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Abstract

An R-matrix model for three-body final states is presented and applied to a recent measurement

of the neutron energy spectrum from the T + T → 2n + α reaction. The calculation includes the

nα and nn interactions in the final state, angular momentum conservation, antisymmetrization,

and the interference between different channels. A good fit to the measured spectrum is obtained,

where clear evidence for the 5He ground state is observed. The model is also used to predict the

α-particle spectrum from T+T as well as particle spectra from 3He+3He. The R-matrix approach

presented here is very general, and can be adapted to a wide variety of problems with three-body

final states.

PACS numbers: 24.10.-i, 24.30.-v, 27.20.+n, 52.57.-z
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I. INTRODUCTION

Due to the presence of three particles in the final state, the T + T → 2n + α reaction

produces distributions of neutron and α-particle energies. The neutron energy spectrum

at an effective Ec.m. of 16 keV has recently been measured in an inertial confinement fu-

sion experiment at the National Ignition Facility (NIF) [1]. This paper also presented a

sequential-decay R-matrix model for the three-body state. The primary purpose of the

present paper is to fully describe this model and to explore a broader range of assumptions

for the fitting of the neutron spectrum. We also present a prediction for the α-particle

spectrum, for which limited data exists. Finally, we calculate the final-state energy spectra

of the mirror reaction 3He + 3He and discuss some features of our approach when one of the

nuclei in the final state is much heavier than the others.

Our model includes interactions between all pairs of nuclei in the final state. For the

T + T case, this implies the nα interaction, including the unbound 3/2− ground and 1/2−

first excited state of 5He, and the nn interaction. The calculation also incorporates angular

momentum conservation and fermion symmetry. The latter is a particular example of an

order-of-emission effect, which give rise to various interference phenomena. In addition,

kinematic effects present in the three-body final state are tightly integrated into the model.

These details of the model, predictions for particle spectra, and comparisons to available

experimental data are discussed below.

The reactions 3He + 3He → 2p + α and T + 3He → n + p + α, which are related by

mirror or isospin symmetry to T + T → 2n + α, are also presently under study at inertial

confinement fusion facilities. The model presented here can be adapted to these reactions,

and a prediction for the 3He + 3He → 2p + α case is given in this paper. This R-matrix

approach is very general, and additional areas where it could be applied are discussed in the

conclusion.

II. THREE-BODY KINEMATICS

The three-body final state from the T + T → 2n + α reaction will be described using

non-relativistic kinematics [2]. With the center of mass assumed to be at rest, the kinetic
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energy available in the final state is given by

Etot = Q+ Ec.m., (1)

where Q = 11.332 MeV and Ec.m. is the center-of-mass (c.m.) kinetic energy of the initial

state. Here, we will assume Ec.m. = 16 keV, unless otherwise indicated. The masses of the

final-state particles are mi, where i = 1, 2, or 3, and M = m1 + m2 + m3. Indices 1 and 2

are used for the neutrons, with index 3 used for the α particle. The momentum and kinetic

energies of the final-state particles are given in the three-body c.m. system by pi and Ei.

The relative momentum and kinetic energy of particles i and j are

pij =
µij
mi

pi −
µij
mj

pj and (2)

Eij =
p2
ij

2µij
, where (3)

µij =
mimj

mi +mj

. (4)

Assuming the indices i, j, and k are all distinct, the relative kinetic energy between particle i

and the j − k system is given by Ẽi and we also have

0 = p1 + p2 + p3, (5)

Ẽi =
M

mj +mk

Ei, and (6)

Etot = E1 + E2 + E3 = Ẽi + Ejk. (7)

III. R-MATRIX MODEL

The energy distribution of particles emitted by reactions proceeding to unbound states

can be described using R-matrix methods, as presented by Barker [3]. This approach in

essence describes the particle emissions as sequential two-body decays. Due to the low

energy in the initial T + T state, we assume it has orbital angular momentum of zero and

thus a total spin and parity of 0+. We consider here two types of sequential decays: neutron

emission to unbound 5He intermediate states and α-particle emission to unbound neutron–

neutron states. This latter type decay may also be referred to as di-neutron emission [4].

For both of these decay types, a further complication is presented by the fact that the

amplitudes must be constructed to be antisymmetric under the exchange of neutrons, which
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give rise to direct and exchange terms [see Eq. (22) and Eq. (23), respectively]. The R-matrix

formalism has been applied to other cases of three-body final states with identical particles

in Refs. [5–8].

We emphasize that this approach treats the intermediate state rather carefully. The

phase shifts between the particles that make up this state are rather well known for the cases

considered here – either experimentally (nα scattering) or theoretically (nn scattering). The

R-matrix model described below accurately incorporates these phase shifts. The interaction

between the first particle emitted and the intermediate state is, however, not well known,

as it generally cannot be studied independently in the laboratory. This part of the matrix

element is treated in a minimalist R-matrix approach, with just a hard-sphere interaction,

which characterizes a non-resonant phase shift.

