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We present a model-independent approach to electric quadrupole transitions of deformed nuclei.
Based on an effective theory for axially symmetric systems, the leading interactions with electro-
magnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ
gauge-invariant non-minimal couplings. This approach yields transition operators that are consistent
with the Hamiltonian, and the power counting of the effective theory provides us with theoretical
uncertainty estimates. We successfully test the effective theory in homonuclear molecules that ex-
hibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective
theory describes data well within theoretical uncertainties at leading order. In order to probe the
theory at subleading order, data with higher precision would be valuable. For transitional nuclei,
next-to-leading order calculations and the high-precision data are consistent within the theoretical
uncertainty estimates. We also study the faint inter-band transitions within the effective theory and
focus on the E2 transitions from the 0+

2 band (the “β band”) to the ground-state band. Here, the
predictions from the effective theory are consistent with data for several nuclei, thereby proposing
a solution to a long-standing challenge.

PACS numbers: 21.60.Ev,21.10.Ky,23.20.Js,27.70.+q

I. INTRODUCTION

Our understanding of deformed nuclei in the rare-earth
and actinide regions of the nuclear chart is largely based
on the geometric collective models [1–7], and the alge-
braic collective models [8, 9]. For even-even nuclei, these
models employ quadrupole degrees of freedom (and an
additional s boson in the interacting boson model [10]).
The collective models depend on a small numbers of pa-
rameters. They describe the key features of deformed
nuclei, namely low-energy spectra consisting of rotational
bands on top of vibrational band heads, with strong E2
intra-band transitions, and much weaker inter-band tran-
sitions. However, some finer details are not well described
by the collective models, and the accurate description of
inter-band electromagnetic transition strengths is a par-
ticular challenge. As an example we mention the overpre-
diction (by factors of 2 to 10) of E2 transitions between
the rotational band on top of the 0+

2 vibrational band
head (historically called the “β band”) and the ground-
state band for well-deformed nuclei [7, 11, 12]. This
situation is similar for transitional nuclei at the border
between sphericity and deformation. Here, the models
based on the X(5) solution by Iachello [13] of the Bohr
Hamiltonian tend to overpredict electromagnetic inter-
band transitions [14–17].

In recent years, computationally tractable approaches
to collective models [18, 19] led to a better understand-
ing of geometric models and their parameter space [20].
However, it seems that changes to the Bohr Hamiltonian,
e.g. by studying non-separable potentials [21] or by con-
sidering other solutions [22], do not overcome the defi-
ciencies for the inter-band transitions. We also note that
a variety of approaches addressed other shortcomings of
the collective models by focusing on tri-axial deforma-

tions [23], or inclusion of isovector modes [24, 25], see
Ref. [26] for a review of present challenges.

Increasing the complexity of collective models, e.g.
through the addition of more terms, can lead to an un-
desirable proliferation of parameters and a loss of pre-
dictive power. This unattractive feature of modeling can
partly be overcome by effective field theories (EFTs). An
EFT is based on symmetry principles alone and exploits
a separation of scales for the systematic construction of
Hamiltonians based on a power counting. In this way,
an increase in the number of parameters (i.e. low-energy
constants that need to be adjusted to data) goes hand in
hand with an increase in precision, and thereby counters
the loss of predictive power. Furthermore, this system-
atic increase in precision makes it possible to estimate
theoretical uncertainties, see Furnstahl et al. [27] for a
recent review. Finally, the EFT approach also helps us
to identify inherent limitations that are due to the break-
down scale of the theory.

The successful reproduction of the low-energy spec-
tra of deformed nuclei strongly suggests that the geo-
metric collective model correctly captures key aspects
such as relevant degrees of freedom and the interac-
tion between them. This picture is also obtained in a
model-independent approach to deformed nuclei based
on EFT [28–30].

The overprediction of the inter-band transition
strengths in collective models thus leads us to scrutinize
the operators that are employed in the calculations of E2
transition strengths. The Bohr Hamiltonian models the
nucleus as an incompressible liquid drop with quadrupole
surface oscillations. These corresponding five degrees of
freedom can be mapped onto three Euler angles (describ-
ing overall rotations of the nucleus) and two deformation
parameters (describing vibrations in the body-fixed co-
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ordinate system). In this model, E2 transitions are com-
puted from the quadrupole operator. This approach to
electric transitions in deformed nuclei seems to be mo-
tivated by Siegert’s theorem [31], which allows one to
employ the density instead of the current operator in the
computation of some transition rates, see e.g. Ref. [32].
We recall that the derivation of Siegert’s theorem is based
on gauge invariance and starts from gauging momentum
operators [33]. Thus the applicability of Siegert’s theo-
rem is not obvious for the collective models that employ
quadrupole operators for momenta (as opposed to vec-
tors).

The identification of the transition operator is even
more challenging for the algebraic models because of the
lack of a geometric picture. For the calculation of elec-
tromagnetic transition strengths, these models employ
operators that couple the basic degrees of freedom to a
spherical tensor whose rank equals the desired multipole
order. For a recent analysis of this approach, we refer
the reader to Ref. [34].

In this work we study the electromagnetic coupling
of deformed nuclei within an effective theory motivated
by similar approaches to other nuclear systems, see
Refs. [35–40] for recent examples. In contrast to more
phenomenological models, the consistent treatment of
Hamiltonians and currents is a highlight of effective the-
ories. As we will see, coupling the non-rigid rotor to
electromagnetic fields in a model-independent way is an
interesting problem in itself. Perhaps somewhat surpris-
ingly, we are not aware of any literature addressing this
problem. Our approach reproduces the strong intra-band
transitions that are also described accurately by the col-
lective models. For the weaker inter-band transitions,
the effective theory approach yields a much improved
description of data and thereby suggests steps toward
overcoming some limitations of the geometric and alge-
braic collective models. Finally, the effective theory ap-
proach also permits us to give theoretical uncertainty es-
timates and thereby facilitates a meaningful comparison
with data. As we will see, this comparison also suggests
that data with higher precision for E2 transitions would
be very valuable.

Ultimately, a microscopic theory of deformed nuclei
must be based on fermionic constituents. Nuclear mean
field and density functional theories (see Refs [41, 42]
for reviews), are making impressive predictions of rota-
tional bands and moments of inertia [43, 44], with new
projection techniques being proposed [45]. In light p-
shell nuclei, ab initio approaches are now addressing the
emergent behavior of rotational collective motion [46, 47].
Recently, fermionic approaches have also been used to
constrain parameters of collective models [48].

This paper is organized as follows. In Sect. II we briefly
review the effective theory for axially deformed nuclei.
The electromagnetic coupling of the effective theory is
described in Sect. III. Section IV presents the results for
intra-band E2 transitions and compares them to data on
rotational and transitional nuclei. A somewhat surpris-

ing result is that much of the available data lacks the
precision to challenge the effective theory. Sections V
and VI include quadrupole degrees of freedom for the de-
scription of inter-band transitions. Comparison to data
shows that the effective theory accounts well for these
faint transitions. Finally, we present our summary.

II. EFFECTIVE THEORY FOR THE AXIALLY
SYMMETRIC NON-RIGID ROTOR

In this Section we briefly review the effective theory for
deformed nuclei [28–30]. The presentation in this paper
aims at being more intuitive and less technical, though.
We first focus on the lowest-energy phenomena and thus
on the axially symmetric non-rigid rotor. The coupling
to vibrations is considered in Sect. V.

A. Low-energy degrees of freedom

The effective theory is based on the emergent sym-
metry breaking from the rotational symmetry of the
group G = SO(3) to axial symmetry of the subgroup
H = SO(2). Thus, the Nambu-Goldstone modes param-
eterize the coset [49–55] G/H = SO(3)/SO(2) which is
isomorph to the two-sphere. This agrees with our intu-
ition: the orientation of an axially symmetric object is
defined by two Euler angles or, equivalently, by the di-
rection of its symmetry axis. In a finite system, the sym-
metry breaking has an emergent character, and (quan-
tized) zero modes take the place of Nambu-Goldstone
modes [30, 56, 57]. In our case, the polar and azimuthal
angles θ and φ (also labeled compactly as Ω) parameter-
ize the two-sphere, i.e., the radial unit vector

er ≡

 sin θ cosφ
sin θ sinφ

cos θ

 (1)

indicates the direction of the symmetry axis of the non-
rigid rotor. Thus, the effective theory for this system is
equivalent to that of a particle on the two-sphere.

The velocity of the orientation vector er is the time
derivative

dter = θ̇eθ + φ̇ sin θeφ

≡ vθeθ + vφeφ ≡ v.
(2)

This vector lies in the plane tangent to the two-sphere
at Ω. Here and in what follows, we employ dots to de-
note time derivatives. The low-energy Lagrangian is a
scalar function of the velocity vector alone and does not
depend on the vector er because of the emergent symme-
try breaking. To make progress, we need to understand
the behavior of v under rotations, and establish a power
counting. With these two ingredients in hand, we then
construct the most general Lagrangian that is consistent
with rotational symmetry and at a given order of the
power counting.
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B. Rotational invariance

Under a rotation r ≡ r(α, β, γ) =

exp (−iαĴz) exp (−iβĴy) exp (−iγĴz), parameterized
by the three Euler angles (α, β, γ), the angles θ and φ
transform non-linearly into θ′ and φ′. This constitutes
a nonlinear realization of SO(3). It is interesting
to comapre this with Bohr’s approach to deformed
nuclei [1]. Bohr starts from a linear representation of
SO(3) by choosing deformation parameters as coeffi-
cients of spherical harmonics. The transformation to
the body-fixed coordinate system then introduces a
nonlinear realization of SO(3) in terms of three rotation
angles and two deformation parameters. The rotation
r transforms the velocity vector v(Ω) (or any vector in
the tangent plane) into the vector v′(Ω′) that lies in the
tangent plane at Ω′. It is clear that the mapping from
v to v′ is equivalent to a SO(2) rotation in the tangent
plane by an angle χ = χ(α, β, γ; Ω) that is a complicated
function of the Euler angles and the original coordinates
Ω. Details are given in Ref. [28].

At this point it is useful to introduce spherical compo-
nents of the velocity inside the tangent plane as

v± ≡
1√
2

(vθ ± ivφ) . (3)

Under a rotation by the Euler angles (α, β, γ) the vector
v transforms as

v± → e∓iχv±. (4)

Thus, under an SO(3) transformation, vectors in the tan-
gent plane formally transform under an SO(2) transfor-
mation, and any Lagrangian build from elements in the
tangent plane that is formally invariant under SO(2), is
in fact invariant under SO(3).

