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The isospin quartic term in the kinetic energy of neutron-rich nucleonic matter
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The energy of a free gas of neutrons and protons is well known to be approximately isospin
parabolic with a negligibly small quartic term of only 0.45MeV at the saturation density of nuclear
matter ρ0 = 0.16 fm−3. Using an isospin-dependent single-nucleon momentum distribution including
a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy
electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-
of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter
near the unitary limit within several modern microscopic many-body theories, we show for the first
time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant
quartic term of 7.18 ± 2.52MeV. Such a large quartic term has broad ramifications in determining
the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and
neutron stars.

PACS numbers: 21.65.Ef, 24.10.Ht, 21.65.Cd

I. INTRODUCTION

To determine the equation of state (EoS) of isospin-
asymmetric nuclear matter (ANM) has been a long-
standing goal shared by both nuclear physics and as-
trophysics [1]. Usually one uses the so-called empirical
parabolic law for the energy per nucleon, i.e., E(ρ, δ) =
E0(ρ) + Esym(ρ)δ

2 + O(δ4) where ρ = ρn + ρp and
δ = (ρn−ρp)/ρ are the nucleon density and isospin asym-
metry of the system in terms of the neutron and proton
densities ρn and ρp, respectively. The isospin quadratics
of the ANM EoS has been verified to high accuracies from
symmetric (δ = 0) up to pure neutron (δ = 1) matter by
most of the available nuclear many-body theories using
various interactions, see, e.g., ref. [2]. Nevertheless, it has
been shown consistently in a number of studies that for
some physical quantities relevant for understanding prop-
erties of neutron stars, such as the proton fraction at β
equilibrium, core-crust transition density and the criti-
cal density for the direct URCA process to happen, even
a very small coefficient Esym,4(ρ) of the isospin quartic
term in the EoS can make a big difference [3].

Here we concentrate on examining the isospin quadrat-
ics of the kinetic EoS. For many purposes in both nu-
clear physics and astrophysics, such as simulating heavy-
ion collisions [4] and determining critical formation densi-
ties of different charge states of ∆ resonances in neutron
stars [5], one has to know separately the kinetic and po-
tential parts of the EoS. While neither any fundamental
physical principle nor the empirical parabolic law of the
EoS requires the kinetic and potential parts of the EoS
to be quadratic in δ individually, in practice especially in
most phenomenological models the free Fermi gas (FFG)
EoS is often used for the kinetic part and then the gen-
erally less known potential EoS is explored by compar-
ing model predictions with experimental data. It is well

∗Corresponding author: Bao-An.Li@tamuc.edu

known that the FFG model predicts a kinetic symme-
try energy of Ekin

sym(ρ0) ≈ 12.3 MeV and a negligibly

small quartic term of Ekin
sym,4(ρ0) = Ekin

sym(ρ0)/27 ≈ 0.45

MeV at ρ0 = 0.16/fm3. However, nuclear interactions,
in particular the short-range repulsive core and tensor
force, lead to a high (low) momentum tail (depletion) in
the single-nucleon momentum distribution above (below)
the nucleon Fermi surface [6–9]. Much progress has been
made recently both theoretically and experimentally in
quantifying especially the nucleon high momentum tails
(HMT) in ANM, see, e.g., refs. [10–14]. In this work, us-
ing isospin-dependent nucleon HMT constrained by re-
cent high-energy electron scattering and medium-energy
nuclear photodisintegration experiments as well as the
state-of-the-art calculations of the deuteron wave func-
tion and the EoS of pure neutron matter (PNM) near the
unitary limit within several modern microscopic many-
body theories, we show that the kinetic ANM EoS has a
significant quartic term of Ekin

sym,4(ρ0) = 7.18± 2.52MeV
that is about 16 times the FFG model prediction.

