}{

G′ G R
H L F ′

}







l R l′

N G N ′

l −N G′ l′ −N ′







×〈I ′‖T ∗
Q(ξ̂)‖I〉 ,

(16)

where the sum is extended over all indices but L, L′, Λ,
Λ′ and Σ, and the limits for the sums are given by the 3-
nj symbols, except for N , N ′ and NC , which go from 0 to

l, l′ and Q, respectively. Here

(

a
b

)

=

√

(2a)!

(2b)!(2(a− b))!

and the coefficients a, a′, ac, b, b
′ and bc are given by

Eq. (3). The reduced matrix element 〈I ′‖T ∗
Q‖I〉 is defined

with the convention of Brink and Satchler [21].
The quantities qTγ′Qγ(R,R

′) include the radial depen-
dence and are defined as follows:

qTγ′Qγ(R,R
′) =

|b|3
2

×
∫ 1

−1

ϕ′∗
l′,j′,I′(r′)

r′l′
UQ
ab(rc)

rQc

ϕl,j(r)

rl
PT (cosϑ)d(cosϑ),

(17)

where ϕ, ϕ′ and UQ
ab are defined in equations (10), (11)

and (12), PT is the Legendre polynomial of degree T ,

and ϑ is the angle between ~R and ~R′. Note that, for the
Q = 0 part of the transition potential, one must calculate
also the analogous quantities qTγ′0γ(R,R

′), but using the

complete transition potential Vav(r) + U0
ab(rc) − Uβ(R

′)

instead of UQ
ab.

The formulas of the kernels are more complicated than
those obtained for the standard calculations (see, for in-
stance, [20]) due to the coupling of the extra angular mo-
menta Q (multipole of Uab) and I, I ′ (spin of the core).
For the calculations presented in the subsequent sections,
the expressions derived above have been implemented in
a new DWBA code [22]. The Q = 0 limit has been tested
against the fresco code [20].

III. CALCULATIONS

A. The 10Be(d, p)11Be reaction

As an application of the formalism presented in the
previous section, we consider the stripping reaction of
deuterium on 10Be leading to several states of the nu-
cleus 11Be. Since the latter can be modelled as a halo
nucleus with a deformed core (10Be), it seems an ad-
equate nucleus to test the importance of these effects.
To generate the states of 11Be, we use the particle-rotor
model with the parameters given by the set named Be12b
in Ref. [23], which were fitted to give the correct separa-
tion energies of the ground and first excited states and
the position of the low-lying resonances 5/2+ and 3/2+

at 1.27 MeV and 3.00 MeV above the neutron separation
threshold. This model considers only two states of the
core, the ground state (0+) and the first excited state
(2+), with an excitation energy of 3.368 MeV. To repre-
sent the resonant states, we use energy bins with a width
of 0.8 MeV, obtained with the code fresco [20]. For
further details on the calculation of multichannel bins we
refer to Refs. [20, 24]. The calculated radial parts of the
bound states and bin wavefunctions for these states are
shown in Fig. 2.
We note that, in this model, the ground, excited and

first resonant (5/2+) states have their main component
(85%, 79% and 67% of their wavefunctions respectively)
with the core in its ground state (0+). However, the main
component (69% of the wavefunction) of the 3/2+ reso-
nant state has the 10Be core in its excited state. There-
fore, we expect the prompt core excitation effects to be
most important for this state of 11Be. As a test of the
quality of this particle-rotor model for 11Be, we com-
pare in Table I the spectroscopic factors obtained with
the model to those extracted from different experimen-
tal data for the 0+ component of the ground and excited
states of 11Be. Due to the difficulty of performing spec-
troscopy for resonant states, these states are excluded
from the comparison. We find that our model tends to
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FIG. 2. (Color online) Radial parts of the wave functions for
the different states of 11Be considered, obtained by integra-
tion of the Schrödinger equation, using energy bins to repre-
sent unbound states. The main components (represented by
black full lines) correspond to the 0+ state of the core for the
ground state, excited state and resonant 5/2+ state, but the
main component of the 3/2+ resonant state has the core in
its excited 2+ state.

overestimate the contribution of the 0+ component to
both ground and excited states as compared to the spec-
troscopic factors obtained from the analysis of experi-
mental data.