A. Neutron emission through 5He intermediate states

For our assumption of a 0+ initial state, both neutrons must have the identical orbital

angular momentum l. We assume the amplitude for the process is given by

Mν1ν2 =
∑
c

uc(Ẽ1)f lJν1ν2(Ω1,Ω23), (8)

where νi are the spin projections of the neutrons and the energy dependence is described by

the R-matrix expression

uc(Ẽ1) =

[
P1P23

p1p23

]1/2

ei(ω1−Φ1)ei(ω23−Φ23)

∑
λ

Acλγcλ
Ecλ−E23

1− [S23 −Bc + iP23]Rc

(9)

and the spin and angle dependence is given described by f lJν1ν2(Ω1,Ω23). The subscripts 1,

2, and 3 refer to the first neutron emitted, second neutron emitted, and the α particle,

respectively. The channel is labeled by c ≡ (l, J, β), where J is the angular momentum of

the intermediate state and β indicates the decay type which is via 5He intermediate states

in this case (β = nα). The quantity Rc is the n+ α elastic-scattering R matrix

Rc =
∑
λ

γ2
cλ

Ecλ − E23

(10)

and Ecλ, γcλ, Acλ, and Bc are the R-matrix parameters: the level energies, reduced width

amplitudes, feeding factors, and boundary-condition constants, respectively. The R-matrix

surface functions depend upon the channel radii, l, and energy and include the penetration
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factors P1 and P23, the shift function S23, and the hard-sphere phase shifts −Φ1 and −Φ23.

The quantities ω1 and ω23 are the Coulomb phase shifts which are zero in this case. Note

that the penetration factors have been divided by the corresponding momentum. This

convention is also used in Refs. [5, 6] and removes two-body phase space factors present in

the penetration factors from the three-body matrix element [7]. It should be noted that

Eq. (9) is also given in Refs. [5–8], and it is not derived here. As we will show below, this

formalism also gives energy distribution formulas consistent with Ref. [3].

The spin and angle dependences are calculated by first coupling a neutron with spin

projection ν2 to an α particle to form a 5He state with angular momentum quantum numbers

(J,mJ)

glJν2,mJ (Ω23) =
∑
m,ml

〈lml
1

2
ν2|JmJ −m〉Ylml(p̂23) (11)

and then coupling to another neutron with spin projection ν1 to form the 0+ T + T state

f lJν1,ν2(Ω1,Ω23) =
∑

mJ ,m,ml

glJν2,mJ (Ω23)〈JmJJm|00〉〈lml
1

2
ν1|Jm〉Ylml(p̂1), (12)

which can be written

f lJν1ν2(Ω1,Ω23) =
∑

m,ml,m
′
l

(−1)J+m

√
2J + 1

〈lml
1

2
ν1|Jm〉〈lm′l

1

2
ν2|J −m〉Ylml(p̂1)Ylm′

l
(p̂23). (13)

The quantities in angled brackets are the Clebsch-Gordan coefficients and Ylm are the spheri-

cal harmonics with Ω1 representing the angles (θ1, φ1) that describe the emission of neutron 1

with momentum p1 = p1p̂1 in the three-body c.m. system and Ω23 representing (θ23, φ23)

that describe the the emission of the of neutron 2 in with momentum p23 = p23p̂23 the rest

frame of the 2 − 3 system. Finally, our amplitude can be made antisymmetric under the

exchange of neutrons by adopting

Mν1ν2 =
∑
c

[
uc(Ẽ1)f cν1ν2(Ω1,Ω23)− uc(Ẽ2)f cν2ν1(Ω2,Ω13)

]
, (14)

with Ω2, Ω13, and related quantities defined analogously to the above.

Our approach only considers n + α configurations for the description of 5He states; this

approximation is well justified in this case because the thresholds for other configurations,

such as d + T, are located much higher in excitation energy. Below neutron energies of

20 MeV, it is found that considering l ≤ 3 is sufficient and that one level plus a constant
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R∞ for each channel allows for a good fit to be obtained. We consider here l = 0 and 1

transitions involving the 1/2+, 1/2−, and 3/2− n+ α partial waves.

The scattering of neutrons by α particles is very well studied and R-matrix parameters

are available [9]. The quality of fit to n+α scattering observables is comparable to modern

analyses (e.g., Ref. [10]) that take into account more multichannel data. We utilize the

R-matrix parameters given in Table 2 of Ref. [9], with R∞ replaced by a background level

at very high (1000 MeV) excitation energy, which we refer to hereafter to as the R∞ state.

Both l = 1 partial waves (1/2− and 3/2−) have a resonant states at low excitation energy, in

the range which can be populated by low-energy T+T reactions. Consequently, these partial

waves are expected to contribute significantly. Feedings of both the important resonance

state and the R∞ state are considered. We choose the boundary condition constant for

these parameters so that the level shift vanishes for the lowest-energy state in each partial

wave. The l = 0 1/2+ partial wave is non-resonant, but is included due to its low angular

momentum. We consider feeding of the 1/2+ 50-MeV level (which is in fact a background

state), but not the R∞ state. It should be pointed out that the R∞ state for this partial

wave is unphysical, as it has γ2
cλ < 0. Since this state contributes little to the phase shift in

the region of interest, this issue is not a concern for the present work. The channel radius

for the n+ α parameters is 3.0 fm; for n+ 5He we have used 4.0 fm.

B. Di-neutron emission

We consider here the emission of neutrons in a l = 0 spin singlet state, with the orbital

angular momentum of the neutron pair with respect to the α-particle core also taken to be

zero. In this case we assume the amplitude for the process is given by

Mν1ν2 = uc(Ẽ3)(f 0,1/2
ν1ν2
− f 0,1/2

ν2ν1
), (15)

with c = (0, 1/2, nn) for di-neutron emission. The energy dependence is described by the

R-matrix expression

uc(E3) =

[
P3P12

p3 p12

]1/2

ei(ω3−Φ3)ei(ω12−Φ12)

Acγc
Ec−E12

1− (S12 −Bc + iP12)Rc

, (16)

where the notation is analogous to that given in the previous section and we also have

assumed only a single level such that Rc = γ2
c/(Ec −E12). Note also that the shift function
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vanishes for l = 0 neutrons and we take Bc = 0 here. Adopting Ec = 3.119 MeV and

γ2
c = 31.95 MeV, for a channel radius of 2.0 fm, reproduces the scattering length and effective

range of the Argonne V18 potential [11] which are −18.487 fm and 2.840 fm, respectively.