II. ISOSPIN DEPENDENCE OF

SINGLE-NUCLEON MOMENTUM

DISTRIBUTION WITH A HIGH MOMENTUM

TAIL IN NEUTRON-RICH MATTER

Guided by well-known predictions of microscopic nu-
clear many-body theories, see, e.g., reviews in ref. [15],
and recent experimental findings [10–13], we describe the
single-nucleon momentum distribution in ANM using

nJ
k
(ρ, δ) =







∆J + βJI
(

|k|/kJF
)

, 0 < |k| < kJF,

CJ

(

kJF/|k|
)4

, kJF < |k| < φJk
J
F.
(1)

Here, J = n,p is the isospin index, kJF = kF(1 + τJ3 δ)
1/3

is the transition momentum [13] where kF = (3π2ρ/2)1/3

and τn3 = +1, τp3 = −1. The main features of nJ
k
(ρ, δ)

are depicted in Fig. 1. The ∆J measures the depletion
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FIG. 1: A sketch of the single-nucleon momentum distribution
with a high momentum tail.

of the Fermi sphere at zero momentum with respect to
the FFG model prediction while the βJ is the strength
of the momentum dependence I(|k|/kJF) [16–18] of the
depletion near the Fermi surface. The jump ZJ

F of the
momentum distribution at kJF, namely, the “renormal-
ization function”, contains information about the nu-
cleon effective E-mass and its isospin dependence[19].

Specifically, ZJ
F = nJ

kJ

F
−0

− nJ
kJ

F
+0

= M/MJ,∗
E , where

MJ,∗
E /M ≡ [1 − ∂V /∂ω]−1 with V and ω being the real

part of the single-particle potential and energy [6, 20],
respectively.

The amplitude CJ and cutoff coefficient φJ determine
the fraction of nucleons in the HMT via

xHMT
J = 3CJ

(

1−
1

φJ

)

. (2)

The normalization condition [2/(2π)3]
∫∞

0
nJ
k
(ρ, δ)dk =

ρJ = (kJF)
3/3π2 requires that only three of the four pa-

rameters, i.e., βJ , CJ , φJ and ∆J , are independent. Here
we choose the first three as independent and determine
the ∆J from

∆J = 1−
3βJ

(kJF)
3

∫ kJ

F

0

I

(

k

kJF

)

k2dk − 3CJ

(

1−
1

φJ

)

.

(3)

Hinted by the finding within the self-consistent Green
function (SCGF) theory [21] and the Brueckner-Hartree-
Fock (BHF) theory [22] the depletion ∆J has an almost
linear dependence on δ in the opposite directions for neu-
trons and protons, we expand all four parameters in the
form YJ = Y0(1 + Y J

1 δ). Then, the total kinetic energy
per nucleon in ANM

Ekin(ρ, δ) =
1

ρ

2

(2π)3

∑

J=n,p

∫ φJk
J

F

0

k
2

2M
nJ
k
(ρ, δ)dk (4)

would obtain a linear term in δ of the form

Ekin
1 (ρ) =

3

5

k2F
2M

[

5

2
C0φ0(φ

n
1 + φp

1)

+
5

2
C0(φ0 − 1)(Cn

1 + Cp
1 ) +

1

2
∆0(∆

n
1 +∆p

1)

+
5β0(β

n
1 + βp

1 )

2k5F

∫ kF

0

I

(

k

kF

)

k4dk

]

(5)

where M is the nucleon mass. To ensure that the
Ekin

1 (ρ) vanishes as required by the neutron-proton ex-
change symmetry of the EoS, we require that ∆n

1 = −∆p
1 ,

βn
1 = −βp

1 , C
n
1 = −Cp

1 and φn
1 = −φp

1 , i.e., more com-
pactly YJ = Y0(1 + Y1τ

J
3 δ).

III. CONSTRAINING THE PARAMETERS OF

THE SINGLE-NUCLEON MOMENTUM

DISTRIBUTION

It is well known that the nucleon HMT from deuteron
to infinite nuclear matter scales, see, e.g., refs. [23–25],
leading to constant per nucleon inclusive (e, e′) cross sec-
tions for heavy nuclei with respect to deuteron for the
Bjorken scaling parameter xB between about 1.5 and 1.9,
see, e.g., ref. [28] for a recent review. Systematic anal-
yses of these inclusive experiments and data from ex-
clusive two-nucleon knockout reactions induced by high-
energy electrons or protons have firmly established that
the HMT fraction in symmetric nuclear matter (SNM)
is about xHMT

SNM = 28% ± 4% and that in PNM is about
xHMT
PNM = 1.5%± 0.5% [12–14, 29].
The C/|k|4 shape of the HMT for both SNM and

