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Background Exotic non-spherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because
of competition between short range nuclear attraction and long range Coulomb repulsion.

Purpose To explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense
nuclear matter is ejected and decompressed.

Methods We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense
matter with 51 200 and 409 600 nucleons from 0.080 fm−3 down to 0.00125 fm−3. Simulations are run for proton fractions
YP = 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation
is obtained using a cluster algorithm and compared to a constant density run.

Results Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE)
models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE.
Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T = 0.5 MeV runs.

Conclusions Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help
determine the initial temperatures and proton fractions of matter ejected in mergers.

PACS numbers: 26.60.-c,26.30.-k,26.30.Hj,02.70.Ns

I. INTRODUCTION

Determining the properties of neutron-rich matter is
vital to our understanding of many astrophysical phe-
nomena. For example, neutron-rich matter is formed
during a core-collapse supernova as an increasing electron
Fermi energy drives electron capture by nuclei. Neutron-
rich matter is also produced during compact star mergers
as the outer regions of the colliding stars come into con-
tact. Furthermore, while the outer crust of a neutron
star consists of an ion lattice, the core (or at least the
outer core) is believed to be made of neutron-rich uni-
form nuclear matter.

Between the inner crust and core of a neutron star
there likely exists a transition layer that involves neutron-
rich non-spherical shapes [1, 2]. This transition layer
happens near nuclear saturation density where the sys-
tem is frustrated because of an inability to minimize the
free-energy of all fundamental interactions. A compe-
tition between the attractive short-range nuclear force,
with a range of order 1 fm, and the repulsive long-range
Coulomb force produces complex nonuniform structures,
called nuclear pasta [3]. Theoretical symmetry argu-
ments and numerical simulations of the phases of nu-
clear pasta have identified a variety of structures. These
phases are, in order of increasing density: spheroids
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(“gnocchi”), rods (“spaghetti”), slabs (“lasagna”), uni-
form matter with cylindrical voids (“anti-spaghetti”),
and uniform matter with spherical voids (“anti-gnocchi”)
[4, 5]. These geometries have been produced by both
large-scale classical molecular dynamics simulations and
quantum Hartree-Fock calculations [6, 7].

More exotic structures have also been recently iden-
tified, such as plates with a lattice of holes or “nuclear
waffles” [8], a networked “gyroid” phase [6, 9] and chiral
deformations in intertwined lasagna configurations [10].
This indicates that nuclear pasta may have a rich variety
of possible structures that only now can be studied due
to recent increases in computational power.

As nuclear pasta is expected to form during the core
collapse phase of a supernova, it may play an important
role in the supernovae evolution and resulting neutron
stars [11]. For example, supernova neutrinos can scatter
coherently from pasta, because neutrino wavelengths are
comparable to the pasta sizes. Therefore, calculations of
the static structure factor of nuclear pasta can help de-
termine the neutrino opacity in core collapse supernovae
[3, 10].

It is also expected that pasta shapes could influence
thermal and electrical conductivities of inner crust of
neutron stars. Horowitz et al. suggest that topological
defects in nuclear pasta increase electron-pasta scatter-
ing and reduce thermal conductivity [12]. They argue
that this could slow crust cooling after accretion in low
mass X-ray binaries. Furthermore, topological defects
in the pasta would also reduce the inner crust electrical
conductivity. This could lead to fast decay of neutron
stars magnetic fields, if the fields are supported by cur-
rents in the crust and as a result neutron stars would
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stop spinning down [13].

Also relevant to neutron star structure are the elas-
tic properties of nuclear pasta, such as its shear modulus
and breaking strain. These may determine the maximum
size of “mountains” that may be present on neutron stars.
On rapidly rotating stars these mountains are energetic
sources of gravitational wave radiation [14]. Finally the
pasta breaking strain is relevant for crust breaking mod-
els of star quakes and magnetar giant flares [15].

However, despite the large literature on nuclear pasta
and its relevant astrophysical properties, very little work
has been done identifying the role, if any, pasta might
play in heavy element nucleosynthesis. Some astrophys-
ical sites involve the ejection of dense neutron rich mat-
ter that may originally be in a nuclear pasta phase. As
the matter decompresses, the pasta shapes may react to
form seed nuclei and free neutrons, and these may later
undergo more conventional nucleosynthesis reactions.