We now calculate the reaction cross section for the
transfer reaction 10Be(d, p)11Be at an incident energy of
21.4 MeV. At this energy there are experimental data
for this reaction for all the considered states of 11Be
but the 3/2+ resonance [25]. The transition amplitude
is evaluated in the ADWA approximation, which is for-
mally identical to the DWBA approximation, but with
the deuteron optical potential replaced by an adiabatic

potential. This potential is not meant to reproduce
the elastic scattering, but accounts for the coupling to
the breakup channels, which are known to be important
for weakly-bound projectiles. In particular, we use the
finite-range adiabatic potential of Johnson and Tandy [7],
which is constructed based on the p− 10Be and n− 10Be
potentials. In the calculations presented below, the po-
tentials between p− 10Be and n− 10Be are obtained from
the global CH89 parametrization [27], omitting spin-orbit
terms. This parametrization is also used for the p− 11Be

TABLE I. Spectroscopic factors for the 0+ component of
ground and excited states of 11Be obtained from particle-rotor
potential Be12b [23] and from the analysis of transfer data.

11Be state Stheo (Be12b) Sexp [25] Sexp [26]
1/2+ 0.85 0.74± 0.06 0.73± 0.06
1/2− 0.79 0.65± 0.05 0.63± 0.15
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FIG. 3. (Color online) Angular dependence of the cross sec-
tion of 10Be(d,p)11Be to different states of 11Be with incom-
ing energy Ed = 21.4 MeV. Calculations without consider-
ing prompt core excitation effects are represented in a black
dashed line, while calculations taking them into account are
shown with a blue solid line. Experimental data are taken
from [25].

potential in the exit channel. For the p − n interaction
we have chosen the Gaussian parametrization of Ref. [6]
which gives the correct binding energy and rms of the
deuteron. We perform two calculations. The first one
considers a central p− 10Be interaction, as done in stan-
dard ADWA/DWBA calculations. For the second one,
we introduce a quadrupole deformation of this potential
with the same quadrupole deformation length parameter,
δ2, (see App. C) as the n − 10Be potential. Note that
this deformation is not considered in the calculation of
the adiabatic d− 10Be potential.
The calculated cross sections are presented in Fig. 3.

It can be seen that core excitation effects are negligible
for all states. In Table II we give the angle-integrated
cross section for both calculations and the relative differ-
ence between them for each final state of 11Be. Although
this small difference is to be expected for the ground,
excited and first resonant states, it is rather surprising
for the 3/2+ state, since its main component, with an
excited 2+ core, can only be populated in first order by a
core excitation mechanism. Remarkable is also the poor
agreement with the data for the 5/2+ resonance. This
discrepancy might be related to the inadequacy of the
chosen optical model potentials, to higher order (beyond
Born approximation) effects or to the limitations of the
reaction formalism employed here to deal with the trans-
fer to unbound states. We note that this is still an open
problem [28] but, since our major point of interest is the
relative importance of prompt core excitation effects, we
have not explored these issues further.
Our results are of the same order of magnitude as those

found by Levin [11] for several (d,p) reactions, within
a zero-range DWBA model. On the other hand, we
find smaller core excitation effects than those reported
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FIG. 4. (Color online) Non-local kernels [see Eqs. (13) and

(14)] a) K
(Q=0)
αβ (R,R′) and b) K

(Q=2)
αβ (R,R′) for channel

L = 6, J = 5, L′ = 4, J ′ = 7/2, JT = 5 in the reaction
10Be(d,p)11Be at Ed = 21.4 MeV. Notice that the indepen-
dent variables are R and D = R′

−R.

in Ref. [13], where the same data were analysed us-
ing the more sophisticated Faddeev formalism. How-
ever, as noted in the introduction, those calculations in-
clude, in an intricated way, additional core excitation ef-
fects, such as the multistep couplings. These effects were
in fact found to be significant for the inverse reaction,
11Be(p,d)10Be, according to the CCBA calculations per-
formed in Ref. [29].

We may suggest some possible explanations for the

TABLE II. Cross sections for 10Be(d,p)11Be at Ed = 21.4
MeV, excluding and including prompt core excitation (PCE)
effects.