For the general construction of invariant Lagrangians,
we must also consider time derivatives of vectors in the
tangent plane. The resulting vectors may not lie in the
tangent plane. Thus, the ordinary time derivative needs
to be replaced by the covariant derivative

Dt ≡ dt − iφ̇ cos θĴz, (5)

which is the projection onto the tangent plane of the
ordinary time derivative.

Let L denote a rotationally invariant Lagrangian in
the velocities v±. The application of Noether’s theorem
yields the angular momentum I as the conserved quan-
tity [28]. Its spherical components I+, I0 and I− are

I+1 = − 1√
2
eiφ(ipθ − pφ cot θ)

I0 = pφ

I−1 = − 1√
2
e−iφ(ipθ + pφ cot θ).

(6)

Here

pθ ≡ ∂θ̇L pφ ≡ ∂φ̇L (7)

denotes the canonical momenta. The squared angular
momentum is

I2 = p2
θ +

p2
φ

sin2 θ
. (8)

This construction of the Lagrangian is particularly use-
ful when further degrees of freedom are coupled to the
axially symmetric rotor.

C. Power counting and the rotational Hamiltonian

The leading-order (LO) rotationally invariant La-
grangian

LLO = C0v+1v−1 =
C0

2
(θ̇2 + φ̇2 sin2 θ) (9)

is quadratic in the velocities v±. It is equivalent to that
of a particle restricted to move on the two-sphere, or to
that of a rigid rotor. Here, C0 is a low-energy constant
and corresponds to the effective moment of inertia. This
parameter of our theory must be fixed by data.

For the power counting, we need to introduce relevant
energy scales. Let ξ denote the low-energy scale associ-
ated with rotations. Then, ξ ∼ 80 keV and ξ ∼ 40 keV
for deformed rare-earth nuclei and actinides respectively.
The breakdown scale ω of the effective theory coincides
with the onset of vibrational excitations and is of the
order of 1 MeV and 0.6 MeV for rare-earth nuclei and
actinides respectively. Thus, ξ/ω ≈ 1/10 is a conserva-
tive estimate.

The LO Lagrangian and the time derivatives (such as
the velocities v±) are of order ξ. Thus,

v± ∼ φ̇ ∼ θ̇ ∼ ξ C0 ∼ ξ−1. (10)

A Legendre transformation of the LO Lagrangian
yields the LO Hamiltonian

HLO =
1

2C0

(
p2
θ +

p2
φ

sin2 θ

)
=

1

2C0
I2. (11)

The quantization is standard, and the angular momen-
tum I becomes the angular momentum operator Î with
spherical components [58]

Î+1 = − 1√
2
eiφ (∂θ + i cot θ∂φ)

Î0 = −i∂φ

Î−1 = − 1√
2
e−iφ (∂θ − i cot θ∂φ) .

(12)

The squared angular momentum is

Î2 = Î2
0 − Î+Î− − Î−Î+. (13)

We also recall that

Î = er × (−i∇Ω) , (14)
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with

∇Ω = eθ∂θ + eφ
1

sin θ
∂φ (15)

being the angular derivative in the tangent plane [58].
We note that −i∇Ω is not an Hermitian operator.

The eigenfunctions of the Hamiltonian (11) are spher-
ical harmonics YIM (Ω) with eigenvalues

ĤLOYIM (θ, φ) =
I(I + 1)

2C0
YIM (θ, φ) (16)

Higher-order corrections to the LO Lagrangian (9) in-
clude terms with higher powers of I2. At next-to-leading
order (NLO) the Lagrangian becomes LLO + LNLO with

LNLO =
C2

4

(
I2
)2
. (17)

Thus, the corresponding Hamiltonian is HLO + HNLO

with

HNLO = −C2

C2
0

(HLO)
2

= − C2

4C3
0

(
I2
)2

, (18)

and the spectrum becomes

E(I) =
I(I + 1)

2C0
− C2

4C4
0

(I(I + 1))
2
. (19)

This deviation from the rigid-rotor behavior is due to
omitted physics at the energy scale ω of vibrations. From
the expression for the NLO Hamiltonian (18) it is clear
that C2 has units of energy−3. The scaling is [28]

C2 ∼ C0/ω
2, (20)

and consequently, the ratio of the NLO correction to the
LO contribution of the energy scales as

〈ĤNLO〉
〈ĤLO〉

∼
(
ξ

ω

)2

I(I + 1). (21)

Thus, the effective theory of the axially symmetric non-
rigid rotor is identical to the variable-moment-of-inertia
model [59, 60], and the spectrum consists of increasing
powers of I(I+ 1). It is important to notice that accord-
ing to Eq. (21), the effective theory is expected to break
down at spins of magnitude ω/ξ, i.e. when the second
term in Eq. (19) becomes as large as the first term. For a
given nucleus, an estimate for the breakdown spin can be
obtained by employing the LECs C0 and C2. The result
is the estimate

√
C3

0/C2. For the rotors listed in Table I,
this estimate usually excceds the general estimate ω/ξ.

Table I below shows values C0ξ, (C2/C0)ω2, (ξ/ω)2,
and C2/C

3
0 from the description of the ground-state

bands of the homonuclear molecules N2 and H2, the ro-
tational nuclei 236U, 174Yb, 166,168Er, and 162Dy, and the
transitional nuclei 188Os, 154Gd, 152Sm, and 150Nd, re-
spectively. Here, ξ is the excitation energy of the lowest

2+ state and ω is the excitation energy of the lowest vi-
brational state. The values of C0 and C2 are obtained
from a simultaneous fit to the lowest 2+ and 4+ levels
to Eq. (19), respectively. For a rigid rotor, C0ξ = 3,
ξ/ω = 0, and C2/C

3
0 = 0. Table I shows that the ra-

tios (C2/C0)ω2 are of natural size, i.e. of order one, for
the considered molecules and nuclei, and that the ratios
C2/C

3
0 are consistent with (but systematically smaller

than) the scaling estimate (ξ/ω)2. This suggests that
the breakdown scale is higher than the conservative esti-
mate of ω. Still, the values for the LEC C2 are consistent
with scaling estimates. Clearly the molecule N2 is very
close to the rigid-rotor limit. The comparison suggests
that the molecule H2 is as non-rigid a rotor as the nuclei
236U, 174Yb and 168Er. The transitional nuclei 188Os,
154Gd, 152Sm, and 150Nd exhibit even larger deviations
from the rigid-rotor limit.

System C0ξ
C2
C0
ω2 (ξ/ω)2 C2/C

3
0 b/a

N2 3.00 2.1 0.000026 0.000006 −0.000011
H2 2.99 2.2 0.0062 0.0015 0.0022

236U 2.99 2.3 0.0043 0.0011 −
174Yb 2.99 3.4 0.0026 0.0010 −
168Er 2.99 1.0 0.0094 0.0010 −
166Er 2.98 1.6 0.011 0.0020 −
162Dy 2.98 1.9 0.0083 0.0017 −
154Sm 2.97 5.2 0.0056 0.0033 −
188Os 2.91 1.5 0.06 0.012 0.008
154Gd 2.88 3.3 0.033 0.013 0.006
152Sm 2.88 3.5 0.032 0.013 0.003
150Nd 2.85 3.6 0.037 0.017 0.011

TABLE I. Dimensionless ratios of LECs and energy scales.
The LECs C0 and C2 are obtained from the 2+ and 4+ levels of
ground-state band for molecules and nuclei considered in this
work. The ratio ξ/ω measures the energy scales of rotations
and vibrations. For a rigid rotor C0ξ = 3, ξ/ω = 0, and
C2/C

3
0 = 0. The ratio b/a measures subleading corrections

to transition quadrupole moments and is similar in size as
the subleading energy correction C2/C

3
0 . A dash indicates

that the experimental data is not precise enough to determine
subleading corrections.

Within an effective field theory for emergent symme-
try breaking in finite systems [30], vibrations enter as
the quantized Nambu-Goldstone modes. The inclusion
of vibrations into the theory pushes the breakdown scale
Λ to higher energies. We have to distinguish two cases.
In the first case, Λ is set by the appearance of new de-
grees of freedom. In nuclei, these are pairing effects,
and Λ ≈ 2 to 3 MeV. In molecules these are electronic
excitations. The second case concerns the breakdown
of the effective theory due to a restoration of spherical
symmetry at large excitation energies. Indeed, for ener-
gies Λ ∼ ω2/ξ, the amplitude of vibrations approaches
the scale of the static deformation ∼ ξ−1/2. In nuclei
ω2/ξ ≈ 5 to 10 MeV, and the breakdown scale is thus
given by the onset of new degrees of freedom.



5

III. COUPLING TO ELECTROMAGNETIC
FIELDS

In this Section, we couple the axially-symmetric non-
rigid rotor to electromagnetic fields. In leading order,
minimal couplings of the gauge fields describe the elec-
tromagnetic interaction, and non-minimal couplings en-
ter as subleading corrections. For the long-wavelength
E2 transitions we are interested in, our approach is more
technical than, and differs from, the usual approach taken
for the collective models. The usual approach is moti-
vated by the result of Siegert’s theorem, that allows one
to employ density operators instead of current operators
in transition matrix elements, see Eisenberg and Greiner
[61] for example. While it is not obvious how to derive
this result for the quadrupole degrees of freedom of the
collective models, Siegert’s theorem is expected to hold
in leading order, i.e. for the strong intra-band transi-
tions. We recall that Mikhailov [62, 63] employed the
quadrupole operator in the computation of the electro-
magnetic transition strengths, and the resulting formu-
las are well known and widely used [4]. However, this
approach fails to describe the order of magnitude for the
faint inter-band transitions.

Thus, it is interesting to more formally develop the
electromagnetic theory of the rotor. Within an effective
theory one consistently relates currents to the underlying
Hamiltonian. We also note that Siegert’s theorem does
not apply to magnetic transitions [64]. The importance
of M1 transitions is another motivation for carrying out
the formal development.

Deriving the electromagnetic couplings for non-
relativistic many-body systems from first principles is
no easy task [65], see also Kämpfer et al. [54] for a re-
lated study within effective field theory. Here, we follow
a simpler path (at the possible cost of additional LECs).
Within an EFT one writes down all gauge-invariant cou-
plings that are consistent with the underlying symme-
tries (rotations, time reversal, and parity), and develops
a power counting, see [35–40] for recent examples. This
introduces minimal couplings (or minimal substitution)
and non-minimal couplings.

Before we follow this formal path, however, we briefly
consider a simple three-dimensional system that reduces
to the effective theory under consideration if a “radial”
degree of freedom is frozen (or integrated out). This will
give us insights into how to gauge the collective degrees
of freedom we are dealing with. Throughout this Section
we work in the Coulomb gauge and set the scalar electric
potential to zero.