PNM is strongly supported by recent findings theoret-
ically and experimentally. The HMT for deuteron from
variational many-body calculations using several modern
nuclear forces decrease as |k|−4 within about 10% and
in quantitative agreement with that from analyzing the
d(e, e′p) cross section in directions where final state in-
teraction suffered by the knocked-out proton is small [12].
The extracted magnitude CSNM = C0 of the HMT in
SNM at ρ0 is C0 ≈ 0.15 ± 0.03 [12] (properly rescaled
considering the factor of 2 difference in the adopted nor-
malizations of nk here and that in refs. [12, 29]). Rather
remarkably, a very recent evaluation of medium-energy
photonuclear absorption cross sections has also presented
clear and independent evidence for the C/|k|4 behavior of
the HMT and extracted a value of C0 ≈ 0.172±0.007 [10]
for SNM at ρ0 in very good agreement with that found
in ref. [12]. In the following, we use C0 ≈ 0.161 ± 0.015
from taking the average of the above two constraints.
With this C0 and the value of xHMT

SNM given earlier, the
HMT cutoff parameter in SNM is determined to be
φ0 = (1− xHMT

SNM /3C0)
−1 = 2.38± 0.56.

Very interestingly, the 1/|k|4 behavior of the HMT nu-
cleons is identical to that in two-component (spin-up and
-down) cold fermionic atoms first predicted by Tan [30]
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and then quickly verified experimentally [31]. Tan’s gen-
eral prediction is for all two-component fermion systems
having an s-wave contact interaction with a scattering
length a much larger than the inter-particle distance d
which has to be much longer than the interaction range
re. At the unitary limit when |kFa| → ∞, Tan’s predic-
tion is universal for all fermion systems. Since the HMT
in nuclei and SNM is known to be dominated by the ten-
sor force induced neutron-proton pairs with the a ≈ 5.4
fm and d ≈ 1.8 fm at ρ0, as noted in refs. [10, 12], Tan’s
stringent conditions for unitary fermions is obviously not
satisfied in normal nuclei and SNM. The observed identi-
cal 1/|k|4 behavior of the HMT in nuclei and cold atoms
may have some deeper physical reasons deserving fur-
ther investigations. Indeed, a very recent study on the
A(e,e′p) and A(e,e′pp) scattering has shown that the ma-
jority of the short range correlation (SRC)-susceptible
n-p pairs are in the 3S1 state [32]. On the other hand,
because of the unnaturally large neutron-neutron scatter-
ing length ann(

1S0) = −18.8 fm, it is known that PNM
is closer to the unitary limit [33]. The EoS of PNM can
thus be expanded as [34]

EPNM(ρ) ≃
3

5

(kPNM
F )2

2M

[

ξ −
ζ

kPNM
F ann

−
5ν

3(kPNM
F ann)2

]

,

(6)
where kPNM

F = 21/3kF is the transition momentum in
PNM, ξ ≈ 0.4 ± 0.1 is the Bertsch parameter [35], ζ ≈
ν ≈ 1 are two universal constants [36].
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FIG. 2: (Color Online) The EoS of PNM obtained from
Eq. (6) (dashed red band) and that from next-leading-order
(NLO) lattice calculation [37] (blue solid points), chiral per-
turbative theories [38] (green band), quantum Monte Carlo
simulations (QMC) [39, 40] (magenta band and purple stars),
and effective field theory [33].

Shown in Fig. 2 is a comparison of the EoS of PNM ob-
tained from Eq. (6) (dashed red band) with several state-
of-the-art calculations using modern microscopic many-
body theories. At densities less than about 0.01 fm−3,

as shown in the inset, the Eq. (6) is consistent with
the prediction by the effective field theory [33]. In the
range of 0.01 fm−3 to about 0.02 fm−3, it has some de-
viations from predictions in ref. [33] but agrees very well
with the NLO lattice simulations [37]. At higher densities
up to about ρ0, it overlaps largely with predictions by the
chiral perturbation theories [38] and the quantum Monte
Carlo simulations [39, 40]. In addition, recent studies on
the spin-polarized neutron matter within the chiral effec-
tive field theory including two-, three-, and four-neutron
interactions indicate that properties of PNM is similar
to the unitary Fermi gas at least upto ρ0 far beyond the
scattering-length regime of ρ . ρ0/100 [41]. Overall, the
above comparison and studies clearly justify the use of
Eq. (6) to calculate the PNM EoS up to about ρ0.