It is thought the rapid neutron capture process, or r-
process, produces about half of the elements heavier than
iron, but the site of the r-process remains uncertain [16].
Previously, supernovae were prime candidates but the
most recent simulations of the neutrino driven wind in
core collapse supernova are not neutron rich enough to
produce heavy r-process elements [16–18].

Neutron star mergers have recently been identified as
strong candidate sites for the r-process due to their ejec-
tion of neutron rich matter and their relatively high
galactic merger rate, which is now expected to be as
high as ∼ 10−4 yr−1 [16, 19]. Recently, double neutron
star mergers (NS-NS) and neutron star-black hole merg-
ers (NS-BS) have been studied using relativistic hydro-
dynamic simulations. These simulations find that the
nuclear abundances in ejecta match well to solar ratios
and are robust for a variety of mass ratios for the merging
system [20, 21]. Calculations show that the inner crust
provides the largest portion of ejecta mass and that the
amount of ejecta varies with the mass ratio of binary. Es-
timates range between 10−3 M� for symmetric NS merg-
ers and 10−2 M� for asymmetric NS mergers, with sys-
tems where M1/M2 = 0.55 ejecting greater than 0.2 M�
[22].

In this paper, we explore the possibility that nuclear
pasta, ejected from the inner crust during these mergers,
could provide the initial material for the r-process. Pasta
properties could be important for the evolution of the
material’s temperature and entropy. Furthermore, weak
interactions in the pasta, such as neutrino or charged
lepton capture, will determine the evolution of the proton
fraction.

In previous work we identified the average size of gnoc-
chi (mass number of nuclei) using molecular dynamics
(MD) simulations [5]. In that work we evolved dense
matter with a proton fraction of YP = 0.40 at a temper-
ature of 1 MeV from high to low densities, n = 0.10 fm−3

to n ∼ 0.01 fm−3, by expanding the simulation volume
at different rates. We observed the nucleation mecha-
nism for a number of different pasta phase transitions

and quantified those transitions by calculating the aver-
age mean and Gaussian curvatures, allowing us to char-
acterize the phases by Minkowski functionals.

The simulated NS-NS mergers, cited above, observed
ejecta evolve from densities near nuclear saturation den-
sity and low proton fractions, YP . 0.10, to densities
many order of magnitude smaller and much higher fi-
nal proton fractions, YP ∼ 0.40. The timescales for the
density to decrease a few orders of magnitude is on the
order of milliseconds [22] which is much slower than the
timescales of the simulations performed in this work and
possible using MD. As we expect nuclear matter to re-
main in nuclear statistical equilibrium (NSE) while evolv-
ing over such timescales, we expand our simulation vol-
ume as slow as computationally allowable, and compare
to faster expansion rates to confirm that we are expand-
ing slow enough to remain in quasi-static equilibrium,
which should be expected of ejecta with millisecond ex-
pansion timescales. State of the art computations suggest
the ejected matter in NS-NS mergers has very low pro-
ton fraction, Yp . 0.10, that later evolves to Yp ∼ 0.40
due to neutrino-driven wind. However, in our work we
are limited to simulations with constant proton fractions.
Thus, we perform runs for a variety of proton fractions
from YP = 0.05 to 0.40 as these are close to the proton
fractions expected to be found during r-process nucle-
osynthesis.

We note that there have been many MD simulations of
heavy ion collisions to study the formation of clusters via
multi-fragmentation, see for example [23, 24]. Typically
these involve relatively small systems and sometimes ne-
glect Coulomb interactions. In this paper we use the re-
cently developed Indiana University Molecular Dynamics
GPU code (IUMD) to simulate larger volumes of nuclear
matter as its density decreases. We include full Coulomb
interactions and consider a range of proton fractions and
temperatures.

In Sec. II we describe our MD formalism and a clus-
tering algorithm to identify which nuclei are formed by
stretching of a piece of pasta. In Sec. III we discuss our
results and compare to NSE results. We conclude in Sec.
IV and for completeness add an Appendix to discuss our
GPU code and its performance.

II. FORMALISM

To describe the decompression of ejected matter dur-
ing a neutron star merger we perform molecular dynamics
(MD) simulations with a fixed number of nucleons in a
volume that slowly expands. We start our runs at a den-
sity of 0.08 fm−3, where complex nuclear pasta phases
may be present, and decompress it to 0.01 fm−3 or be-
low, where nucleons bind into isolated nuclei. We first
discuss our MD formalism in Sec. II A and then review
a cluster algorithm in Sec. II B that determines which
nucleons belong to which nuclei. This algorithm allows
us to deduce the final nuclear abundances produced by
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our simulations.