In addition, the phase shifts below a neutron energy of 10 MeV are reproduced to within

2.5 degrees with this choice. The (nn) +α channel radius has been taken to be 3.5 fm. The

antisymmetric spin singlet state has been generated with the aid of Eq. (13), with l = 0 and

J = 1/2. Note that the there is no angular dependence in this case.

C. Definition of particle energy spectra

Considering both di-neutron emission and the sequential emission of neutrons through

5He states, we arrive at the final form for our matrix element:

Mν1ν2 =
∑
c

[
uc(12)f lJν1ν2(Ω1,Ω23)− uc(21)f lJν2ν1(Ω2,Ω13)

]
, (17)

where the sum is over three nα channels and one nn channel. The nature of the energy

dependence of uc varies with the channel type (nα versus nn); the 12 and 21 notation is

used to indicate direct (12) and exchange (21) terms. In principle, all observables can now

be calculated. Our primary interest, however, is in calculating the particle energy spectra.

The particle distribution in the three-body c.m. system is given by

d3N

dEi dΩi dΩj

=
∑
ν1, ν2

|Mν1ν2 |2 pipjkJijk, (18)

where the product of factors pipjkJijk is the three-body phase space [2, 12], and Jijk is the

Jacobian for the transformation from the (Ẽi,Ωi,Ωjk) system to the (Ei,Ωi,Ωj) system.

In order to extract the particle energy distributions, it is necessary to integrate out

the angular variables. This task can be accomplished most easily by transforming to the

(Ẽi,Ωi,Ωjk) system:

dN

dEi
=

M

mj +mk

dN

dẼi
=

M

mj +mk

∫
dΩi dΩjk

d3N

dẼi dΩi dΩjk

(19)

=
M

mj +mk

∫
dΩi dΩjk

Jijk
d3N

dEi dΩi dΩj

(20)

=
M

mj +mk

∫
dΩi dΩjk pipjk

∑
ν1, ν2

|Mν1ν2|
2 . (21)
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D. Evaluation of spin and angle-dependent functions

In order to proceed further, it is necessary to evaluate the square of the matrix element,

summed over spin projections. In doing so, two types of sums arise:

W
(i)
lJl′J ′ = (4π)2

∑
ν1, ν2

f lJν1ν2(Ωi,Ωjk)f
l′J ′∗
ν1ν2

(Ωi,Ωjk) and (22)

W
(12)
lJl′J ′ = (4π)2

∑
ν1, ν2

f lJν1ν2(Ω1,Ω23)f l
′J ′∗
ν2ν1

(Ω2,Ω13), (23)

where the factors of (4π)2 have been inserted for later convenience. The first type of term

can be evaluated using standard techniques (see e.g. Ref. [13]):

W
(i)
lJl′J ′ = [(2J + 1)(2J ′ + 1)]1/2(2l + 1)(2l′ + 1)×∑

k

〈l0l′0|k0〉2W 2(klJ ′
1

2
; l′J)(−1)kPk(cos γjk), (24)

where the W without subscripts is the Racah coefficient, Pk is the Legendre polynomial of

order k, and

cos γjk = p̂i · p̂jk. (25)

The second type of term arises from antisymmetrization and is more complicated to

evaluate, due to the fact that, as written, it depends on two sets of angular variables that

are not independent. The angular variables are represented by the unit vectors of the

momenta. By using Eqs. (2) and (5), p̂23 and p̂13 can be eliminated using

p̂23 =
p2

p23

p̂2 +
p1

p23

m2

m2 +m3

p̂1 (26)

p̂13 =
p1

p13

p̂1 +
p2

p13

m1

m1 +m3

p̂2 (27)

so that the expression only depends on the angular variables p̂1 and p̂2. The spherical har-

monics harmonics can then be evaluated for these substitutions using the following addition

theorem [14]

cl Ylm(ĉ) =
∑

λ1+λ2=l
ν1+ν2=m

aλ1bλ2〈λ1ν1λ2ν2|lm〉

√
4π(2l + 1)!

(2λ1 + 1)!(2λ2 + 1)!
Yλ1ν1(â)Yλ2ν2(b̂), (28)

where c = a + b with a = aâ, b = bb̂, and c = cĉ. The second type of term is then found
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TABLE I. The angular functions W
(i)
lJl′J ′ given by Eq. (24) and W

(12)
lJl′J ′ given by Eq. (29), for the

partial wave combinations considered here.

l J l′ J ′ W
(i)
lJl′J′ W

(12)
lJl′J′

0 1
2

0 1
2

1 −1

0 1
2

1 1
2

− cos γjk
m1

m1+m3

p2
p13

+ p1
p13

cos δ12

0 1
2

1 3
2

−
√

2 cos γjk
√

2
(

m1
m1+m3

p2
p13

+ p1
p13

cos δ12
)

1 1
2

1 1
2

1 − p1p2
p13p23

[(
p2
p1

m1
m1+m3

+ p1
p2

m2
m2+m3

)
cos δ12 + 1 + m1m2

(m1+m3)(m2+m3)

]
1 1

2
1 3

2

√
2P2(cos γjk) −

√
2 p1p2
p13p23

[(
p2
p1

m1
m1+m3

+ p1
p2

m2
m2+m3

)
cos δ12 + P2(cos δ12) + m1m2

(m1+m3)(m2+m3)