11Be state σNoPCE (mb) σPCE (mb) Diff.(%)
1/2+ 4.872 4.785 -1.8
1/2− 9.800 10.009 2.1
5/2+ 54.10 55.97 3.5
3/2+ 7.479 7.717 3.2

smallness of prompt core excitation effects. Firstly, from
the expression of the qTγ′Qγ functions (17), we see that a
certain overlap is required between the wavefunctions of
A and B (deuteron and 11Be in our test case) and the
multipole of the potential which is considered. Terms
withQ = 0, which include the potential Vpn, are expected
to have a greater overlap with deuteron wave functions
than terms with higher potential multipoles, which only
include Up10Be. This could result in smaller contributions
for larger values of Q and, therefore, small effects of core
excitation.
Another factor that may affect these results is the large

excitation energy of the core (3.368 MeV). This means
that, in our particle-rotor model, the effective separa-
tion energy of the valence neutron of 11Be is noticeably
enhanced when the core is in its excited state, so the
exponential decay of its wavefunction as a function of
the neutron-core separation will be steeper (let us re-
mark that for all cases considered, the components of
11Be with excited core are effectively bound), as can be
seen in Fig.2. Since transfer reactions are peripheral pro-
cesses, the resulting reduction of the effective radius of
11Be may be relevant to the results obtained.
The combined effects discussed above will tend to make

theQ > 0 kernels more localized in configuration space as
compared to their Q = 0 counterparts. This is illustrated
in Fig. 4 for the channel L = 6, J = 5, L′ = 4, J ′ = 7/2,
JT = 5 where the top and bottom panels correspond to
the Q = 0 and Q = 2 contributions. As anticipated, the
Q = 0 kernels are of longer range, extending to relatively
large distances along r = 0 (dashed line in the plot). On
the contrary, the Q = 2 kernels are confined to smaller
distances and are comparatively smaller in absolute mag-
nitude, thus explaining the reduced effect on the transfer
cross sections.
Since one of the reasons for this smallness of the core-

excitation effects in the 10Be(d, p)11Be reaction is the rel-
atively high excitation energy of the core, one may specu-
late that these effects will be enhanced in other systems,
for which this is excitation energy is smaller. This is
quantitatively tested in the next subsection.

B. Calculation with reduced core excitation energy

In order to study the influence of the excitation en-
ergy of the core on prompt core excitation effects, we
have artificially reduced the excitation energy of 10Be
to 0.10 MeV so as to obtain a bound 3/2+ state at
−0.16 MeV. The main component of this shifted state
(88% of the wavefunction) has its core in its excited 2+

state and it is bound, so the problems of transfer to the
continuum should be avoided. The radial parts of the
wavefunction corresponding to this state are shown in
Fig. 5. We now perform calculations of the transfer re-
action 10Be(d,p)11Be to this artificial state for different
energies of the incoming projectile: 21.4, 30, 40, 60 and
100 MeV. The angle-integrated transfer cross sections
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legend.
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FIG. 6. (Color online) Angular (left) and total angular mo-
mentum (right) dependence of 10Be(d,p)11Be reaction cross
section to the artificially bound 3/2+ state of 11Be defined in
the text for energies of the incident deuteron of 21.4, 40 and
100 MeV.

are listed in Table III and the angular dependence and
total angular momentum dependence of the transfer cross
section are shown in Fig. 6.
We observe that the effects become much more impor-

tant when transferring a neutron to this artificial state
with reduced core energy. From Fig. 6 and Table III

TABLE III. Cross sections for 10Be(d,p)11Be, to the artifi-
cially bound 3/2+ state described in the text, excluding and
including prompt core excitation (PCE) effects.

Ed (MeV) σNoPCE (mb) σPCE (mb) Diff.(%)
21.4 2.72 3.09 13.5
30 1.68 2.01 19.5
40 1.05 1.28 22.0
60 0.458 0.564 23.0
100 0.133 0.158 18.6

we see that the total transfer reaction cross section is
reduced with increasing incoming energy. It is notice-
able the weak dependence of the relative importance
of prompt core excitation effects with projectile energy,
which seems to indicate that, in a range of 10− 50 MeV
per nucleon, these effects will contribute to the same pro-
portion of the cross section. Therefore, their study at
smaller energies, favoured due to the larger cross sec-
tions, should be useful when predicting their relevance
at higher energies.
From this study we can conclude that prompt core ex-

citation effects will be important when transferring par-
ticles between nuclei with cores with small excitation en-
ergies, and that their contributions are expected to vary
slowly with energy. For example, very neutron-rich Ne,
Na and Mg isotopes around the so-called island of in-

version are characterized by small 2+ excitation energies
and hence are expected to be good candidates to exhibit
non-negligible prompt core excitation effects. An exam-
ple of this is considered in the next subsection.