A. Semiclassical nuclear pasta model

Our MD formalism is the same as that used by
Horowitz et al. and others in previous works [3, 5, 25–29]
and is briefly reviewed here. In particular, much of this
work is a continuation of Schneider et al.[5].

Our simulation volume is a cubic box with periodic
boundary conditions which contains point-like protons
and neutrons with mass M = 939 MeV. Electrons are
assumed to form a degenerate relativistic Fermi gas and
are not explicitly included in the simulations. Protons
and neutrons interact via the two-body potentials:

Vnp(r) = ae−r
2/Λ + [b− c]e−r

2/2Λ (1a)

Vnn(r) = ae−r
2/Λ + [b+ c]e−r

2/2Λ (1b)

Vpp(r) = ae−r
2/Λ + [b+ c]e−r

2/2Λ +
α

r
e−r/λ. (1c)

The n and p indices indicate whether the potential de-
scribes a neutron-proton, a neutron-neutron, or a proton-
proton interaction. Meanwhile, r is the separation be-
tween each pair of interacting nucleons and quantities a,
b, c, and Λ are parameters of the model. Their values
are found in Table I and are chosen to approximately re-
produce some bulk properties of pure neutron matter and
symmetric nuclear matter, as well as the binding energies
of selected nuclei [3].

TABLE I: Nuclear interaction parameters. The parameter
a defines the strength of the short-range repulsion between
nucleons, b and c the strength of their intermediate-range at-
traction and Λ the length scale of the nuclear potential.

a (MeV) b (MeV) c (MeV) Λ (fm2)
110 −26 24 1.25

The proton-proton interaction includes the Coulomb
repulsion that is screened by the electron gas. This
screening has a characteristic length λ that depends on
the fine structure constant α and the electron Fermi mo-
mentum kF = (3π2ne)

1/3, where ne is the electron den-
sity (assumed equal to the proton density) and the elec-
tron mass is me. Its value is

λ =
π1/2

2α1/2

(
kF

√
k2
F +m2

e

)−1/2

, (2)

though in this work we fix λ to the slightly smaller value
10 fm, for all proton fractions, to agree with the value
used in earlier work. We do not expect our results to
be very sensitive to the precise value of λ. A discussion
of the effect of λ on final results can be found in Refs.
[8, 30].

We use a cut-off radius for the nuclear potential of 11.5
fm, and no cutoff radius for the Coulomb potential. The

nuclear potential is assumed to be zero and is not com-
puted for separations greater than the cut-off distance.
The boundary conditions allow particles to only interact
with the nearest periodic image of other nucleons. Due
to the short range of the nuclear potential, the computa-
tion of the nuclear force can be greatly accelerated with
the periodic construction of neighbor-lists, which are dis-
cussed in detail in the Appendix.

After computing all the inter-particle forces, the
nucleon positions and velocities are updated using a
velocity-Verlet algorithm [31]. After the timestep ∆t is
completed, the box size is increased by a small amount.
The length of each side of the box li (i = x, y, z) and the
volume V is

li(t) = li(0)
(

1 + ξ̇it
)

(3a)

V (t) = V (0)
(

1 + ξ̇t
)3

(3b)

where li(0) and V (0) are the initial side length and vol-

ume of the box, and ξ̇i is the expansion rate. To preserve
the cubic geometry, ξ̇i is the same for all i. Particle posi-
tions and velocities are not incremented with the change
in box volume, and are allowed to respond dynamically
to the changing simulation volume. Furthermore, par-
ticles that cross one side of the box and reenter on the
other do not have their velocities rescaled. Also, in or-
der to approximately maintain an isothermal expansion,
the velocities of all nucleons are rescaled every 100 time
steps so that the average kinetic energy per particle is
(3/2)kT . The errors these approximations introduce are
discussed in detail in Schneider et al.[5] and are found to
be negligible for the temperatures and expansion rates
used in our simulations.

B. Cluster Algorithm

To find clusters of protons and neutrons in our simu-
lations we use the Minimum Spanning Tree (MST) algo-
rithm used in Schneider et al.[5] and common in other
molecular dynamics studies of nuclear pasta [28, 33].