]
1 3

2
1 3

2
1 + P2(cos γjk) − p1p2

p13p23

[
2
(
p2
p1

m1
m1+m3

+ p1
p2

m2
m2+m3

)
cos δ12 + 1 + P2(cos δ12) + 2m1m2

(m1+m3)(m2+m3)

]

to be:

W
(12)
lJl′J ′ = (−1)J+J ′

[(2J + 1)(2J ′ + 1)(2l + 1)!(2l′ + 1)!]1/2(2l + 1)(2l′ + 1)×∑
λ1+λ′1=l
λ2+λ′2=l′

λ3,λ′3,λ
′′
3 ,k

(
p2

p23

)λ1 ( m2

m2 +m3

p1

p23

)λ′1 ( p1

p13

)λ2 ( m1

m1 +m3

p2

p13

)λ′2
×

[
(2λ3 + 1)(2λ′3 + 1)

(2λ1)!(2λ′1)!(2λ2)!(2λ′2)!

]1/2

(2λ′′3 + 1)×

〈λ10λ′20|λ30〉〈λ′10λ20|λ′30〉〈l0λ′30|k0〉〈l′0λ30|k0〉 ×
λ1 λ′2 λ3

λ′1 λ2 λ′3

l l′ λ′′3




1
2
J l

J ′ 1
2
l′

l′ l λ′′3

W (l′lλ3λ
′
3;λ′′3k)(−1)λ

′
3+λ′′3−lPk(cos δ12), (29)

where {} indicates the Wigner 9-J symbol and

cos δ12 = p̂1 · p̂2. (30)

The functions W
(i)
lJl′J ′ are real and are invariant under the interchange of (l, J) and (l′, J ′),

while W
(12)
lJl′J ′ are also real and are invariant under the interchange of (l, J) and (l′, J ′) and

particle labels 1 and 2. These functions are tabulated in Table I for the partial wave

combinations considered here.

Due to our assumption of a J = 0 initial state, the particles are emitted isotropically;

these functions thus describe the angular correlations between the particles. Note that the

particle distribution is a function of two variables, which can be taken to be Ei and cos γjk.

From these two quantities, all other needed energies, momentum magnitudes, and angles

can be calculated from the kinematics relationships.
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E. Calculation of particle energy spectra

We can now write

(4π)2
∑
ν1, ν2

|Mν1ν2|2 =
∑
c,c′

g
(1)
cc′ + g

(2)
cc′ + g

(12)
cc′ , (31)

where

g
(1)
cc′ = uc(12)u∗c′(12)W

(1)
lJl′J ′(cos γ23) (32)

g
(2)
cc′ = uc(21)u∗c′(21)W

(2)
lJl′J ′(cos γ13) (33)

g
(12)
cc′ = −2 Re[uc(12)u∗c′(21) ]W

(12)
lJl′J ′ . (34)

If the neutrons were distinguishable, the g(1) contribution would be the neutron 1 distribution

and g(2) would be the neutron 2 distribution. The g(12) term arises from treating the neutron

as indistinguishable fermions. In the case of neutron emission via intermediate 5He states,

we take neutron 1 to the first neutron emitted and neutron 2 to be the second. The neutron

energy distribution can be calculated:

dN

dEi
=

M

mj +mk

1

2

∫ 1

−1

d(cos γjk) pipjk

[∑
c,c′

g
(1)
cc′ + g

(2)
cc′ + g

(12)
cc′

]
(35)

=
dN (1)

dEi
+
dN (2)

dEi
+
dN (12)

dEi
. (36)

The first term will be called the primary distribution, the second the secondary distribution,

and the third the exchange distribution.

If only nα channels are present, the calculation of the primary contribution can be sim-

plified, because uc then only depends on Ẽ1, and Ẽ1, p1, and p23 are independent of cos γ23.

The result is:
dN (1)

dE1

=
M

m2 +m3

p1p23

∑
c

∣∣∣uc(Ẽ1)
∣∣∣2 , (37)

which is free from any angular correlation or interference effects. Note also that it is in this

situation that the R-matrix energy distribution formula given in Ref. [3] is recovered. For

the α-particle energy distribution, all of the contributions must be calculated by numerical

integration, but this task is simplified by noting that

dN (1)

dE3

=
dN (2)

dE3

. (38)
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If only the nn (di-neutron) channel is present, the calculation also simplifies. In this case

we have
dN (1)

dEi
=
dN (2)

dEi
=

1

2

dN (12)

dEi
. (39)

For the neutron energy distribution, these must be evaluated by numerical integration, but

for the α-particle energy distribution we have

dN

dE3

=
4M

m1 +m2

p3p12

∣∣∣uc(Ẽ3)
∣∣∣2 , (40)

which is also in the form given by Ref. [3].

In the general case, all three contributions to the distribution must be calculated us-

ing numerical integration. We do note that the overall contributions of the primary and

secondary distributions are equal, i.e., that∫ mj+mk
M

Etot

0

dN (1)

dEi
dEi =

∫ mj+mk
M

Etot

0

dN (2)

dEi
dEi. (41)

1. Spectra for channels in isolation

We will next investigate the nature of the particle energy distributions resulting for each

channel in isolation. Note that we make no effort in this section to adjust the feeding factor

parameters of the model to fit experimental data; this is done below in Sec. IV. For the

l = 1 nα channels, we have taken the background feeding to be zero. Each channel thus

has only a single feeding factor, which has been adjusted so that
∫

dN
dEi

dEi = 10. The results

are shown in Fig. 1 for the neutron energy distributions and in Fig. 2 for the α-particle

energy distributions. For the nα channels, the primary, secondary, exchange, and total

contributions are shown for neutron energy distributions, and the primary plus secondary,

exchange, and total contributions are shown for the α-particle distributions. For the nn

channel, only the total is shown, since, as shown by Eq. (39), the sub-contributions are all

proportional. It is interesting to note that the interference introduced by antisymmetrization

has a general tendency to be constructive in all cases investigated. This point is discussed

further below in Sec. VI.