A. Instructive example

Let us consider a particle of charge q and mass m in a
spherically-symmetric potential V (r) that effectively con-
fines the particle to a region of thickness ρ � R around

r ≈ R. The Hamiltonian is

Ĥ = − ~2

2m
∆ + V (r), (22)

with eigenfunctions ψ(r, θ, φ) = 〈rθφ|NIM〉 =
[uN (r)/r]YIM (θ, φ). The rotational excitations are of or-
der ~2l(l + 1)/(2mR2), and much smaller than radial
excitations, which are of order ~2/(2mρ2). Thus, the
low-energy spectrum are rotational bands on top of band
heads from radial excitations, and the effective theory de-
veloped in the previous Section applies. In what follows,
we couple electromagnetic fields to the Hamiltonian (22).
For transitions within the ground-state band, we can ne-
glect radial excitations and thereby gain insights into the
couplings of a low-energy effective theory.

We minimally couple −i~∇ → −i~∇ − qA, and keep
only the term linear in A. Thus, the interaction Hamil-
tonian between the electromagnetic field and the particle
becomes

Ĥ(A) = i
~q
2m

(A · ∇+∇ ·A)

= i
~q
2m

(
A · 1

r
∇Ω + A · er∂r

)
+i

~q
2m

(
1

r
∇Ω ·A + er∂r ·A

)
. (23)

We are interested in the long-wavelength limit and as-
sume that the wave length λ of the electromagnetic field
fulfills ρ/λ� 1. (Note that the systems we are interested
in actually fulfill R/λ� 1.) Thus, the radial variation of
A can be neglected and we can simply evaluate this field
at r = R. The matrix element that governs electromag-
netic transitions between the initial state |i〉 ≡ |NIiMi〉
and final state |f〉 ≡ |NIfMf 〉 within the band with ra-
dial quantum number N is

〈f |Ĥ(A)|i〉 = i
~q
2m

(
2〈IfMf |A · er|IiMi〉〈N |∂r|N〉

+〈IfMf |(A · ∇Ω +∇Ω ·A)|IiMi〉〈N |
1

r
|N〉
)
. (24)

We have

〈N |1
r
|N〉 =

∞∫
0

dr
u2
N (r)

r
≈R−1 (25)

for wave functions that are localized to a small region
ρ� R around r ≈ R. Corrections to this expression are
of order ρ/R.

Likewise,

〈N |∂r|N〉 =

∞∫
0

drr2uN (r)

r
∂r
uN (r)

r

=

∞∫
0

dr

(
uN (r)u′N (r)− u2

N (r)

r

)
≈ −R−1 , (26)
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because the first term vanishes due to uN (0) = 0 =
uN (∞), and the second term again yields approximately
−1/R. Again, corrections are of order ρ/R.

Thus, for intra-band transitions the matrix element
that governs long-wavelength transitions becomes in
leading order of ρ/R

〈f |Ĥ(A)|i〉 ≈ i ~q
2mR

(
〈IfMf |(A · ∇Ω +∇Ω ·A)|IiMi〉

+2〈IfMf |A · er|IiMi〉
)
. (27)

We note that this leading-order expression is independent
of the confining radial potential, and it becomes exact in
the limit ρ/R→ 0. We also note that the right-hand side
of Eq. (27) does not reference the radial wave function.
However, the term A · er originates from the current as-
sociated with the radial zero-point motion. Thus, in a
low-energy effective theory, electromagnetic transitions
are induced by the operator

Ĥ(A)(Ω) = − q~
2mR

× (A · (−i∇Ω + ier) + (−i∇Ω + ier) ·A) , (28)

and corrections are of order ρ/R. We note that the op-
erator

− i∇Ω + ier =
i

2

[
Î2, er

]
(29)

(unlike the operator −i∇Ω) is also Hermitian under the
usual integration measure dΩ ≡ dφdθ sin θ of the sphere.
The identity (29) can be proved by a direct computation.

On the first view it might be surprising that the op-
erator (28), relevant for the coupling of the low-energy
degrees of freedom (the angles Ω), references the radial
component of the electromagnetic field A. Indeed, de-
composing the vector potential

A = Arer + AΩ (30)

AΩ = Aθeθ +Aφeφ (31)

into a radial component and the projection AΩ on the
tangential plane, and using the identity

− i∇Ω ·A = −i∇Ω ·AΩ − i2er ·A (32)

we can rewrite the interaction (28) as

Ĥ(A)(Ω) = i
q~

2mR
(AΩ · ∇Ω +∇Ω ·AΩ) . (33)

This result is in keeping with expectations that a low-
energy effective theory only involves low-energy degrees
of freedom. While this expression reflects that the
physics is entirely in the tangential plane, it is not ideal
because of the appearance of the non-Hermitian operator
−i∇Ω. An equivalent expression involving only Hermi-
tian operators can be obtained using the angular momen-
tum operator (14). This yields

Ĥ(A)(Ω) = − q~
2mR

[
(er ×AΩ) · Î + Î · (er ×AΩ)

]
.

(34)

The interaction terms (33) and (34) thus suggest that the
electromagnetic coupling is achieved by gauging

− i∇Ω → −i∇Ω − qAΩ (35)

and, equivalently,

Î→ Î− qer ×AΩ . (36)

The next Subsection confirms this picture.

B. Gauging the effective theory

Let us now turn to couple electromagnetic fields to
the non-rigid rotor. The LO effective theory starts from
the Hamiltonian (11). Requiring invariance under local
gauge transformations ψ(Ω) → exp (iλ(Ω))ψ(Ω) of its
eigenfunctions ψ(Ω) introduces gauge fields according to

Î→ Î− qer ×AΩ , (37)

with

AΩ = −∇Ωλ(Ω) . (38)

Here, the effective charge q is a LEC and needs to be
adjusted to data. Thus, the requirement of local gauge
invariance introduces gauge fields with components in the
tangential plane spanned by the vectors eθ and eφ. As
AΩ · er = 0, we have er ×AΩ = er ×A, and this can be
employed in the minimal coupling (37).

We are interested in single-photon transitions, and the
LO Hamiltonian that describes the non-rigid rotor plus
electromagnetic fields system becomes

ĤEM
LO = ĤLO + Ĥ

(A)
LO (39)

with the interaction Hamiltonian given by

Ĥ
(A)
LO = − q

2C0

(
(er ×A) · Î + Î · (er ×A)

)
= i

q

2C0
(AΩ · ∇Ω +∇Ω ·AΩ) . (40)

This is essentially the operator (33). Thus, the gauging
of the effective theory yields the same interaction Hamil-
tonian as the removal of a high-energy degree of freedom
in the direct calculation presented in the previous Sub-
section. The direct use of the operator (40) in the com-
putation of matrix elements is cumbersome. Instead we
return to Eq. (28), use the identity (29), and find

(er ×AΩ) · Î =
i

2
A ·

[
Î2, er

]
− iA · er

Î · (er ×AΩ) =
i

2

[
Î2, er

]
·A + iA · er . (41)

Thus, in the long wave length limit and in LO of the
effective theory, the interaction Hamiltonian is

Ĥ
(A)
LO = − iq

4C0

(
A ·

[
Î2, er

]
+
[
Î2, er

]
·A
)
. (42)
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This LO interaction Hamiltonian (42) can be rewritten
by employing the LO Hamiltonian (11) of the rigid rotor,
yielding

Ĥ
(A)
LO = − iq

2

(
A ·

[
ĤLO, er

]
+
[
ĤLO, er

]
·A
)
. (43)

At NLO, we start from the Hamiltonian (18) and min-
imally couple it according to Eq. (37). Again, we only
keep terms linearly in A because we are interested in
single-photon transitions. This yields

ĤEM
NLO = ĤNLO + Ĥ

(A)
LO + Ĥ

(A)
NLO . (44)

Here, the NLO interaction takes the form

Ĥ
(A)
NLO =

qC2

4C4
0

(
(er ×A) · Î + Î · (er ×A)

)
Î2

+
qC2

4C4
0

Î2

(
(er ×A) · Î + Î · (er ×A)

)
= − C2

2C3
0

(
Ĥ

(A)
LO Î2 + Î2Ĥ

(A)
LO

)
. (45)

Note that the LECs of Ĥ
(A)
NLO are determined entirely by

the Hamiltonian (18) and the LO electromagnetic tran-
sitions. This is the consistency between currents and
Hamiltonian offered within an effective theory. This term

is a factor C2/C
3
0 ∼ (ξ/ω)2 smaller than Ĥ

(A)
LO . Let

MLO(i→ f) ≡ 〈f |Ĥ(A)
LO |i〉 (46)

be the LO matrix element for electromagnetic transitions.
Then

MNLO(i→ f) ≡ 〈f |Ĥ(A)
NLO|i〉

= − C2

2C3
0

[If (If + 1) + Ii(Ii + 1)]MLO . (47)

We will employ a multipole expansion. This expansion
is valid if the wavelength of the radiation is considerably
larger than the linear dimension of the rotor. Let k be
the wave number of the electromagnetic field. We have
k ∼ ξ for transitions in the ground-state band. For a rigid
rotor with extension R and mass M , C0 ∼ MR2 ∼ ξ−1.
Thus, kR ∼

√
ξ/M . To give quantitative estimates, we

consider rare earth nuclei. Here, kR ≈ 1/300. Thus, the
multipole expansion is rapidly converging.

To make progress, we employ a plane wave

A(r, t) = Aeze
i(k·r−wt) (48)

with amplitude A, polarization ez in the z direction and
momentum k = kex in the x direction. Here w = k (re-
call that the speed of light c = 1). Taylor expansion of
the plane wave yields the leading-oder quadrupole com-
ponent contained in the term

A(2) = Aezkr cosφ sin θ . (49)

In what follows, we neglect the subleading contribution
of A(2) to dipole transitions. When inserted into the LO
interaction Hamiltonian (43), we find

H
(A(2))
LO = − iq

2

[
HLO,A

(2) · er
]
. (50)

This form of the quadrupole interaction is particularly
suited for the computation of the quadrupole transition
matrix elements (46), and

MLO(E2, i→ f) = − iqw
2
〈f |A(2) · er|i〉 (51)

Here, w = Ef − Ei is the difference between the LO
energies of the final and initial states. The corresponding
NLO interaction Hamiltonian can be obtained directly by
inserting the Hamiltonian (50) into Eq. (45). At NLO,
the matrix element for electric quadrupole transitions is
equivalent to that of Eq. (51), with w being the difference
between the NLO energies of the final and initial states.
In the evaluation of these matrix elements, we will set
r = R, and absorb the factor kR by re-defining qkR→ q.