The MST algorithm identifies the nearest neighbors
of each nucleon and builds a list of which cluster each
nucleon belongs to. First, the algorithm examines every
pair of protons i and j. A proton i is determined to
belong to a cluster C if i is within a cut-off distance rpp
of at least one proton j that is also a part of C. As
in the nucleon potential calculations the MST algorithm
also accounts for periodicity in the system. Schneider et
al. found that rpp = 4.5 fm was an acceptable value for
all densities by examining the proton-proton correlation
function gpp(r) [5]. If no protons j are within range of
a proton i then i is considered its own cluster. After a
list of protons in each cluster have been assembled, the
neutrons in each cluster are counted. A neutron is a
member of a cluster C if it is within a distance rnp of
at least one proton j that belongs to C. Again following
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TABLE II: Mass fraction of free neutrons, mean mass number of clusters (A ≥ 12), and mean charge number of clusters from

simulations of 51 200 nucleons, expanded at four proton fractions (YP ) and four stretch rates (ξ̇), are shown. All data shown is
for the final configuration of the simulation, when n = 0.01 fm−3. The data in the rightmost columns are offered for comparison
to NSE tables. This data is generated from a Virial expansion of 8980 species of nuclei with A ≥ 12, and shows fair agreement
with the IUMD results [32].

IUMD NSE

YP log10 ξ̇ Mfree neutrons A± σA Z ± σZ Mfree neutrons A Z
0.1 -5 0.6538 90.12 ± 24.20 26.25 ± 7.69 Unavailable

-6 0.6561 94.08 ± 18.01 27.57 ± 5.69
-7 0.6578 99.18 ± 17.42 29.20 ± 5.57

0.2 -5 0.3748 147.75 ± 33.88 47.31 ± 10.95 0.3335 179.3 53.80
-6 0.3731 146.22 ± 24.96 46.69 ± 8.30
-7 0.3704 136.12 ± 20.32 43.29 ± 6.72

0.3 -5 0.1359 186.47 ± 73.19 64.75 ± 24.59 0.0475 184.4 58.07
-6 0.1377 175.13 ± 34.48 60.94 ± 12.16
-7 0.1367 166.74 ± 34.71 57.95 ± 12.44

0.4 -5 0.0109 369.37 ± 426.03 149.32 ± 167.45 0.0001 194.4 77.75
-6 0.0121 179.40 ± 29.83 72.64 ± 11.93
-7 0.0115 190.25 ± 29.34 76.94 ± 11.83
-8 0.0111 191.74 ± 24.55 77.55 ± 9.79

Schneider et al. we set rnp = 3 fm. Neutrons that are not
apart of any cluster are counted as free neutrons.

As neutrons are constantly being exchanged between
the clusters and the free neutron gas, there exists a small
probability that neutrons get miscounted if they are in
the process of escaping or making close fly-bys. This
probability is small, and has little effect on our results.
Other cluster algorithms exist, such as those that check
the energy between particle pairs to check if they are
bound, such as the Minimum Spanning Tree in Two-
particle Energy Space (MSTE). While MSTE has the
advantage of discriminating against questionable surface
neutrons, in our low energy simulations both MSE and
MSTE have similar results and, therefore, we find the
MSE is sufficient in this work [5, 28, 33].

III. RESULTS

We start in Sec. III A with a discussion of the effect
of expansion rate on the final configuration of the simu-
lation. In Sec. III B we discuss the final populations of
nuclides present in our simulations at 0.75 and 1.0 MeV.
In Sec. III C we discuss the results of simulations at 0.5
MeV, specifically the non-equilibium effects observed at
higher proton fractions.

A. Expansion Rate

In milliseconds matter ejected in a neutron star merger
can decompress from near nuclear saturation density to
much lower densities; a rate of change in density of or-
der O ∼ −3n0/(1019 fm/c), where n0 ' 0.16 fm−3 is the
nuclear saturation density. Current computational limits
restrict MD simulation expansion rates in Eq. (3b) to

1012 or more times faster. This corresponds to a maxi-
mum of about 1010 MD time steps.

Our goal in this Section is to identify the fastest ex-
pansion rate ξ̇max the pasta in our simulations could ex-
perience before moving significantly away from equilib-
rium. For this end we loosely defined a simulation to be
away from equilibrium whenever slab or rod-like nuclei
appeared in the final low density state. This happens
whenever the expansion rate ξ̇ is so fast that the pasta
does to have time to fission within the alloted simula-
tion time. Determining ξ̇max allows us to minimize the
computation times for the simulations in Sec. III B.