C. 30Ne(d,p)31Ne

As a final example, we consider the reaction
30Ne(d, p)31Ne at an incident energy of 30 MeV. The
structure of the 31Ne nucleus is not completely known,
but most studies suggest a halo-like structure with a
weakly bound neutron with a mixed p3/2/f7/2 configu-
ration. A combined analysis of 1n-removal experiment of
this nucleus on C and Pb targets performed at RIKEN at
230 MeV/nucleon [30] gives Sn = 0.15+0.16

−0.10 MeV, and a
spin-parity 3/2−. The first excited state of the core (2+)
is located at Ex ≈ 800 keV, so core excitation effects are
expected to be significantly larger than in the 11Be case.
The 31Ne nucleus has been studied in the particle-

rotor model by Urata et al. [31, 32]. However, the
validity of this model for this nucleus is still unclear
so, for the transfer calculations presented in this work,
we will rely on a phenomenological model of 31Ne with
spectroscopic factors quoted in Ref. [30] (model SM(ii)),
obtained from shell-model calculations using the modi-
fied monopole sd − pf cross-shell SDPF-M interaction.
The spectroscopic factors are 0.21, 0.33 and 0.80 for the
[0+1 ⊗ 2p3/2], [2

+
1 ⊗ 2p3/2] and [2+1 ⊗ 1f7/2] configurations,

respectively. In combination with eikonal calculations,
these spectroscopic factors give knockout cross sections in
good agreement with the experimental data of Ref. [30].
The radial parts of the bound state wavefunction and
their relative signs are obtained from a particle-rotor cal-
culation, similar to that of Refs. [31, 32], but the normal-
ization of each component was taken from the spectro-
scopic factors quoted above. The deformation parameter
of the core-target potential was taken as β2 = 0.2 [32].
As in our previous calculations, the potentials have been
calculated with the CH89 global parametrization [27], the
finite-range potential of Johnson and Tandy [7] and the
Gaussian deuteron potential of Ref. [6].
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FIG. 7. (Color online) a) Angular distribution and b) angular
momentum dependence for the 30Ne(d, p)31Ne reaction at 30
MeV, with the inclusion and omission of prompt core exci-
tation effects. The model used for 31Ne is described in the
text.

In Fig. 7 we plot the calculated angular distributions,
with and without core excitation. The difference between
both calculations is about ∼ 11%, still a modest value,
but significantly larger than in the 10Be(d,p) case, as an-
ticipated.
From these calculations it can be concluded that the

effects of prompt core excitation are in general small but
not negligible, with an influence on the cross section of
the order of ∼2–10%. Since these effects become more
important when the excitation energy of the core is re-
duced, they may play a greater role in transfer reactions
with more massive nuclei. Also, in reactions with less
halo-like nuclei, where the influence of the core might be
more important, these effects may become more relevant
and should be taken into account when obtaining spec-
troscopic factors from transfer cross sections.

IV. SUMMARY AND CONCLUSIONS

We have developed a formalism to include prompt core
excitation effects in transfer reactions within the DWBA
approximation. The formalism accounts for the transi-
tion between different core states of the initial and fi-
nal nuclei due to the presence of non-central terms in
the core-core interaction appearing in the transition op-
erator. For the cases considered in this work, we have
adopted a collective model of the core-core interaction
which has been described in terms of a deformed poten-
tial. We have shown that the developed formalism re-
duces to the standard DWBA expression when a central
potential is used for the core-core interaction (see App.
B).
We have studied the influence of these effects on the

10Be(d,p)11Be and 30Ne(d,p)31Ne transfer reactions. In
the former case, the effect of prompt core excitation is
very small, with a contribution of ∼ 2− 4% to the trans-

fer cross section. This is attributed in part to the rela-
tively high excitation energy of the core, which leads to
a large effective separation energy of the neutron in the
configurations with an excited core, and hence to more
localized non-local kernels. This reduces the effective ra-
dius of 11Be with an excited core, and its contribution to
a peripheral reaction such as transfer.
In the 30Ne(d,p)31Ne case, for which the excitation en-

ergy of the core is much smaller (∼ 800 keV) the core
excitation mechanism enhances the transfer cross section
by 11%, and therefore the effect is no longer negligible.
Although the calculations presented in this work are

based on the DWBA approximation, the formalism could
be extended to more sophisticated formalisms, such as
CCBA. In the latter case, additional core-excitation ef-
fects would be present in the form of multistep couplings.