C. Non-minimal couplings

Non-minimal couplings (i.e. interaction terms that in-
clude electric and magnetic fields) arise because the low-
energy degrees of freedom we employ describe composite
objects. Such terms are gauge-invariant scalars that are
consistent with the symmetries of the effective theory.
For electric transitions, we can couple the low-energy de-
grees of freedom to the electric field E, and the power
counting is in derivatives on the electric field and low-
energy degrees of freedom. In leading order we have

Ĥ
(E)
LO ≡ dE · er . (52)

Here, the dimensionless number d is a LEC and has to
be adjusted to data. We note that E ∼ ξA for low-
energy transitions and assume that d ∼ O(1). Thus, the

non-minimal term (52) is of the same order as Ĥ
(A)
LO in

Eq. (43).
For the E2 transitions considered in this work E(2) =

iwA(2), and its is clear that the transition matrix element
of the non-minimal interaction (52) is equivalent to the

LO gauged interaction Ĥ
(A)
LO after identifying the LECs

d = q. We thus see that Siegert’s theorem is valid for the
LO transitions.

We turn to higher-order non-minimal couplings. In
principle, every single term that is invariant under gauge
transformations, rotations, parity and time reversal must
be considered. However, the power counting (10) estab-
lishes which terms are relevant at each order. The rele-
vant NLO terms are quadratic in I

Ĥ
(E)
NLO =− qd1

4

(
E · er Î2 + Î2E · er

)
− qd2

4

(
E · Î2er + er · Î2E

)
,

(53)



8

where the factor q/4 is included for convenience. As a
NLO correction, it is expected to fulfill a relation similar
to that of Eq. (21)

〈f |Ĥ(E)
NLO|i〉

〈f |Ĥ(E)
LO |i〉

∼
(
ξ

ω

)2

f(Ii, If ), (54)

where f(Ii, If ) is a function of the angular momenta of
the initial and final states. From here, it is expected that
d1 ∼ d2 ∼ (ξ/ω)2. These LECs need to be fitted to data.

In this work, we are only interested in electric tran-
sitions. For magnetic transitions, other non-minimally
coupled terms involving the magnetic field B must be
included.

IV. TRANSITIONS WITHIN THE GROUND
BAND

In this Section, we study electric transitions within
ground-state bands of molecules and atomic nuclei.
Molecules are a perfect testing ground for the effective
theory because the separation of scale between rotations
and vibrations is several orders of magnitude. After a
brief discussion of molecules we consider rotational nu-
clei in the rare-earth and actinide regions. For these, the
separation of scale between rotations and vibrations is
largest in atomic nuclei. Finally, we consider transitional
nuclei where the separation of scale is smaller, and NLO
corrections are more prominent. A list of rotors studied
in this Section is shown in Table II. For a rigid rotor,
ξ/ω = 0, and E4+/E2+ = 10/3. The other columns in
Table II will be discussed below.

Rotor ξ/ω E4+/E2+ Q0[eb] αLO αNLO

N2 0.005 3.33 1.00a 2.18 0.70
H2 0.08 3.30 1.00a 1.45 0.10

236U 0.05 3.30 3.29 0.00 –
174Yb 0.05 3.31 2.44 1.07 –
168Er 0.10 3.31 2.42 3.02 –
166Er 0.10 3.29 2.42 0.00 –
162Dy 0.09 3.29 2.29 0.33 –
154Sm 0.07 3.25 2.08 0.23 –
188Os 0.24 3.08 1.58 0.32 0.43
154Gd 0.18 3.01 1.96 0.35 0.00
152Sm 0.18 3.01 1.86 0.20 0.00
150Nd 0.19 2.93 1.65 0.38 0.32

a Arbitrary units used for molecules.

TABLE II. Ratio ξ/ω and ratio E4+/E2+ of energies EJπ of
states with spin J and parity π (as measures of the separa-
tion of scale), and the effective quadrupole moment Q0 for
molecules and nuclei considered in this work. For a rigid ro-
tor, ξ/ω = 0, and E4+/E2+ = 10/3. The constants αLO and
αNLO are obtained from χ2 fits at LO and NLO, respectively,
and indicate the size of theoretical errors required to achieve
a χ2 ≈ 1 per degree of freedom.

A. Transition strengths

The reduced transition probabilities of electric radi-
ation with multipolarity λ, i.e. the B(Eλ) values, are
given by Fermi’s golden rule

B(Eλ, i→ f) =
1

2li + 1

∣∣∣〈f ||M̂ (Eλ)||i〉
∣∣∣2 , (55)

where M̂ (Eλ) ≡ (Ĥ(A) + Ĥ(E))/wA. As we will see be-
low, these transition strengths contain a simple geomet-
rical factor that governs the leading angular-momentum
dependence. To understand transition strengths within
an effective theory, it is very useful to remove this trivial
factor. For this reason we define the quadrupole transi-
tion moments Qif as

Q2
if ≡

B(E2, i→ f)(
C
If0
Ii020

)2 . (56)

Here CI3M3

I1M1I2M2
is a Clebsch-Gordan coefficient [58] and

governs the leading angular-momentum dependence.
If the quadrupole components of the vector potential

A and the corresponding electric field E are inserted into
the transition operators Ĥ(A) and Ĥ(E), they induce E2
transitions. At NLO, the B(E2) values for decays within
the ground-state band are

B(E2, i→ f) =
(aqR)2

60

(
C
If0
Ii020

)2
[
1 +

b

a
Ii(Ii − 1)

]
.

(57)
Here a = 1 + d1 and b = 2(d1 + d2) are combinations
of LECs from the non-minimal couplings. Thus, the
quadrupole transition moments for these decays are given
by

Q2
if =

(aqR)2

60

[
1 +

b

a
Ii(Ii − 1)

]
(58)

or

Q2
if = Q2

0

[
1 +

b

a
li(li − 1)

]
(59)

where Q0 ≡
√

(aqR)2/60 may be thought of as the ef-
fective quadrupole moment. Table II shows the values
of Q0 for the systems considered in this work. They are
obtained from a global fit to data presented in the second
half of this Section.

In LO the effective theory thus predicts that the
quadrupole transition moments Qif are constant, reflect-
ing the behavior of a rigid rotor. The NLO corrections
are deviations from this behavior that are quadratic in
the angular momentum of the initial state. They scale
as d1 + d2 ∼ (ξ/ω)2. We note that the NLO corrections
to the quadrupole transitions are thus similar in size and
functional form to the NLO correction of the spectrum
of the ground-state band.
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It is interesting to compare the results from the ef-
fective theory with the geometric collective model. Ac-
cording to Bohr and Mottelson [4], the reduced matrix
elements for quadrupole decays within the ground band
are

〈f ||M (E2)||i〉 = M1(2Ii + 1)1/2C
If0
Ii020 (60)

×
[
1 + 2

M2

M1
+ 4

M3

M1
+ 2

(
M2

M1
+ 8

M3

M1

)
Ii(Ii − 1)

]
.

Here M (E2) is the quadrupole operator, and Mi, i =
1, 2, 3 are intrinsic matrix elements. From the matrix el-
ements 60, the quadrupole transition moments for decays
within the ground band are

Q2
if = (aBHM1)2

[
1 +

bBH

aBH
Ii(Ii − 1)

]
, (61)

with aBH = 1 + 2M21 + 4M31, bBH = 4(M21 + 8M31) and
Mij = Mi/Mj . Thus, the effective theory at NLO repro-
duces the geometric collective model and gives the same
description for decays within the ground band. A novel
aspect of the effective theory is the estimate of theoretical
uncertainties.

B. Estimate of theoretical uncertainties

The estimate of theoretical uncertainties is a highlight
of effective field theories, see Furnstahl et al. [27] for a
recent overview, and Ref. [66] for a general discussion. So
far, such estimates are virtually absent when phenomeno-
logical collective models are applied to describe data. In
effective field theories, the existence of a breakdown scale
and the ensuing power counting allows one to consistently
estimate the size of missing contributions. For example,
when making LO fits to energy levels or quadrupole tran-
sitions in ground-state bands, relative theoretical uncer-
tainties involving a state with spin I scale as

ε ≡ (Iξ/ω)2 . (62)

At NLO, the relative theoretical uncertainty scales as ε2,
etc. The effective theory yields uncertainty estimates, i.e.
it predicts the scale of the theoretical error, but not its
precise absolute size αεn. The expectation is that α be of
natural size, i.e. 1/3 . α . 3 or so. In other words, for a
natural value α of order one, the relative error is of order
O(εn) at the n th order in the effective theory. Choosing
a natural-size value for α is thus a simple way to present
theoretical uncertainty estimates, similar to the idea of
presenting order-of-magnitude estimates for remainders
in polynomial approximations to functions. For consis-
tency, one would expect that uncertainty estimates for
increasing order overlap with each other.

In what follows we will choose α such that a χ2 per
degree of freedom of 1 results from a fit to data. Theo-
retical uncertainties can then be viewed as the usual one-
sigma bands. One expects that the resulting value for α

is of natural size. A value of α � 1 (α ≈ 0) indicates
that the theory with very small (vanishing) theoretical
uncertainties already describes the data within the ex-
perimental error bars. In such a case, the the data is
not sufficiently precise to challenge the theory, and we
will choose a natural-size value for α for uncertainty esti-
mates. A very large value α � 1 signals the breakdown
of the effective theory, because the assumed separation
of scales is not reflected in the data.

The LECs C0 and C2 that govern the spectrum are
computed from the experimental energies of the 2+ and
4+ states in the ground-state rotational band. The un-
certainty of these LECs can be neglected because energies
are known very precisely.

Let us turn to quadrupole transitions. Here the LECs
are Q0 at LO, and the ratio b/a at NLO. We denote
the (constant) transition strength at LO as QLO. Its
theoretical uncertainty is

σth = αLO
C2

C3
0

Ii(Ii − 1)QLO . (63)

At NLO, the theoretical uncertainty is given in terms of
the NLO result QNLO as

σth = αNLO

[
C2

C3
0

Ii(Ii − 1)

]2

QNLO . (64)

To determine the LECs Q0 and b/a involved in the
quadrupole transitions, we perform χ2 fits to data, with

χ2 =
∑
d

[Qexp(d)−Qth(d)]
2

σ2
exp(d) + σ2

th(d)
. (65)

Here, the sum is over all data points, Qexp(d) (Qth(d)) is
the experimental (theoretical) value, and σexp the experi-
mental uncertainty. We adjust αLO (αNLO) in LO (NLO)
fits such that the resulting χ2 per degree of freedom is 1.

Table II shows the values of αLO and αNLO that result
from the χ2 fits. Some of the fits result in a χ2 per degree
of freedom below 1 even for vanishing theoretical uncer-
tainty. In such cases, αLO = 0 or αNLO = 0. This hap-
pens if the theoretical prediction (with zero theoretical
uncertainty estimates) aleady describes all data within
the experimental uncertainties alone. In these cases, we
will employ αLO = 1 (αNLO = αLO) in LO (NLO) esti-
mates of theoretical uncertainties in the following Sub-
sections. The values of α in Table II are mostly of natural
size. This indicates that the effective theory describes the
data consistently.