1/2+ nα: The particle spectra for this channel are rather featureless. Both the neutron

and α-particle spectra closely approximate elliptical energy distributions, characteristic of

uniform phase space population.
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FIG. 1. (Color online) Neutron energy distributions for each channel considered separately. The

primary, secondary, exchange, and total are given by the dotted, dashed, dot-dashed, and solid

curves, respectively. Only the total is shown for the nn case.
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FIG. 2. (Color online) Alpha-particle energy distributions for each channel considered separately.

The primary plus secondary, exchange, and total are given by the dotted, dot-dashed, and solid

curves, respectively. Only the total is shown for the nn case.
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1/2− nα: The first excited state of 5He gives rise to a broad peak in the primary neutron

spectrum, while the secondary neutron spectrum is also broad, but peaks at a lower neutron

energy. The effect of antisymmetrization is to make the overall spectrum narrower, with

relatively little strength near the endpoints of the spectrum. The α-particle spectrum for

this channel is relatively flat, except near the endpoints.

3/2− nα: The ground state of 5He gives rise to a narrow peak in the primary neutron

spectrum near the maximum neutron energy. The secondary neutron spectrum shows a

double-peaked feature below 2 MeV. This structure results from the W (i) = 1 + P2(cos γjk)

angular correlation between the primary and secondary neutrons, which implies a strong

tendency for the neutrons to be emitted in the same or opposite directions, but not perpen-

dicular to each other. Due to the recoil of the 5He intermediate state, this correlation affects

the secondary neutron energy distribution. This angular correlation also gives rise to a dou-

ble peak in the α-particle energy spectrum. These effects on the particle energy spectra due

to angular correlations were understood over 50 years ago [15, 16], and were observed for

the the α-particle energy spectrum at higher T+T energies [16]. Due to the relatively small

energy overlap between primary and secondary spectra, the effect of antisymmetrization on

the overall spectra is less important for this channel.

nn: In this case, the neutron energy spectrum peaks just below 4 MeV and has con-

siderably less strength near the endpoints compared to the 1/2+ nα channel which has the

same quantum numbers. The α-particle spectrum has a very distinctive peak near the max-

imum energy that is associated with the two neutrons being emitted in nearly the same

direction with a low relative energy. Similar results for the effect of the nn interaction on

the α-particle spectrum were found in the calculations of Lacina, Ingley, and Dorn [4].

2. Interference between channels

Another way to decompose Eq. (35) that is useful when considering multiple channels is

dN

dEi
=
∑
c

dNcc

dEi
+
∑
c,c′

c 6=c′

dNcc′

dEi
, (42)

where the second sum is due to interference effects between channels and

dNcc′

dEi
=

M

mj +mk

1

2

∫ 1

−1

d(cos γjk) pipjk

[
g

(1)
cc′ + g

(2)
cc′ + g

(12)
cc′

]
. (43)
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FIG. 3. (Color online) Interference contributions to the neutron energy distributions for partial

wave combinations indicated.
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FIG. 4. (Color online) Interference contributions to the α-particle energy distributions for partial

wave combinations indicated.
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The channel interference contributions to the particle spectra are shown in Figs. 3 and 4,

for the partial wave combinations under consideration. The same feeding factors were used

as for the calculations shown in Figs. 1 and 2. Note that the signs of the interference

contributions are determined by the relative signs of the feeding factors. The effects are

seen to be substantial, comparable in magnitude to the single-channel contributions. In

addition, note that the contribution of these effects, integrated over Ei, does not vanish.

IV. FITS AND COMPARISONS TO EXPERIMENTAL DATA

In this section, fits and comparisons to experimental neutron and α-particle spectra from

low-energy T + T reactions (below Ec.m. = 100 keV) are presented.

A. Neutron spectrum

The T(t, 2n) neutron spectrum at an effective Ec.m. of 16 keV has recently been measured

at the NIF [1]. The neutrons were detected in two liquid scintillators along separate lines of

sight located 20.1 and 22.2 m from the source, respectively. The experiment provides raw

data in the form of digitized currents from the detectors versus time. The data from the

22.2-m detector has been presented in Fig. 2 of Ref. [1], where the time of flight has been

converted to a nominal neutron energy and the points have been rebinned. Here we will

present additional fits to these data. The fits to the raw data utilize the R-matrix description

of the neutron spectrum for Ec.m. = 16 keV, and take into account the following effects [1]:

thermal broadening due to the Maxwell-Boltzmann distribution of particle velocities in the

plasma, neutron attenuation and scattering between the T(t, 2n) reaction source and the

detector, the light output response of each detector, and the time response of each detector.