Appendix A: Construction of the kernels

In this appendix, we give an overview on the steps
taken in order to obtain the kernel from equation (14).
The complete derivation is rather lengthy so we outline
here only the main steps. As mentioned in Sec. II, the

term PΛΛ′SsΣV ssa
γ,γ′ results from the recouplings

|[[L, {(l, s)j, sa}Jp] J, Jt] JTMT 〉
→ |[[(L, l)Λ, I] Σ, (s, sa)Ss] JTMT 〉 (A1)

|
[[

L′, J ′
p

]

J ′, {(l′, s)j′, I ′}J ′
t

]

JTMT 〉
→ |[[(L′, l′)Λ′, I ′] Σ, (s, sa)Ss] JTMT 〉 (A2)

From the definition of the 6j symbol [21] and the one
of the 12j symbol given by Jahn and Hope [33] as well
as its expansion in 6j and 9j symbols, the expression of

PΛΛ′SsΣV ssa
γ,γ′ can be obtained, bearing in mind that s and
sa are not modified in the reaction and that Jt = I and
J ′
p = sa.

As for FΛΛ′Σ
γ,γ′ , it involves the integration in the an-

gular coordinates of ~R and ~R′. Therefore, all angular
dependences must be expressed in terms of these two co-
ordinates. For this, we make use of the solid harmonics
expansion [34]:

rQCQq(r̂) =
∑

Nn

(

Q
N

)

(aR)N (bR′)Q−N Q̂(−1)Q+q

×
(

Q−N N Q
q − n n −q

)

CNn(R̂)CQ−N,q−n(R̂
′),

(A3)

with ~r = a~R + b ~R′ and where the definitions of Sec. II
apply. This formula is applied to the spherical harmon-

ics that appear from ϕ′
γ′(~r′), ϕγ(~r) and CQq(~rc) from

expansion (12).

In order to extract the dependence on R̂ and R̂′ from
the moduli of ~r, ~r′ and ~rc we perform an expansion on



10

multipoles of the product of the radial part of the wave-
functions of A and B and the multipole of the potential:

ϕ ∗′γ′ (r′)

r′l′
UQ
ab(rcc)

rQcc

ϕγ(r)

rl
=

∑

Tt

T̂ 2(−1)t

×qTγ′Qγ(R,R
′)CTt(R̂)CT−t(R̂′).

(A4)

From this expansion we obtain the radial qTγ′Qγ func-

tions from (17), which only depend on the moduli R and

R′, and two extra spherical harmonics, one in R̂ and an-
other in R̂′. Considering also the angular part of the
incoming and outgoing distorted waves, we have a total
of 5 spherical harmonics dependent on R̂ and R̂′. In or-
der to perform the integration we reduce their number to
three, using the property:

CAa(R̂)CBb(R̂) =
∑

Cc

Ĉ2(−1)cCCc(R̂)

×
(

A B C
0 0 0

)(

A B C
a b −c

)

, (A5)

and finally integrate analitically using

∫

dR̂CAa(R̂)CBb(R̂)CCc(R̂) = 4π

(

A B C
0 0 0

)(

A B C
a b c

)

.

(A6)

The integration on ξ is made symbolically, through
the reduced matrix element 〈I ′‖T ∗

Q‖I〉, obtained with the
Wigner-Eckart theorem and Brink and Satchler’s conven-
tion [21]:

〈I ′i′| T ∗
Qq(ξ̂) |Ii〉 = (−1)I

′−i′ Î ′
(

I ′ Q I
−i′ q i

)

〈I ′‖T ∗
Q(ξ̂)‖I〉

(A7)

After performing the integrals, the resulting 3j symbols
(in our calculations 20 of them appear) can be added
symbolically, to give a more compact result. For this,
the graphical method of Yutsis, Levinson and Vanagas
[21, 35, 36] has been very useful. This simplification is
the last step to obtain the formula (16) for the radial

form factors FΛΛ′Σ
γ,γ′ .