Below we will see that experimental uncertainties for
quadrupole transitions are significant and presently pre-
clude us from making any meaningful subleading pre-
dictions for the rotational nuclei 236U, 174Yb, 166,168Er,
162Dy, and 154Sm. The situation is better though for
the transitional nuclei 188Os, 154Gd, 152Sm, and 150Nd,
where data with higher relative precision is available. To
test the effective theory for physical systems close to the
rigid-rotor limit, we therefor consider the homonuclear
molecules H2 and N2.
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FIG. 1. Quadrupole transition moments for decays within the
ground band of the N2 molecule in its para state for states
with initial spin Ii. Experimental data [67] (black circles) is
compared to LO (red line and corresponding error band) and
NLO (blue dashed line and corresponding error band) results
of the effective theory. The NLO uncertainty band is very
small and barely visible. The quadratic trend (in spin Ii of
the initial state) at NLO beyond the constant behavior at LO
shows the deviation from the rigid rotor.

C. Linear molecules

Linear molecules provide an ideal testing ground for
the effective theory, because they are axially symmetric
in their ground states and close to the rigid rotor limit.
For these molecules, the separation of scale is excellent,
and a good agreement between the effective theory and
experimental data must be achieved at low order.

Homonuclear molecules appear in two isomeric forms,
depending on the alignment of the nuclear spins. For
antiparallel spins (the “para” state), the system posses
a positive R parity as rotations of π around any axis
perpendicular to the symmetry axis do not change the
wave function of the system. This symmetry implies that
only states with even spin I are allowed in the ground
band. Thus, within the ground band, E2 transitions are
the most relevant, and this property is shared with axially
symmetric atomic nuclei.

The para N2 molecule energy ratios are extremely close
to those of a rigid rotor, see Table I. Figure 1 shows the
experimental data [67] of E2 transition strengths in the
ground-state band. The LO calculations are in agreement
with experimental data within 1% for initial angular mo-
menta Ii . 30. NLO calculations deviates from experi-
mental data less than 0.1%. The theoretical uncertainty
estimates at NLO are consistent with the data 1. The
values αLO and αNLO are of natural size, see Table II.

1 The data [67] exhibits no experimental uncertainties and we as-
sumed a constant error σexp = 0.0002Q0 for a stable fit.
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FIG. 2. Quadrupole transition moments for decays within the
ground band of the H2 molecule in its para state, for states
with initial spin Ii. Experimental data [67] (black circles)
is compared to LO (red line and corresponding error band)
and NLO (blue dashed line and corresponding error band)
results of the effective theory. The quadratic (in spin Ii of
the initial state) trend at NLO beyond the constant behavior
at LO shows the deviation from the rigid rotor.

The much lighter H2 molecule is farther from the rigid-
rotor limit, as shown in Fig. 2. Both, LO and NLO calcu-
lations are in agreement with data [67]. The value αLO

is of natural size, while αNLO � 1, see Table II. Con-
sequently, the NLO uncertainty is rather small, possibly
because the breakdown scale is at a higher energy than
naively expected. We note that the N2 and H2 molecules
beautifully display that deviations of the quadrupole
transitions from the rigid-rotor limit are quadratic in the
spin of the initial state. This is in accordance with the
effective theory. For the molecules, the effective theory is
accurate (it describes the data) and precise (theoretical
uncertainties are small).

The last column of Table I lists the NLO values for
the LECs that enter the quadrupole transition function
for the homonuclear molecules. Their values are consis-
tent with the NLO correction C2/C

3
0 obtained from the

rotational energy spectrum.

D. Rotational nuclei

Axially-symmetric deformed nuclei possess positive R
parity, and only states with even angular momentum I
are allowed in the ground-state band.

The energy spectra of many nuclei in the actinide
region makes them good candidates to test the effec-
tive theory. Figure 3 shows the quadrupole transition
strengths for decays within the ground band of 236U and
compares them to the experimental data from Browne
and Tuli [68]. The results from our LO calculations are
in good agreement with these data. Unfortunately, the
experimental uncertainties are so large that a χ2 < 1 per
datum is already achieved for zero theoretical uncertain-
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FIG. 3. Quadrupole decays within the ground-state band of
236U for initial spin Ii. Experimental data [68] with error
bars compared to LO calculations of the effective theory. Es-
timated theoretical uncertainties are shown as bands.

ties, i.e., for αLO = 0. The shown theoretical uncertain-
ties are obtained by setting αLO = 1 for a natural-size
estimate. Data of higher precision would be necessary to
probe the theory at NLO.

Many rare-earth nuclei are well deformed, and it is
interesting to confront the effective theory with data.
Figure 4 shows the results for the well-studied nuclei
166Er [69, 70] and 162Dy [71, 72]. For 166Er, a reduced
χ2 < 1 is achieved for zero theoretical uncertainties (see
Table II). Same as with 236U, the displayed theoreti-
cal uncertainties for this nucleus employ αLO = 1 as a
natural-size estimate. For 162Dy, the data are consistent
with the rigid-rotor result and the error estimates from
the effective theory are natural in size. The first devia-
tion only occurs at higher spin, where the experimental
uncertainty is increased.

Results for the well deformed nuclei 174Yb [75], 168Er
[69, 76–78], and 154Sm are shown in Fig. 5. One of
the best rigid-rotor candidates in the rare earth region
is 174Yb due to its small ratio of ξ/ω. Indeed, the break-
down spin is conservatively estimated as ω/ξ ≈ 19 from

the onset of vibrations and as
√
C3

0/C2 ≈ 31 from the
NLO fit to the spectrum (see Table I). The LO results
for this nucleus and our uncertainty estimates are consis-
tent with the experimental data [75]. We note that the
data points for the 4+

g → 2+
g and the 8+

g → 6+
g transi-

tions are below and above the rigid-rotor result Q = Q0.
Within the effective theory, such an oscillatory pattern
could only be understood if the breakdown scale were al-
ready around spin I ≈ 6, and this is significantly smaller
than expected from the ratios ω/ξ or

√
C3

0/C2 (see Ta-
ble I). Thus, higher precision data, particularly for the
6+
g → 4+

g transition, would be desirable for this nucleus.

For 168Er the 6+
g → 4+

g transition is significantly away
from the theoretical prediction, and the data exhibit an
oscillatory pattern around the rigid-rotor result. This
pattern deviates clearly from the effective theory’s expec-
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FIG. 4. Experimental data (black points with error bars) for
decays within the ground band of 166Er (top) [73] and 162Dy
(bottom) [74] for initial spin Ii is compared to LO results
(red line with corresponding uncertainty band) of the effective
theory. The data is consistent with the constant LO value of
the effective theory and as expected for a rigid rotor.

tation of a deviation quadratic in initial spin Ii from the
rigid-rotor behavior. Within the effective theory, such a
behavior could only be understood if the breakdown scale
were around the energy of the 6+

g state, which is unex-
pectedly low in energy. The relatively large value of αLO

in Table II also reflects the challenge this nucleus poses.
We believe that high-precision measurements, particu-
larly for the 6+

g → 4+
g transition, would be very interest-

ing for this nucleus.
Finally we turn to 154Sm. The data is largely consis-

tent with the rigid rotor results expected at LO in the
effective theory. Data points fall in the very small interval
0.93Q2

0 . Q2 . 1.1Q2
0 around the rigid-rotor prediction.

However, taking the relatively small experimental error
bars at face value would again suggest that the data os-
cillates around the constant rigid-rotor value, and this is
not expected within the effective theory.

In summary, the data on rotational nuclei is largely
consistent with the LO results that describe a rigid rotor.
A few transition strengths deviate more than expected
from the effective theory, and one would like to see these
data points to be measured with a higher precision. In
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particular, oscillatory patterns around the rigid-rotor re-
sults, as displayed by 174Yb, 168Er and possibly 154Sm are
unexpected and deserve further attention. The study of
subleading corrections, i.e. deviations expected for a non-
rigid rotor, would require data with considerably higher
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FIG. 5. Experimental data (black points with error bars)
for decays within the ground band of 174Yb (top) [75], 168Er
(middle) [79], 154Sm (bottom) [80] for initial spin Ii is com-
pared to LO results (red line with corresponding uncertainty
band) of the effective theory. With a few notable exceptions
the data is largly consistent with the constant LO value of
the effective theory and as expected for a rigid rotor. How-
ever, the oscillatory pattern of the experimental data is not
expected within the effective theory.

precision. It is somewhat surprising that the 1975 words
of Bohr and Mottelson [4] “The accuracy of the present
measurements of E2-matrix elements in the ground-state
bands of even even nuclei is in most cases barely sufficient
to detect deviations from the leading-order intensity re-
lations” are still applicable today. The noted deviations,
and the possibility to compare data with more precise
predictions for subleading effects, would make it very in-
teresting to measure transition strengths in some of these
nuclei with an increased precision.

E. Transitional nuclei

Transitional nuclei are characterized by energy spectra
that deviate considerably from the rotational behavior.
Ratios E4+/E2+ ≈ 3 identify these non-rigid rotors, and
the separation of scale is less pronounced than for the
rotational nuclei. The increased ξ/ω ratio implies that
NLO corrections are more relevant and also more visi-
ble. Fortunately, for these nuclei data of sufficiently high
precision exists. This allows us to check the systematic
improvements of the effective theory.

Figure 6 shows data for quadrupole decays in a few
transitional nuclei and compares them to theoretical re-
sults from the effective theory. For 188Os (top left panel),
the data systematically deviates from the rigid-rotor re-
sult and is consistently described at LO and at NLO
within the theoretical uncertainties. At spin I = 10, the
theoretical NLO uncertainties exceed the LO uncertain-
ties, signaling the breakdown of the effective theory. This
is consistent with the expectation

√
C3

0/C2 ≈ 9 obtained
from the fit of the spectrum, see Table I.

The quadrupole transitions of the nucleus 154Gd (top
right panel of Fig. 6) agree with expectations for a non-
rigid rotor. The quadratic (in I) deviations are well de-
scribed by the theory at NLO. A χ2 < 1 per datum is
obtained at NLO even for vanishing theoretical errors, i.e.
for αNLO = 0 (see Table II). For the shown NLO error
estimates, we set αNLO = αLO. This choice is of natu-
ral size and consistent with the estimate

√
C3

0/C2 ≈ 8
for the breakdown spin obtained from the fit of the spec-
trum, see Table I. The situation is similar for quadrupole
transitions in the ground-state band of 152Sm (bottom
left panel of Fig. 6). Also here, the shown NLO error
estimates use αNLO = αLO.