Finally, the background from the T (d, n) reaction, which was measured separately, was

added to the model spectra. The data fitted here are identical to those reported in Ref. [1],

except that some additional points at longer times of flight have been included (giving 812

data points in total), and the errors on the data have been increased by assuming that the

attenuation correction has a 20% uncertainty and that the scattering correction has a 50%

uncertainty. The raw time-of-flight data that are fitted are shown in Fig. 5; note the narrow

peak near 500 ns is the peak in the neutron spectrum from the 5He ground state.
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FIG. 5. The neutron time-of-flight spectra from the 22.2-m detector (a) and 20.1-m detector (b)

used for fitting.
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TABLE II. The χ2
min values obtained for the various feeding factor assumptions. The presence of

a X indicates that a particular feeding factor was varied in the fit; a total of 812 data points were

fitted.

fit no. nα nn χ2
min

1/2+ 1/2− 3/2−

A A1 A2 A1 A2 A

1 X X 2165

2 X X X 1316

3 X X X 1309

4 X X X 1285

5 X X X 1095

6 X X X X 867

7 X X X X 996

8 X X X X 660

9 X X X X 1085

10 X X X X 920

11 X X X X 1162

12 X X X X X 659

13 X X X X X 850

14 X X X X X 660

15 X X X X X 667

16 X X X X X X 632
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The spectra have been fitted using the R-matrix formalism described above, assuming

various combinations of the four channels discussed in Sec. III E 1. In addition, we have

considered non-zero background feeding factors for the 1/2− and 3/2− nα channels, leading

to a total of up 6 variable parameters. Note that the feeding of the low-lying 1/2− and/or

3/2− states in nα channels were always fitted and that if a feeding factor was not fitted, its

value has been assumed to be zero. The χ2
min values obtained for the various feeding factor

assumptions are presented in Table II.

Not surprisingly, the χ2
min decreases steadily as the number of free parameters is increased.

In Ref. [1], only the 1/2− and 3/2− nα channels were considered. The fit presented there

is nearly identical to fit number 9 presented here, with the very small changes arising from

the changes in the data set discussed above. The additional channels are seen to make a

substantial increase in the quality of the fit. However, we are cautious about placing a

large emphasis on this improvement, as the neutron spectrum data contain neutron-energy-

dependent systematic errors from the scattering and attenuation corrections that may be

comparable to this improvement in fit (i.e., from χ2
min = 1085 to 632). Two of the fits,

numbers 9 and 16, are shown if Fig. 6, where the data have been re-binned and plotted

versus the nominal neutron energy.

The R-matrix parameters for fit 16 are shown in Table III. Note that the uncertainties

on the feeding factors are computed assuming that uncertainties on the data are random

and normally distributed; as explained above this is not strictly the case and the true

uncertainties are larger (this is also why some fits are able achieve a χ2 value which is less

than the number of data points). The decomposition of this fit into its various channel

components and the net interference contribution, according to Eq. (42), is shown in Fig. 7.

It is seen that the fitted 1/2− and 3/2− nα channels, and di-neutron channel, are substantial,

with the 1/2+ nα channel contributing to a lesser degree. The net interference between

channels is also non-negligible. In Ref. [1], a branching ratio for the the 1/2− and 3/2− nα

channels was given, which is possible to do if only these two channels are considered, since

their interference term is very small. In the general case, it is not possible to determine

branching ratios, due to the substantial interference contribution.

In order to facilitate future comparisons with other experiments and calculations, it is de-

sirable to present the neutron spectra in a deconvoluted form, i.e., with the various efficiency,

resolution, and background corrections removed. General methods and considerations for
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FIG. 6. (Color online) Two fits to the raw neutron spectra, plotted as a function of the nominal

neutron energy, for the 22.2-m detector (a) and 20.1-m detector (b). It should be noted that these

data, as well as those shown in Fig. 5, still include various experimental factors such as thermal

broadening, neutron light output, and detector time response.
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TABLE III. The R-matrix parameters for fit 16. Note that the boundary condition parameter is

B = S(Ec1) for the nα channels, and B = 0 for the nn channel. The γcλ are defined to be the

positive square roots of γ2
cλ and the channel radii are given in Sec. III.

channel λ Ecλ γ2
cλ Acλ

(MeV) (MeV)

1/2+ nα 1 50.00 12.00 -18(3)

1/2+ nα 2 1000 -40 0

1/2− nα 1 6.43 12.30 -18.2(3)

1/2− nα 2 1000 300 -306(16)

3/2− nα 1 0.97 7.55 9.86(6)

3/2− nα 2 1000 300 155(9)

nn 1 3.119 31.95 12.5(5)
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FIG. 7. (Color online) The decomposition of fit 16 into its various channel components and the

net interference contribution.
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the deconvolution of nuclear science measurements are discussed in Ref. [17]. Any approach

to these corrections necessarily involve some model dependence. We have deconvoluted the

present measurements by assigning a mean energy to each point (analogous to Eq. (8) of

Ref. [17]) and then applying a correction factor to the measured yield for each point (analo-

gous to Eq. (6) of Ref. [17]). This procedure requires that the underlying neutron spectrum

be known in advance – for this we use fit 16. In practice, the fit used makes very little

difference, as long as it gives a reasonable description of the measured data. The deconvo-

luted neutron spectrum data is shown in Fig. 8, where the data from the two detectors are

combined and re-binned in energy.

B. α-particle spectrum

Some information about the α-particle spectrum from the low-energy T + T reaction

is available from a 1985 conference paper by Jarmie and Brown [18], where a measured

spectrum and a background spectrum are given for an incident triton energy of 115 keV and

a laboratory angle of 45◦. We have extracted the α-particle spectrum from their Fig. 8 as

follows. The spectrum was first corrected for the background shown along with the spectrum

in their figure. Next the spectrum was energy calibrated, using the peak from the T(d, α)

reaction to fix the calibration at the high-energy end of the spectrum. The calibration

assumed the channel number in the Si detector was linear with α-particle energy with zero

offset, with the energy loss in the 30-µg/cm2 CH2 foil in front of the detector [19] being taken

into account. Finally, the spectrum was converted to the c.m. system assuming the spectrum

is isotropic in the c.m. system. It should be noted that this spectrum should be most reliable

for the higher energies, where the background is small and the energy calibration is well

established. We finally note that this spectrum was measured for Ec.m. = 57.5 keV, with

the beam-energy loss correction being less than 0.1 keV.