Both the HMT and EoS can be experimentally
measured independently and calculated simultaneously
within the same model. Tan has proven in great detail
that the two are directly related by the so-called adiabatic
sweep theorem [30]. It is valid for any two-component
Fermi systems under the same conditions as the Eq. 6
near the unitary limit. For PNM, it can be written as

CPNM
n · (kPNM

F )4 = −4πM ·
d(ρEPNM)

d(a−1)
. (7)

While the results shown in Fig. 2 justify the use of Eq. 6
for the EoS of PNM up to about ρ0, indeed, to our best
knowledge there is currently no proof that the Eq. 7 is
also valid in the same density range as the Eq. 6. Thus,
it would be very interesting to examine the validity range
of Eq. 7 using the same models as those used to calculate
the EoS. In this work, we assume that the Eqs. 6 and
7 are both valid in the same density range. Then, the
strength of the HMT in PNM can be readily obtained as

CPNM
n ≈ 2ζ/5π + 4ν/(3πkPNM

F ann(
1S0)) ≈ 0.12. (8)

Noticing that CPNM
n = C0(1+C1), we can then infer that

C1 = −0.25± 0.07 with the C0 given earlier. Next, after
inserting the values of xHMT

PNM and CPNM
n into Eq. (2), the

high momentum cutoff parameter for PNM is determined
to be φPNM

n ≡ φ0(1 + φ1) = (1 − xHMT
PNM/3CPNM

n )−1 =
1.04 ± 0.02. It is not surprising that the φPNM

n is very
close to unity since only about 1.5% neutrons are in the
HMT in PNM. Subsequently, using the φ0 determined
earlier, we get φ1 = −0.56± 0.10.

The two parameters β0 and β1 in βJ = β0(1 + β1τ
J
3 δ)

depend on the function I(|k|/kJF) which is still model de-
pendent. To minimize the model assumptions and eval-
uate the dominating terms in the kinetic EoS, in the fol-
lowing we shall first use a momentum-independent deple-
tion of the Fermi sea as in most studies in the literature.
The HMT parameters CJ and φJ evaluated above remain
the same. Then, we examine the maximum correction to
each term in the kinetic EoS by using the largest values
of β0 and β1 allowed and a typical function I(|k|/kJF).
Not surprisingly, the corrections are all small.
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IV. ISOSPIN DEPENDENCE OF KINETIC EOS

OF ANM

The kinetic EoS can be expanded in δ as

Ekin(ρ, δ) = Ekin
0 (ρ) +Ekin

sym(ρ)δ
2 + Ekin

sym,4(ρ)δ
4 +O(δ6).

(9)
The coefficients evaluated from Eq. (4) using the nJ

k
(ρ, δ)

in Eq. (1) with βJ = 0 are

Ekin
0 (ρ) =

3

5
EF(ρ)

[

1 + C0

(

5φ0 +
3

φ0

− 8

)]

, (10)

Ekin
sym(ρ) =

1

3
EF(ρ)

[

1 + C0 (1 + 3C1)

(

5φ0 +
3

φ0

− 8

)

+ 3C0φ1

(

1 +
3

5
C1

)(

5φ0 −
3

φ0

)

+
27C0φ

2
1

5φ0

]

, (11)

Ekin
sym,4(ρ) =

1

81
EF(ρ)

[

1 + C0(1− 3C1)

(

5φ0 +
3

φ0

− 8

)

+ 3C0φ1(9C1 − 1)

(

5φ0 −
3

φ0

)

+
81C0φ

2
1(9φ

2
1 − 9C1φ1 − 15φ1 + 15C1 + 5)

5φ0

]

. (12)

In the FFG where there is no HMT, φ0 = 1, φ1 = 0 and
thus 5φ0+3/φ0−8 = 0, the above expressions reduce nat-
urally to the well known results of Ekin

0 (ρ) = 3EF(ρ)/5,
Ekin

sym(ρ) = EF(ρ)/3, and Ekin
sym,4(ρ)/E

kin
sym(ρ) = 1/27

where EF(ρ) = k2F/2M is the Fermi energy.
For the interacting nucleons in ANM with the mo-

mentum distribution and its parameters given earlier, we
found that Ekin

0 (ρ0) = 40.45 ± 8.15MeV, Ekin
sym(ρ0) =

−13.90± 11.54MeV and Ekin
sym,4(ρ0) = 7.19 ± 2.52MeV,

respectively. Compared to the corresponding values for
the FFG, it is seen that the isospin-dependent HMT in-
creases significantly the average kinetic energy Ekin