Finally, we turn to 150Nd (bottom right panel of
Fig. 6). This nucleus is a non-rigid rotor and well de-
scribed by the LO and NLO effective theory. The rela-
tively precise value at Ii = 10 deviates from the quadratic
deviation expected for a non-rigid rotor but is also in the
vicinity of the breakdown scale of the effective theory.
Note that the NLO uncertainty band exceeds the LO un-
certainty for Ii = 10, and this is consistent with the the
estimate

√
C3

0/C2 ≈ 7 for the breakdown spin obtained
from the fit of the spectrum, see Table I.

In summary, the effective theory describes the tran-
sitional nuclei rather well. In particular, the quadratic
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FIG. 6. Experimental data (black data points with error bars) for decays within the ground band of 188Os (top left) [81], 154Gd
(top right) [17], 152Sm (bottom left) [14] and 150Nd (bottom right) [16] is compared against LO (red line and corresponding
uncertainty band) and NLO (blue dashed line with corresponding uncertainty band) calculations of the effective theory. At
NLO, the quadratic deviation (in spin Ii) from the LO rigid-rotor result is described well by the effective theory.

trend (in Ii) predicted as the NLO correction of the ef-
fective theory is demonstrated convincingly. Theoreti-
cal uncertainty estimates are consistent as one goes from
LO to NLO, and they agree with the precision of the
available data. Further progress, e.g the identification
of NNLO corrections, would require even more precise
data. The existing data suggests that more precise mea-
surements (and possibly the extension to higher spins)
could be particularly profitable for 154Gd and 152Sm.

The successful application of the effective theory to the
transitional nuclei casts further doubts onto the oscilla-
tory patterns in the experimental data for the rotational
174Yb and 168Er, see Fig. 4. As the breakdown scale
for rotational nuclei considerably exceeds that for transi-
tional nuclei, one would expect that the effective theory
applies even more to the former. This is additional mo-
tivation to re-measure more precisely some of the critical
transitions in well deformed nuclei.

As we have seen, the effective theory allows us to re-
derive some of the well-known results for deformed nu-
clei [4] starting from symmetry principles alone. New
elements are the identification of a breakdown scale and
its employment in a power counting and in estimates for

theoretical uncertainties. In contrast to the phenomeno-
logical models – which can be accurate – the effective
theory also delivers precision because it can be improved
systematically. It is also encouraging that well deformed
and transitional nuclei are described on the same foot-
ing, without resorting to more special models [13] for the
latter. For the results presented in this Section, the pre-
dictive power of the effective theory equals the traditional
approaches [4]. At LO, one LEC is used to describe the
spectrum, and one describes the quadrupole transition
strengths. At NLO, one additional LEC each enters the
spectrum and the transitions.

V. ROTATIONS AND VIBRATIONS

In this Section, we are interested in inter-band transi-
tions. These transitions are much weaker than the intra-
band transitions considered in the previous Section, and
the accurate description of these faint transitions poses a
challenge. For the description of rotational bands beyond
the ground-state band, we need to include additional
degrees of freedom into the effective theory. For even-
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even nuclei, these degrees of freedom represent higher-
energetic vibrations of the nucleus with an energy scale
ω below the breakdown energy scale Λ. These vibrations
are the true remnants of Nambu-Goldstone modes in fi-
nite systems with emergent symmetry breaking [30]. The
effective theory for this case has in parts been developed
in Refs. [28, 29]. Reference [28] developed the effective
theory up to NLO. In leading order, the theory describes
uncoupled vibrational states. At NLO, the vibrational
states become heads of rotational bands. Reference [29]
focused on higher-order terms. Then, couplings between
vibrational band heads enter, and the dependence of the
moment of inertia on the quantum numbers of the band
heads could be described. In the next Subsection, we
briefly introduce quadrupole degrees of freedom. We then
develop the Hamiltonian up to NNLO, and finally focus
on the coupling of electromagnetic fields for the descrip-
tion of inter-band transitions in the following Section.

A. Quadrupole degrees of freedom

In even-even nuclei, the quantized Nambu-Goldstone
modes due to the emergent symmetry breaking from
SO(3) to SO(2) can be represented by a quadrupole field
with two of its components replaced by the low-energy
degrees of freedom θ and φ. Note that these degrees
of freedom have the quantum numbers of quadrupole
modes, but they are not Bohr’s surface oscillations. In
our treatment, the quadrupole degrees of freedom also
realize the rotational symmetry nonlinearly; they are in
the co-rotating coordinate system and can be viewed as
being attached to the particle moving on the two-sphere.
We have

Ψ = (Ψ+2, 0,Ψ0, 0,Ψ−2) . (66)

It is convenient to rewrite the components of the field as

Ψ0 = ζ + ψ0 Ψ±2 = ψ2e
±i2γ . (67)

Here ζ is the constant vacuum expectation value of the
zero mode (with |ψ0| � ζ), and the factor 2 in the phase
2γ has been introduced for convenience. Because of this
factor γ ranges from 0 to π.

The field in the laboratory frame can be written as an
appropriate rotation of the field in the intrinsic frame

Φ = g(φ, θ)Ψ, (68)

which implies that under the SO(3) rotation r(α, β, γ)

ψ0 → ψ0 ψ2 → ψ2 γ → γ + χ. (69)

Here, χ = χ(α, β, γ; θ, φ) is a complicated function of
the rotation angles and the orientation angles (θ, φ); the
rotational symmetry is realized nonlinearly [28].

The kinetic terms in the quadrupole degrees of free-
dom are obtained by acting with the covariant derivative
(5) onto Ψ. Thus, any Lagrangian L in v±, Ψ0, Ψ±2,

DtΨ0, DtΨ±2 that is formally invariant under SO(2), is
invariant under SO(3) due to the nonlinear realization of
the rotational symmetry. The application of Noether’s
theorem to such Lagrangian yields the total angular mo-
mentum J with spherical components

J+1 = − 1√
2
eiφ(ipθ − pφ cot θ)− 1√

2
eiφ

pγ
sin θ

J0 = pφ

J−1 = − 1√
2
e−iφ(ipθ + pφ cot θ) +

1√
2
e−iφ

pγ
sin θ

,

(70)

as the conserved quantity. Here

pθ ≡ ∂θ̇L pφ ≡ ∂φ̇L pγ ≡ ∂γ̇L, (71)

and the total angular momentum squared is

J2 = p2
θ +

(
pφ − pγ cos θ

sin θ

)2

+ p2
γ . (72)

We denote the total angular momentum as J, because
its definition (70) differs from Eq. (6) due to the newly
introduced vibrational degrees of freedom.

Let us briefly compare the degrees of freedom in the
effective theory to those of the Bohr Hamiltonian. In the
effective theory, the angles (φ, θ, γ) can be viewed as Eu-
ler angles, with the “slow” degrees of freedom Ω = (θ, φ)
describing the orientation of the symmetry axis and the
“fast” degree of freedom γ describing rotations around
the symmetry axis. The ψ0 degree of freedom is a (fast)
vibration that keeps the axial symmetry, while ψ2 is a
(fast) vibration that breaks the axial symmetry. The
Bohr Hamiltonian employs three Euler angles and two
deformation parameters [6]. The two deformation param-
eters (usually labeled as β and γ, respectively) describe
the amplitude of the total deformations (β), and the de-
formation breaks axial symmetry for γ 6= 0. The variable
β can be viewed as a hyper radius in five-dimensional
space of the quadrupole degrees of freedom, while γ is a
hyper angle in addition to the three Euler angles.

B. Power counting and Hamiltonian at NNLO

In addition to the power counting estimates (10) we
have [28]

ω0 ∼ ω2 ∼ γ̇ ∼ ω ψ̇0 ∼ ψ̇2 ∼ ω1/2

ζ ∼ ξ−1/2 ψ0 ∼ ψ2 ∼ ω−1/2.
(73)

For an understanding of this scaling we recall that the
angles θ, φ and γ are dimensionless, and that a time
derivative on these degrees of freedom must scale as the
excitation energy of the motion they generate. The scal-

ing of ψi, i = 0, 2, is such that ψ̇i
2
∼ ω. The expectation

value ζ is associated with the emergent symmetry break-
ing and must scale as ξ−1/2.
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The Lagrangian of this effective theory is LLO+LNLO+
LNNLO where the leading-order Lagrangian

LLO =
1

2
ψ̇2

0 + ψ̇2
2 + 4γ̇2ψ2

2 −
ω2

0

2
ψ2

0 −
ω2

2

4
ψ2

2 (74)

describes vibrations at the high-energy scale ω, the NLO
correction

LNLO =
C0

2

(
θ̇2 + φ̇2 sin2 θ

)
+ 4ψ2

2 γ̇φ̇ cos θ (75)

couples rotations at the low-energy scale ξ to vibrations
via the γ degree of freedom, and the NNLO correction

LNNLO =
Cβ
2
ψ0

(
θ̇2 + φ̇2 sin2 θ

)
+
Cγ
2
ψ2

(
θ̇2 − φ̇2 sin2 θ

)
cos 2γ

+ Cγψ2θ̇φ̇ sin 2γ sin θ,

(76)

is treated as a perturbation that scales as ξ(ξ/ω)1/2. Ac-
cording to the power counting 73, this implies

Cβ ∼ Cγ ∼ ξ−1/2. (77)

Note that γ is a cyclic variable of the LO and NLO La-
grangians. Thus, at these orders, the projection of the
angular momentum J onto the intrinsic symmetry axis
pγ , is a conserved quantity in addition to the total angu-
lar momentum (70).

A Legendre transformation of the Lagrangian yields
the Hamiltonian HLO +HNLO +HNNLO. Here

HLO =
p2

0

2
+
ω2

0

2
ψ2

0 +
p2

2

4
+

1

4ψ2
2

(pγ
2

)2

+
ω2

2

4
ψ2

2 (78)

is the Hamiltonian of a harmonic oscillator with fre-
quency ω0 coupled to a two-dimensional harmonic os-
cillator with frequency ω2. The quantization is standard

p̂0 = −i∂ψ0
p̂2 = −i∂ψ2

p̂γ = −i∂γ . (79)

We denote the eigenstates of the LO Hamiltonian as
|n0n2K/2〉, with integer n0 and n2 and even K. Here n0,
n2 and K/2 are the number of quanta of the modes ψ0,
ψ2, and γ, respectively. These states can be written as
|n0〉|n2〉|K/2〉, where |n0〉 are the states of the harmonic
oscillator, and 〈ψ2|n2〉 are the radial wave functions of
the two-dimensional harmonic oscillator.