The resulting α-particle spectrum, rebinned such that each point represents 5 channels

in the raw spectrum, is shown in Fig. 9. Also shown are the predictions from R-matrix fits

9 and 16, where the normalizations of the fits has been adjusted to optimize the agreement

with data. It is seen that fit 16 supplies a much better description of the spectrum than

fit 9 (χ2 = 46 versus 140 for the 35 data points). The decomposition of the fit 16 α-particle

spectrum into its various channel components and the net interference contribution is shown
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FIG. 8. (Color online) The deconvoluted neutron energy spectrum (points) along with fits 9 and 16
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FIG. 9. (Color online) The α-particle spectrum extracted from Ref. [18] (points) and the predictions

from fits 9 and 16 (curves).
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in Fig. 10. It is seen that the inclusion of the di-neutron channel, which supplies spectral

strength near the maximum energy, is crucial for reproducing the spectrum.

C. Dalitz plots

A useful tool for visualizing the the particle energy correlations in a three-body final state

is the Dalitz plot. As already noted, the particle distribution given by Eq. (18) is a function

of two variables. Taking these to be any pair of particle energies Ei and Ej, we can write

d2N

dEidEj
=
M

2

[∑
c,c′

g
(1)
cc′ + g

(2)
cc′ + g

(12)
cc′

]
, (44)

where the kinematically-allowed region in Ei − Ej space is an ellipse.

The particle distribution resulting from fit 16, plotted as a function of neutron and α-

particle energies, is shown in Fig. 11. The vertical band at En ≈ 8.7 MeV and the diagonal

band in the lower left part of the ellipse are due to the 5He ground state. The concentration

of strength at the top of the ellipse, where Eα ≈ 3.8 MeV, is due to the di-neutron.

The same particle distribution, plotted as a function of the two neutron energies, is shown

in Fig. 12. In this case, the horizontal and vertical bands at En ≈ 8.7 MeV are due to the

5He ground state and the di-neutron strength appears at En1 ≈ En2 ≈ 3.8 MeV.

V. PARTICLE SPECTRA FROM 3He + 3He

It is straightforward to adopt this approach for describing the proton and α-particle

spectra from 3He + 3He, which is the mirror reaction to T + T → 2n + α. For the pα

channels, we utilize again the final R-matrix parameters given by Ref. [9], which are defined

using the same channel radius and boundary condition conventions as their nα parameters

used above. For the pp channel, adopting a channel radius of 2.0 fm, Ec = 4.865 MeV, and

γ2
c = 34.61 MeV reproduces the scattering length and effective range of the Argonne V18

potential [11] which are −7.8064 fm and 2.788 fm, respectively.

The calculated results for considering each channel in isolation are shown in Figs. 13

and 14. We have assumed Ec.m. = 165 keV and the same normalization convention was

used as for the T + T calculations shown in Figs. 1 and 2. The results are very similar to

those found for T + T. The main difference is that the 5Li ground-state peak in 3/2− pα
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FIG. 10. (Color online) The decomposition of the α-particle spectrum from the fit 16 prediction

into its various channel components and the net interference contribution.

27



FIG. 11. (Color online) The particle distribution from fit 16 as a function of neutron and α-particle

energies.

FIG. 12. (Color online) The particle distribution from fit 16 as a function of the two neutron

energies.
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FIG. 13. (Color online) Proton energy distributions from 3He + 3He for each channel considered

separately. The primary, secondary, exchange, and total are given by the dotted, dashed, dot-

dashed, and solid curves, respectively. Only the total is shown for the pp case.
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FIG. 14. (Color online) Alpha-particle energy distributions from 3He + 3He for each channel

considered separately. The primary plus secondary, exchange, and total are given by the dotted,

dot-dashed, and solid curves, respectively. Only the total is shown for the pp case.
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channel is broader than the 5He peak in the corresponding nα channel, which simply reflects

the different intrinsic widths of the states. In addition, the α-particle energy distribution is

somewhat broader for the pp channel compared to the corresponding nn channel.

In Fig. 15, we show a prediction for the proton spectrum, where we have assumed the

feeding factors from fit 16 to T + T neutron spectrum. The corresponding prediction for

the α-particle spectrum is shown in Fig. 16. The main differences from the T + T case are

(1) the 5Li ground state is less prominent than the 5He ground state peak in the proton

spectrum, due to the former being broader, and (2) there is less strength in the α-particle

spectrum near the endpoint (di-proton region), due to the Coulomb barrier between the two

protons suppressing the amplitude as their relative energy approaches zero.

It should be noted that we have ignored certain complications introduced by long-ranged

Coulomb force to the three-body final state. In particular, our factorized form of the ampli-

tude does not correspond to an asymptotic solution to the Schrödinger equation for three

charged particles [20, 21]. One can see that our amplitude does not include the effect of

the Coulomb barrier as the relative energy goes to zero for all particle pairs. For some

energy spectra and channels, this deficiency is exposed at the highest energies in the particle

spectra, as the endpoint corresponds to the case where the other two particles recoil in the

opposite direction with zero relative energy.

An ad hoc modification to our amplitudes can be made which restores physically-

reasonable behavior near the endpoints. Such an approach may be necessary for describing

experimental data in these regions. A simple procedure is to multiply the pα amplitude

given by Eq. (9) by C12C13 and the pp amplitude given by Eq. (16) by C13C23, where

Cij =

[
P0(kijaij, ηij)

P0(kijaij, 0)

]1/2

, (45)

and kij, aij, and ηij are the wavenumber, channel radius, and Coulomb parameter for particle

pair ij. We have assumed l = 0 for the penetration factor and used the same radii for

the pα and pp channels as discussed above. This modification introduces some additional

angular dependence to the matrix element that prevents some of the simplifications based

on integrating over Legendre polynomials discussed in Subsec. III E from being applicable.