Appendix B: Q = 0 limit

If one considers a central Uab potential, then Q = 0,
and many simplifications apply to the expression (14).
The reduced matrix element 〈I ′‖T ∗

Q‖I〉 becomes δI′,I ,
and therefore no prompt core excitation is allowed. Q =
0 implies NC = 0 and many 3j and 6j symbols can be re-
duced to Kronecker deltas, which allow summation over
indices H , F , and F ′, and obtaining Λ = Λ′. After these

simplifications the expression of FΛΛ′Σ
γ,γ′ reduces to:

FΛ
γ,γ′ =

∑

(−)Λ+L′+T+LqTγ′0γ(R,R
′)

(

l′

N ′

)(

l
N

)

× T̂ 2l̂2 l̂′2L̂L̂′ĜĜ′2R̂2(a′R)N
′

(aR)N

× (b′R′)l
′−N ′

(bR′)l−N

(

L′ T G
0 0 0

)

×
(

N N ′ G
0 0 0

)(

L T G′

0 0 0

)(

l −N l′ −N ′ G′

0 0 0

)

×
{

l l′ R
L′ L Λ

}{

G′ G R
L′ L T

}







l R l′

N G N ′

l −N G′ l′ −N ′







.

(B1)

Since FΛ
γ,γ′ no longer depends on Σ it is possible to sum

over it, which simplifies the expression of PΛΛ′SsΣV ssa
γ,γ′ to:

PΛSsssa
γ,γ′ = (−)s+sp+Jp+L+I−JT+Λ+L′+l′+Ss

× Λ̂2Ŝs
2
ĵĵ′Ĵ Ĵ ′ĴpĴt

′
{

l s j
sp Jp Ss

}{

Ss l Jp
L J Λ

}

×







l′ L′ Λ
s sp Ss

j′ J ′ J







{

I ′ j′ J ′
t

J ′ JT J

}

, (B2)

which can be shown to be equivalent to the standard
expression given, for instance, in Ref. [20].

Appendix C: Particle-rotor model

For our calculations, we have adopted a particle-rotor
model for the 11Be and 31Ne nuclei. In this model, the
core nucleus is assumed to have a permanent quadrupole
deformation which, for simplicity, is taken to be ax-
ially symmetric. Thus, the deformation is character-
ized by a single collective parameter, β2. In the body-
fixed frame, the radius of the surface is parametrized
as R(ξ) = R0(1 + βY20(ξ)), with R0 an average radius.

Starting from a central potential, V
(0)
vc (r), the valence–

core interaction is obtained by deforming this interaction
as

Vvc(~r, ξ) = V (0)
vc (r − δ2Y20(ξ)), (C1)

with δ2 = β2R0, usually referred to as deformation
length. This expression is transformed to the space-fixed
reference frame, and expanded in spherical harmonics
(see e.g. Ref. [37])

Vvc(r, θ, φ) =
∑

λµ

λ̂ Vλ
vc(r)Dλ

µ0(α, β, γ)Cλµ(r̂), (C2)

where Dλ
µ0 is a rotation matrix, {α, β, γ} are the Euler

angles defining the transformation from the body-fixed
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frame to the space-fixed frame and Vλ
vc(r) the radial form

factors

Vλ
vc(r) =

λ̂

2

∫ 1

−1

Vvc(~r, ξ)Pλ(cos θ)d(cos θ), (C3)

with θ is the angle between ~r and ξ and all other relevant
definitions can be found in Sec. II.
Analogously, the core-core interaction, Uab is generated

also starting from a spherical optical potential, which is
then deformed with the same deformation length δ2, and
expanded in multipoles as

Uab(rc, θ
′, φ′) =

∑

Qq

Q̂ UQ
ab(rc)D

Q
q0(α

′, β′, γ′)CQq(r̂c),(C4)

giving rise to the radial form factors

UQ
ab(rc) =

Q̂

2

∫ 1

−1

Uab(~rc, ξ)PQ(cos θ)d(cos θ), (C5)

where θ is now the angle between ~rc and ξ.
Comparing (C4) with the general expansion (12) we see

that, in the rotational model, T ∗
Qq(ξ) ≡ DQ

q0(α
′, β′, γ′).

The reduced matrix elements entering the expression of
the non-local kernels [Eq. (16)] are just the reduced ma-
trix elements of the rotation matrix between the core
eigenstates which, in the case of a rigid rotor with axial
symmetry, are given by (see e.g. Ref. [38])

〈ξ|I〉 = Î√
8π2

DI
K0(ξ), (C6)

with K is the projection of ~I along the space-fixed frame.
The required reduced matrix elements result

〈I ′‖T ∗
Q‖I〉 = (−1)I

′

Î

(

I ′ Q I
0 0 0

)

(C7)

where the convention of Brink and Satchler for reduced
matrix elements has been assumed.
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