The NLO correction

HNLO =
1

2C0
p2

Ωγ =
1

2C0

(
J2 − p2

γ

)
(80)

is the Hamiltonian of a symmetric top [82]. Here, the
momentum in the tangential plane is

pΩγ = eθpθ + eφpφγ , (81)

with

pφγ ≡
pφ − pγ cos θ

sin θ
. (82)

We also have

J = er × pΩγ + erpγ . (83)

This form of the angular momentum agrees with the in-
tuition. In particular, rotations around the symmetry
axis er yield a contribution to the angular momentum in
the direction of this axis.

The quantization

p̂Ωγ = −ieθ∂θ − ieφ
∂φ − ∂γ cos θ

sin θ

= −er × Ĵ

(84)

is standard. In what follows, we denote the differential
operator corresponding to the momentum operator p̂Ωγ

also as

− i∇Ωγ ≡ pΩγ . (85)

The Hamiltonian eigenvalue problem becomes

ĤNLO|IMK〉 =
1

2C0

[
I(I + 1)−K2

]
|IMK〉. (86)

Here, we continued to denote the eigenvalues of the total
angular momentum by the quantum number I. The wave
functions are linear combinations of Wigner D functions,
consistent with the positive R parity of the system, i.e.

〈Ωγ|IMK〉 = N
[
DI
MK(Ω, γ) + (−1)IDI

M−K(Ω, γ)
]
.

(87)
Here N is a normalization factor. For K = 0, the wave
function cannot take odd I values due to the R parity.
Thus, for even I the wave function takes the form

〈Ωγ|IM0〉 =

√
2I + 1

4π2
DI
M0(Ω, γ) =

(−1)m√
π

YI−M (Ω).

(88)
The Wigner D-functions DI

MK(Ωγ) fulfill the rela-
tions [58]

ĴzD
J
MK(Ωγ) = −MDI

MK(Ωγ)

Ĵz′D
J
MK(Ωγ) = −KDI

MK(Ωγ)

Ĵ2DJ
MK(Ωγ) = I(I + 1)DI

MK(Ωγ).

(89)

The complete Hamiltonian at NLO can be diagonalized
as(

ĤLO + ĤNLO

)
|n0n2IMK〉 =

[
ω0

(
n0 +

1

2

)
(90)

+
ω2

2

(
2n2 +

K

2
+ 1

)
+
I(I + 1)−K2

2C0

]
|n0n2IMK〉.

Thus, at this order, the spectrum consists of rotational
bands with rotational constant 1/(2C0) on top of har-
monic vibrations. The vibrational quanta determine the
band head, and the ground-state band has no vibrational
quanta excited. Because 0 ≤ γ ≤ π, the wave function
in γ must exhibit periodic boundary conditions at the
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domain boundaries. This limits K to even values. His-
torically, the band head with (n0 = 1, n2 = 0,K = 0),
and the band head with (n0 = 0, n2 = 0,K = 2) deter-
mine the “β band” and the “γ band” respectively. In
what follows, we continue to use these labels.

The NNLO correction to the Hamiltonian is

HNNLO = − 1

2C2
0

(
Cβψ0p

2
Ωγ + Cγψ2p

T
ΩγΓ̂pΩγ

)
. (91)

Here,

Γ̂ ≡
[

cos 2γ sin 2γ
sin 2γ − cos 2γ

]
(92)

acts on vectors in the tangent plane. The operator
ĤNNLO is off-diagonal in the eigenstates of the NLO
Hamiltonian. Thus, it is only effective in second-order
perturbation theory, i.e. at order N3LO. At that order,
corrections to the rotational constant (or the effective
moment of inertia) linear in the number of excited quanta
are introduced [29]. These corrections arise due to omit-
ted physics at the breakdown scale Λ ∼ 3 MeV, where
pair-breaking effects need to be taken into account [30].
Thus, deviations from the harmonic behavior of the band
heads is expected to scale as ω/Λ ≈ 1/3 for nuclei in the
rare-earth and actinide regions. In the following Sec-
tion, we will determine the LECs Cβ and Cγ by fit to
inter-band transitions. In the long run, it would be in-
teresting to compute LECs from more microscopic meth-
ods [46, 47].

VI. INTER-BAND TRANSITIONS

In this Section, we couple electromagnetic fields to the
Hamiltonian, and focus on the inter-band transitions.
These transitions are much fainter than the strong intra-
band transitions discussed in the Sect. IV. The transi-
tions from the β band to the ground-state band are not
understood very well (see Ref. [11] for a review), because
the traditional models overpredict them by up to an or-
der of magnitude. Furthermore, these transitions vary
by about two orders of magnitude in well-deformed and
transitional nuclei [12]. Below we will see that the tran-
sitions pose no challenge to the effective theory. For the
LO description of these transitions, we only need to gauge
the NNLO Hamiltonian.

A. Transition operators

The NNLO Hamiltonian of the previous section can be
coupled to an electromagnetic field employing the gaug-
ing

p̂Ωγ → p̂Ωγ − qAΩ = −i∇Ωγ − qAΩ . (93)

This is equivalent to

J→ J− qer ×AΩ , (94)

and in full analogy to Eq. (37).
Thus, the angles θ, φ, and γ are gauged. Assuming

that the vibrational degrees of freedom ψ0 and ψ2 also
carry a charge, we could also couple these to the radial
component A · er to obtain a rotationally invariant and
gauge-invariant Hamiltonian. As discussed below, the
corresponding terms do not yield independent contribu-
tions for the intra-band transitions considered in this pa-
per, and they are therefore neglected.

The gauging of the NNLO contribution (91) to the
Hamiltonian

Ĥ
(A)
NNLO =

iq

2C0

Cβ
C0

ψ0 (A · ∇Ωγ +∇Ωγ ·A)

+
iq

2C0

Cγ
C0

ψ2

(
AT Γ̂∇Ωγ +∇TΩγΓ̂A

)
(95)

induces LO inter-band transitions. As the inter-band
transitions originate from a small correction to the
Hamiltonian, they are expected to be an order of mag-
nitude weaker (in the power counting) than the intra-
band transitions. Gauging of the fields ψ0 and ψ2 would
add terms q0Arp̂0 and q2Arp̂2 to the Hamiltonian. Here
Ar = A ·er. These operators do not yield transition ma-
trix elements that differ from those of the operators in
the Hamiltonian (95). They are therefor neglected.

Following Eq. (55) we compute the transition strength
as

B(Eλ, i→ f) =
1

2li + 1
|〈f ||M (Eλ)||i〉|2 . (96)

where M̂ (Eλ) ≡ Ĥ(A(λ))/(wA), w ≡ [If (If +1)−Ii(Ii+
1) +K2

i ]/2C0, and k is the energy (or momentum) of the
photon involved in the transition.

The LO inter-band B(E2) values for transitions from
the β band to the ground band are

B(E2, iβ → fg) =
C2
β

2C2
0ω0

q2

60

(
C
If0
Ii020

)2

, (97)

while LO B(E2) values for transitions from the γ band
to the ground band are

B(E2, iγ → fg) =
3C2

γ

2C2
0ω2

q2

60

(
C
If0
Ii22−2

)2

. (98)

We can generalize the definition of the quadrupole
transition moments to

Q2
if =

B(E2, i→ f)(
C
IfKf
IiKi2Kf−Ki

)2 , (99)

then

Q2
iβfg

=
C2
β

2C2
0ω0

Q2 , Q2
iγfg =

3C2
γ

2C2
0ω2

Q2, (100)

where Q ≡
√
q2/60. We note that the strengths of tran-

sitions from the β band are similar to those of the γ band
for similarly sized LECs Cβ and Cγ .
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We note that – within the effective theory – the intra-
band transitions depend on the LECs Cβ and Cγ . We re-
call that these LECs enter at the Hamiltonian at NNLO
as off-diagonal corrections to the Hamiltonian, which pre-
vents us from adjusting them to spectra at this order. As
more terms enter the Hamiltonian at N3LO, it seems at-
tractive to determine Cβ and Cγ instead by inter-band
transitions. In what follows, we adjust these coefficients
to the description of one inter-band transition from the
respective band to the ground band. Other inter-band
transitions then are predictions.

In the traditional collective models, no new parameters
enter the computation of the inter-band transitions. As a
result, these faint transitions are overpredicted substan-
tially. For example, the inter-band B(E2) values accord-
ing to the adiabatic Bohr model are (See, e.g., Ref. [7])

B(E2, iβ → fg) =
ξ

2ω0

(
Zeβ0

A

)2 (
C
lf0
li020

)2

B(E2, iγ → fg) =
2ξ

ω2

(
Zeβ0

A

)2 (
C
lf0
li22−2

)2

, (101)

implying inter-band transitions from the β are only a
factor two weaker than those from the γ bands. Here,
β0 is a deformation parameter. Thus, the effective the-
ory is richer in structure (through two additional param-
eters). This more complex structure is a consequence
of a theory that is based on symmetry principles alone.
It will allow us to describe inter-band transitions much
more accurately. Regarding ratios of inter-band transi-
tion strengths, the effective theory at leading order repro-
duces the traditional collective models as expected from
the Alaga rules.

B. Comparison with experimental data

We test the expressions (97) and (98) by confronting
them to data for inter-band transitions in 166,168Er and
154Sm. These isotopes of erbium are considered good
rotors, while the samarium isotope is between rotors and
transitional nuclei.

For 168Er, the relevant energies are ξ ≈ 79.8 keV,
ω0 ≈ 1217.2 keV, and ω2/2 ≈ 821.2 keV. In the spirit of
the theory, all constants were fitted to low-energy data.
Thus, the effective quadrupole moment was fitted via the
2+
g → 0+

g transition, while the values Cβ ≈ 0.077 keV−1/2

and Cγ ≈ 0.203 keV−1/2 are determined from the 2+
β →

0+
g and 2+

γ → 2+
g transitions, respectively. We employed

data from Ref. [79] and Ref. [78] for completion. The val-
ues of these LECs are natural in size when compared to
the scale ξ−1/2 ≈ 0.112 keV−1/2. Clearly, more precise
data for transitions between the β and ground bands is
required to determine the size of Cβ . All other transitions
are predictions. Table III shows experimental and the-
oretical B(E2) values for transitions within the ground-
state band and inter-band transitions in 168Er. Overall,

the effective theory describes the data well. The theoret-
ical uncertainties presented in Table III for transitions
in the ground-state band are based on the discussion in
Subsection IV B. However, for the uncertainties of transi-
tions from the β band or the γ band, we employed more
conservative uncertainty estimates based on the larger
ratio (ω/Λ)2 ≈ 0.25 that is due to the proximity of the
breakdown scale Λ.