Otherwise, the computations are unchanged. We find that the shapes of the calculated

spectra are little changed except near the endpoint while the normalization (area) of the

spectra are reduced by 12-17%, depending up on the particular channel. The results with and
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FIG. 15. The predicted 3He + 3He proton spectrum for Ec.m. = 165 keV.
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FIG. 16. The predicted 3He + 3He α-particle spectrum for Ec.m. = 165 keV.
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without this modification are shown in Fig. 17 for the 1/2+ pα channel near the endpoint,

where the normalization of the modified spectrum was adjusted to match the area of the

original spectrum.

VI. HEAVY NUCLEI

It is instructive to consider how this formalism behaves in heavier nuclei. In the limit

that m3 � m1,m2, the kinematic relations simplify considerably. In particular, we have

E1 + E2 = Etot, p23 = p2, p13 = p1, and cos γ23 = cos γ13 = cos δ12. The is also substantial

simplification of the angular functions:

W
(1)
lJl′J ′ = W

(2)
lJl′J ′ = −W (12)

lJl′J ′ . (46)

If the reaction proceeds via a single channel of sequential light-particle emission, the energy

spectrum of light particles is given by

dN

dE1

= p1p2 |uc(E1) + uc(Etot − E1)|2 , (47)

which is symmetric around the center of the spectrum (E1 = Etot/2). Note also that the

interference due to antisymmetrization is maximally constructive at the center of the spec-

trum. This result explains the general tendency observed in Fig. 1 for the antisymmetrization

interference contribution to the neutron spectrum to be constructive in the T+T case. This

formula was determined using the following special result for the Racah coefficient [13] when

k = 0

W (0lJ ′
1

2
; l′J) =

δJJ ′δll′√
(2J + 1)(2l + 1)

. (48)

This result also implies that the interference between channels with distinct l and J values

vanishes in this limit.

The interference between channels with distinct l and J values can thus be interpreted to

arise via the recoil of the intermediate state. This recoil is substantial in processes involving

light nuclei such as T + T→ 2n+ α. In heavier nuclei, the interference between channels is

much reduced and is found to scale ∝ 1/m3.
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FIG. 17. (Color online) Proton energy distributions from 3He + 3He for the 1/2+ pα channel near

the endpoint. The solid curve is the same as shown in Fig. 13 and the dashed curve shows the

effect of including the ad-hoc Coulomb correction discussed in the text.
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VII. CONCLUSIONS

A phenomenological R-matrix model for the three-body final state of the T+T→ 2n+α

reaction has been presented. This approach includes a detailed treatment of the nα and nn

interactions in the final state, angular momentum conservation, antisymmetrization, and

the interference between different channels. This model is able to supply an excellent fit to

the T + T neutron spectrum for Ec.m. = 16 keV recently measured at the NIF [1]. The most

prominent feature in the spectrum is a peak at En ≈ 8.7 MeV, which arises for the 3/2−

5He ground state. The strength in the spectrum at lower neutron energies arises from the

1/2− first excited state of 5He, 1/2+ nα emission, and the nn (di-neutron) emission channel.

The best fit to the spectrum includes significant strength in the di-neutron channel, but it

should be noted that the distribution of strengths in these additional channels is not well

constrained by the data (see Table II). This best fit provides a prediction for the α-particle

spectrum, which is in reasonable agreement with an experimental spectrum that is available

in the literature [18]. The agreement of the prediction with the data near the endpoint of the

α-particle spectrum provides support for the significant di-neutron channel strength present

in the best fit.

Several issues could be clarified by improved experimental data. It would be very useful

to extend the T + T neutron spectrum measurements to lower neutron energies, in order

to better constrain the fits and to possibly observe the double-humped structured predicted

below 2 MeV neutron energy that is associated with the 5He ground state (see the 3/2−

nα panel in Fig. 1). A fully documented measurement of the α-particle spectrum from

T + T would also be valuable, particularly if the spectrum could be measured up to the

endpoint, where the di-neutron contribution is maximal. It would also be interesting to

study the dependence of the spectrum on the energy in the entrance channel, as there is

some indication the 5He ground state peak is more prominent at higher entrance channel

energies [22].

It is also interesting to consider the reactions 3He + 3He → 2p + α and T + 3He →

n+p+α, which are related by mirror or isospin symmetry to T+T→ 2n+α. A prediction

for the proton and α spectra resulting from 3He + 3He has been given above in Sec. V.

Measurements of proton spectra from 3He + 3He and T + 3He are currently being pursued

with the inertial confinement fusion technique using the OMEGA facility at the Laboratory
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for Laser Energetics of the University of Rochester [23].

On the theoretical side, it would be interesting and useful to extend the formalism pre-

sented here to include the energy dependence in the initial state. We expect that the

methods presented here can be applied to additional reactions or spectra with three-body

final states. For example, our approach could be applied to the decay 16Be → 2n + 14Be,

where evidence for the di-neutron has been reported [24]. Another area where these meth-

ods could be used is the calculation of coherent interference effects between different decay

pathways to three-body final states, which has been noted as an important issue for under-

standing the total widths of states which decay by the emission of three particles [25, 26].

It must also be acknowledged that the phenomenological R-matrix approach presented here

includes many approximations. In the future, it is thus hoped that ab-initio techniques

based on nucleon-nucleon interactions may be applied to these reactions.
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