0 (ρ0)
of SNM but decreases the kinetic symmetry energy
Ekin

sym(ρ0) of ANM to a negative value qualitatively con-
sistent with findings of several recent studies of the ki-
netic EoS considering short-range nucleon-nucleon corre-
lations using both phenomenological models and micro-
scopic many-body theories [42–47]. However, it was com-
pletely unknown before if the empirical isospin parabolic
law is still valid for the kinetic EoS of ANM when the
isospin-dependent HMTs are considered. Very surpris-
ingly and interestingly, our calculations here show clearly
that it is broken seriously. More quantitatively, the ratio
|Ekin

sym,4(ρ0)/E
kin
sym(ρ0)| is about 52%± 26% that is much

larger than the FFG value of 3.7%. We also found that
the large quartic term is mainly due to the isospin de-
pendence of the HMT cutoff described by the φ1 param-
eter. For example, by artificially setting φ1 = 0, we ob-
tain Ekin

sym(ρ0) = 14.68 ± 2.80 MeV and Ekin
sym,4(ρ0) =

1.12± 0.27 MeV which are all close to their FFG values.
Considering short-range nucleon-nucleon correlations

but assuming that the isospin parabolic approximation

is still valid, some previous studies have evaluated the
kinetic symmetry energy Ekin

sym by taking the difference
between the kinetic energies of PNM and SNM, i.e., sub-
tracting the Ekin

PNM by Ekin
0 . This actually approximately

equals to Ekin
sym(ρ0) + Ekin

sym,4(ρ0) = −6.71 ± 9.11MeV in
our current work. This value is consistent quantitatively
with the Ekin

sym(ρ0) found in ref. [29] using the parabolic
approximation.

V. CORRECTIONS DUE TO THE

MOMENTUM-DEPENDENT DEPLETION OF

THE FERMI SEA

To estimate corrections due to the momentum depen-
dence of the depletion very close to the Fermi surface, i.e.,
a finite βJ , we consider a widely used single-nucleon mo-
mentum distribution parameterized in ref. [25] based on
calculations using many-body theories. For |k| . 2 fm−1,

it goes like ∼ e−α|k|2 with α ≈ 0.12 fm2. At ρ0 since

αk2F ≈ 0.21, e−α|k|2 ≈ 1 − α|k|2 + O(|k|4) is a good
approximation in the range of 0 < |k| < kJF. Thus,
we adopt a quadratic function I(|k|/kJF) = (|k|/kJF)

2.
The constants in the parameterization of ref. [25] are ab-
sorbed into our parameters ∆J and βJ . Then Eq. (3)
gives us ∆J = 1 − 3βJ/5 − 3CJ (1− 1/φJ). Specifi-
cally, we have β0 = (5/3)[1 − ∆0 − 3C0(1 − φ−1

0 )] =
(5/3)[1−∆0−xHMT

SNM ] for SNM. Then using the predicted
value of ∆0 ≈ 0.88±0.03 [9, 22, 23] and the experimental
value of xHMT

SNM ≈ 0.28 ± 0.04, the value of β0 is esti-
mated to be about −0.27± 0.08. Similarly, the condition
βJ = β0(1 + β1τ

J
3 δ) < 0, i.e., nJ

k
is a decreasing function

of momentum towards kJF, indicates that |β1| ≤ 1.
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FIG. 3: (Color Online) Corrections to the Ekin
sym(ρ0) and

Ekin
sym,4(ρ0) as functions of β1 with β0 = −0.35.

First of all, a finite value of βJ is expected to affect
the “renormalization function” ZJ

F . For SNM, we have
Z0
F = 1+2β0/5−C0−xHMT

SNM = 0.45±0.07 (0.56±0.04) in
the presence (absence) of β0. For ANM, however, the ZJ

F
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depends on the less constrained value of β1. It is worth
noting that the latter also determines the neutron-proton
effective E-mass splitting which has significant effects on
isovector observables in heavy-ion collisions [48], and a
study is underway to further constrain the value of β1

using data from heavy-ion reactions.
Contributions from a finite βJ to the first three terms

of the kinetic EoS are

δEkin
0 (ρ) =

3

5
EF(ρ0) ·

4β0

35
, (13)

δEkin
sym(ρ) =

1

3
EF(ρ0) ·

4β0(1 + 3β1)

35
, (14)

δEkin
sym,4(ρ) =

1

81
EF(ρ0) ·

4β0(1− 3β1)

35
. (15)

With the largest magnitude of β0 = −0.35, we examine
in Fig. 3 the corrections to the Ekin

sym(ρ0) and Ekin
sym,4(ρ0)

as functions of β1 in its full range allowed. In this case
the maximum effects of the finite βJ are revealed. It is
seen that the correction on the Ekin

sym,4(ρ0) is negligible

while the correction on the Ekin
sym(ρ0) is less than 2MeV.