TABLE III. Transition strength for 168Er in units of e2b2.
Experimental transitions strengths B(E2)exp are compared
to theoretical results B(E2)ET from the effective theory and
B(E2)BH from the adiabatic Bohr Hamiltonian. Experimen-
tal values are taken from [79] unless otherwise specified. Val-
ues for the adiabatic Bohr Hamiltonian are taken from Rowe
and Wood [7]. Parenthesis denote experimental errors and
theoretical uncertainty estimates.

i→ f B(E2)exp B(E2)ET B(E2)BH

2+
g → 0+

g 1.173(22) 1.173b 1.173
4+
g → 2+

g 1.756(50) 1.676(36) 1.677
6+
g → 4+

g 2.335(99) 1.846(91) 1.842
8+
g → 6+

g 1.949(72) 1.932(169) 1.935
2+
γ → 0+

g 0.0258(9) 0.0309(77) 0.1126
2+
γ → 2+

g 0.0442(38)a 0.0442b 0.1610
2+
γ → 4+

g 0.0034(2) 0.0022(5) 0.0080

2+
β → 0+

g 0.0020(+8
−20) 0.0020b 0.0387

2+
β → 2+

g 0.0029(7) 0.0553

2+
β → 4+

g 0.0121(+44
−121) 0.0051(13) 0.0995

a From Kotliński et al. [78].
b Values employed to adjust LECs of the effective theory.

For 166Er, the energy scales are ξ ≈ 80.6 keV,
ω0 ≈ 1460 keV and ω2/2 ≈ 785.9 keV. This yields
Cβ ≈ 0.111 keV−1/2 and Cγ ≈ 0.213 keV−1/2, and both

values are natural in size when compared to ξ−1/2 ≈
0.111 keV−1/2. Once again, more precise experimental
B(E2) values for transitions between the β and ground
bands would be valuable. Table IV shows experimental
and theoretical B(E2) values for intra-band and inter-
band transitions in this nucleus. Theoretical uncertain-
ties are given as discussed for 168Er. The experimental
B(E2) value for the 2+

β → 4+
g transition is too large (one

order of magnitude larger than decays from the γ band to
the ground band) to be understood within the effective
theory.

Let us also attempt to describe a non-rigid rotor. The
region around 152Sm has been well studied [14, 15, 83],
and absolute B(E2) values for some inter-band transi-
tions in 154Sm were measured recently [84]. For 154Sm,
the LECs related to inter-band transitions are Cβ ≈
0.092 keV−1/2 (determined from the 2+

β → 2+
g transi-

tion) and Cγ ≈ 0.181 keV−1/2. Both values are natural

in size when compared to ξ−1/2 ≈ 0.110 keV−1/2. Ta-
ble V shows our LO results for this nucleus. The theo-
retical uncertainties are computed as discussed for 168Er.
We also show theoretical results of the confined β soft
(CBS) model [85], as an example that a particular model
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TABLE IV. Same as Table III but for 166Er. Experimental
values are taken from [73].

i→ f B(E2)exp B(E2)ET B(E2)BH

2+
g → 0+

g 1.175(27) 1.175a 1.175
4+
g → 2+

g 1.718(61) 1.679(24) 1.680
6+
g → 4+

g 2.037(110) 1.849(60) 1.845
8+
g → 6+

g 2.054(77) 1.935(112) 1.939
2+
γ → 0+

g 0.0285(12) 0.0370(93) 0.1205
2+
γ → 2+

g 0.0529(33) 0.0529a 0.1721
2+
γ → 4+

g 0.0043(2) 0.0026(7) 0.0086

2+
β → 0+

g 0.0036(4) 0.0036a 0.0324

2+
β → 2+

g 0.0051(13) 0.0463

2+
β → 4+

g 0.2113(325) 0.0093(23) 0.0834

a Values employed to adjust the LECs of the effective theory.

can approximately account for the magnitude of some of
the transitions between the β band and the ground-state
band.

TABLE V. Same as Table III but for 154Sm. Theoretical
results from the confined β soft (CBS) model [85], taken from
Ref. [84], are also included. Experimental values are taken
from [80] and [84] for intra-band and inter-band transitions,
respectively.

i→ f B(E2)exp B(E2)ET B(E2)CBS B(E2)BH

2+
g → 0+

g 0.863(5) 0.863a 0.853 0.863
4+
g → 2+

g 1.201(29) 1.233(9) 1.231 1.234
6+
g → 4+

g 1.417(39) 1.358(23) 1.378 1.355
8+
g → 6+

g 1.564(83) 1.421(43) 1.471 1.424
2+
γ → 0+

g 0.0093(10) 0.0110(28) 0.0492
2+
γ → 2+

g 0.0157(15) 0.0157a 0.0703
2+
γ → 4+

g 0.0018(2) 0.0008(2) 0.0050

2+
β → 0+

g 0.0016(2) 0.0025(6) 0.0024 0.0319

2+
β → 2+

g 0.0035(4) 0.0035a 0.0069 0.0456

2+
β → 4+

g 0.0065(7) 0.0063(16) 0.0348 0.0821

a Values employed to adjust the LECs of the effective theory.

We note that the ratio Cγ/Cβ , while usually natural in
size, fulfills Cγ/Cβ > 1 for the nuclei we just considered.
As the LECs Cβ and Cγ enter quadratically into B(E2)
transition strengths, the transitions from the β band to
the ground-state band are considerably weaker than the
transitions from the γ band to the ground-state band.

The most important result of this paper is that the
effective theory, with its model-independent approach to
the collective Hamiltonian and its corresponding tran-
sition operators, suggests a step toward the solution of
the long-standing problem posed by the faint inter-band
transitions. The consistent description of Hamiltonian
and currents shows that the observed strengths of inter-
band transitions can be described within the effective
theory using LECs of natural size. As a consequence,
the strengths of the interband E2 transitions are also
natural in size. From this perspective it seems adequate

to keep referring to the 0+
2 rotational band as the β band.

The effective theory predicts the strength of inter-band
transitions once a single transition determines a LEC of
the Hamiltonian.

Let us finally also comment on NLO corrections to
inter-band transitions. These corrections are beyond the
scope of the present paper. Recently, Kulp et al. [86]
precisely measured ratios of transitions intensities be-
tween the γ band and the ground-state band in 166Er.
They confirmed the beyond-leading-order predictions by
Mikhailov [63] to a high level of accuracy.

VII. DISCUSSION

The geometric collective models approach low-lying ex-
citations in deformed nuclei as quantized surface oscilla-
tions of a liquid drop. In contrast, the effective theory
for deformed nuclei assumes symmetry properties (such
as rotational invariance), the emergent breaking of rota-
tional symmetry (and the ensuing separation of scales),
and the existence of a breakdown scale. It then builds
the most general Hamiltonian (and currents) consistent
with these assumptions and orders them in magnitude
based on the power counting. Not surprisingly, the ef-
fective theory – particularly beyond leading order – has
more parameters than the traditional models. The ge-
ometrical models quantitatively predict several aspects
of deformed nuclei, e.g. rotational bands with similar-
sized rotational constants on top of intrinsic vibrations
together with strong in-band transitions. The effective
theory obtains these results in leading and subleading
order.

Other aspects, such as the small variation of rotational
constants with the quantum numbers of the band heads,
or the magnitude of inter-band transitions are not de-
scribed quantitatively correct by the tradtional models.
In contrast, the effective theory also captures these finer
details, as shown for the rotational constants in Ref. [29]
and for the inter-band transitions in this work. This sug-
gests that the assumptions made by the models are cor-
rect only to a certain order. The effective theory’s ca-
pability in accounting also for the finer details suggest
that its underlying assumptions are sound. The effec-
tive theory delivers increased precision (with consistent
uncertainty estimates) at the expense of additional pa-
rameters. This can be useful if correspondingly precise
data is available, which is the case for in-band transitions
in transitional nuclei and for inter-band transitions con-
sidered in this work. This aspect is also of interest with
view on the advent of powerful γ-ray detectors [87].

The capability to estimate theoretical uncertainties is
essential when confronting theory and experiment. It is
natural to effective theories because of their power count-
ing. In addition, the identification of a breakdown scale
makes clear up to which energies the theory can be ap-
plied. We believe Figs. 4 and 5 would carry little in-
formation without the theoretical uncertainty estimates.
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These estimates motivate us to propose re-measurements
or re-evaluations of certain data.

VIII. SUMMARY

We studied E2 transitions in deformed nuclei within a
model-independent approach based on an effective the-
ory. The effective theory is based on the emergent sym-
metry breaking of rotational symmetry to axial sym-
metry. Electromagnetic transitions result from gauging
of the Hamiltonian, and from higher-order non-minimal
couplings that are consistent with gauge invariance and
the symmetry of the system under consideration. The es-
timate of theoretical uncertainties is one of the highlights
of the effective theory approach.

Homonuclear molecules provide us with an ideal test
case because they possess a very large separation of scale
and therefore exhibit only small corrections to the rigid-
rotor limit. The effective theory describes E2 transitions
in the diatomic molecules N2 and H2 very well, and de-
viations are within the theoretical uncertainties.

The effective theory describes B(E2) transitions in the
ground-state bands of well-deformed nuclei at leading or-
der, and more precise experimental data are necessary to
probe subleading effects. Our model-independent results
also suggest that some low-lying transitions in these nu-
clei would probably merit a more precise re-measurement
or re-evaluation of data, because they can not be easily
understood within the effective theory. For transitional
nuclei, the existing data are sufficiently precise to probe
the effective theory at subleading oder. Here, data and
theoretical results are consistent within theoretical un-
certainties.

For E2 transitions within ground-state bands, the ef-
fective theory reproduces known results of the Bohr
Hamiltonian. The employment of the beakdown scale
and the power counting allows us to estimate theoreti-
cal uncertainties and to meaningfully confront data. A
somewhat surprising result is that well-deformed nuclei

do not challenge theory because of insufficient precision
of the available data.

The effective theory also suggests that the electromag-
netic structure of deformed nuclei is more complex than
the collective models assume, regarding both the Hamil-
tonian and the transition operator. The magnitude of the
faint inter-band transitions is captured correctly within
the effective theory, thus addressing to a long-standing
problem. In the effective theory, this comes at the ex-
pense of new parameters, and one needs to know a single
inter-band transition strength to make leading-order pre-
dictions for other transitions between the bands in ques-
tion. These results also cast some doubt on the tradi-
tional usage of the quadrupole operator to describe faint
electromagnetic transitions, as this approach seems to be
limited to the strong (leading order) transitions between
states within a band.

This work shows that the effective theory for deformed
nuclei reproduces the traditional collective models re-
garding leading-order aspects (spectra and transitions)
of deformed nuclei. In contrast to the models, however,
the effective theory also accounts for finer details, and it
provides us with theoretical error estimates. We would
hope that the results presented in this work might stimu-
late more precise measurements of electromagnetic tran-
sitions in deformed nuclei.
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