Considering the corrections due to the finite β0 and β1

and their uncertainties, we finally obtain Ekin
0 (ρ0) =

39.77 ± 8.13MeV, Ekin
sym(ρ0) = −14.28 ± 11.59MeV and

Ekin
sym,4(ρ0) = 7.18 ± 2.52MeV, respectively. We notice

here that the δ6 term was also consistently evaluated and
was found to be negligibly small at ρ0.

VI. SUMMARY AND DISCUSSIONS

In summary, using an isospin-dependent single-nucleon
momentum distribution including a high (low) momen-
tum tail (depletion) with its shape parameters con-
strained by the latest results of several relevant experi-
ments and the state-of-the-art predictions of modern mi-
croscopic many-body theories, we found for the first time
that the kinetic EoS of interacting nucleons in ANM is
not parabolic in isospin asymmetry. It has a significant
quartic term of 7.18± 2.52MeV while its quadratic term
is −14.28 ± 11.60MeV at saturation density of nuclear
matter.
To this end, it is necessary to point out the limitations

of our approach and a few physical implications of our
findings. Since we fixed the parameters of the nucleon
momentum distribution (Eq. (1)) by using experimental
data and/or model calculations at the saturation density,
the possible density dependence of these parameters is
not explored in this work. The density dependence of the
various terms in the kinetic EoS is thus only due to that
of the Fermi energy as shown in Eqs.(10)-(12). In this
limiting case, the slope of the kinetic symmetry energy,
i.e., Lkin = 3ρ0∂E

kin
sym(ρ)/∂ρ|ρ=ρ0

= −27.81± 23.08 MeV
while that of the FFG is about 25.04 MeV.

The SRC-reduced kinetic symmetry energy with re-
spect to the FFG prediction has been found to affect
significantly not only our understanding about the origin
of the symmetry energy but also several isovector ob-
servables, such as the free neutron/proton and π−/π+

ratios in heavy-ion collisions [29, 49, 50]. However, to
our best knowledge, an investigation on possible effects
of a large isospin quartic term on heavy-ion collisions has
never been done while its effects on properties of neutron
stars have been studied extensively [3]. Of course, effects
of the quartic and quadratic terms should be studied to-
gether within the same approach. To extract from nu-
clear reactions and neutron stars information about the
EoS of neutron-rich matter, people often parameterize
the EoS as a sum of the kinetic energy of a FFG and
a potential energy involving unknown parameters upto
the isospin-quadratic term only. Our findings in this
work indicate that it is important to include the isospin-
quartic term in both the kinetic and potential parts of
the EoS. Moreover, to accurately extract the completely
unknown isospin-quartic term Epot

sym,4(ρ)δ
4 in the poten-

tial EoS it is important to use the kinetic EoS of quasi-
particles with reduced kinetic symmetry energy and an
enhanced quartic term due to the isospin-dependence
of the HMT. Most relevant to the isovector observables
in heavy-ion collisions, such as the neutron-proton ra-
tio and differential flow, is the nucleon isovector poten-
tial. Besides the so-called Lane potential ±2ρEpot

sym(ρ)δ

where the Epot
sym(ρ) is the potential part of the symme-

try energy and the ± sign is for neutrons/protons, the

Epot
sym,4(ρ)δ

4 term contributes an additional isovector po-

tential ±4ρEpot
sym,4(ρ)δ

3. In neutron-rich systems besides
neutron stars, such as nuclear reactions induced by rare
isotopes and peripheral collisions between two heavy nu-
clei having thick neutron-skins, the latter may play a sig-
nificant role in understanding the isovector observables
or extracting the sizes of neutron-skins of the nuclei in-
volved. We plan to study effects of the isospin-quartic
term in the EoS in heavy-ion collisions using the isospin-
dependent transport model [4] in the near future.
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