We use our highest temperature, T = 1 MeV, to deter-
mine ξ̇max for three reasons. Firstly, it allows us compare
our nuclide populations to available nuclear statistic equi-
librium data obtained with a Virial expansion, which is
more consistent with our classical approach. This is op-
posed to the Hartree-Fock calculations which have been
done for lower temperatures. Secondly, it allows us to
compare to our previous work [5]. Lastly, the lower tem-
perature data produced non realistic structures, which
are discussed in more detail in Sec. III C.

We simulate 51 200 particles at a temperature of 1.0
MeV for expansion rates of ξ̇ = 10−5, 10−6, 10−7 and
10−8c/ fm for t = ξ̇−1. We start our simulations at an
initial density of n(t = 0) = n0/2 = 0.08 fm3 and expand

them to a final density n(t = ξ̇−1) = 0.01 fm3. The initial
configurations are first equilibrated from random for 5×
105 timesteps at a constant density of n = 0.08 fm−3

using a time step ∆t = 2 fm/c. In Table II we compare
the mass fraction of free neutrons, the mean mass number
of clusters, and the mean charge number of clusters at
t = ξ̇−1 in our simulations to NSE data. The NSE data
is obtained from the tables of G. Shen et al.[32], which
include 8980 species of nuclei with A ≥ 12 as well as
protons, neutrons and alpha particles and show a fair
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TABLE III: (Color online) Comparisons of configurations at several densities obtained from three different simulations, shown
to scale. The figures are generated in Paraview by finding isosurfaces of charge density. The dark surfaces are generated where
nZ = 0.03 fm−3, and the lighter surfaces at the boundary show where nZ > 0.03 fm−3. The first column shows the density of
the configurations in each row.

T = 1.0 MeV T = 1.0 MeV T = 0.5 MeV

n (fm3) YP = 0.1 YP = 0.4 YP = 0.4

0.0601

0.0195

0.0116

0.0027

agreement with the IUMD results.

We note that MD results showed an excess of free neu-
trons when compared to NSE results. Also, MD sim-
ulations produced some light isotopes (A < 12) which
accounted for less than 1% of the mass fraction of all
simulations and, thus, were excluded from the analysis
of mean cluster mass and charge number for comparison
to NSE. The vast majority of these light clusters were
protons bound to several neutrons. Though this neutron
rich hydrogen nuclei show up often in our semi-classical
simulations they are not expected to occur in nature.

We observe that the only simulations clearly out of
equilibrium (using our loose definition) were those with

proton fraction YP = 0.3, 0.4 stretched at a rate ξ̇ =
10−5c/ fm. These simulations were not able to equilibrate
due to the short time of the simulation (50 000 timesteps).
In the YP = 0.3 simulation there are many large oblong
clusters that are approaching fission and the mass frac-
tion of rod-like nuclei is 10%, where these clusters have
mass number A > 300. In contrast, more than 66% of
the mass of the system in YP = 0.4 case are in rod-like
nuclei clusters, A > 300, with the largest of these clusters
having mass number A = 3063.

Though we find that expansion rates of ξ̇ = 10−5c/ fm
are too fast and produce non-equilibrium effects, final
configurations obtained from expansion rates of ξ̇ = 10−6

c/fm and ξ̇ = 10−7 c/fm do not differ much from each
other and are in good agreement with NSE data. For
the one case we tested ξ̇ = 10−8 c/fm, we also find good
agreement between our results and NSE results. For this
reason, we choose ξ̇max = 10−7 c/fm as the expansion
rate for the main simulations discussed in Sec. III B as
they can be computed in a reasonable amount of time
while still producing results that are close to equilibrium.

Having determined which expansion rates can produce
nuclei with sizes that agree with NSE at low densities
(n = 0.01 fm/c) we run simulations to check whether
the same results could be obtained from constant den-
sity simulations. We equilibrated systems from ran-
dom with different proton fractions at T = 1.0 MeV and
n = 0.01 fm/c for 2 × 106 fm/c. Nuclei sizes from these
constant density simulations, as well as nuclei sizes ob-
tained from expansion simulations and NSE, are shown
in Table IV. The number of free neutrons and the size of
nuclei formed in the constant density simulations quickly
reached a steady state and barely changed during the
second half of the run. Though the number of free neu-
trons obtained in the constant density simulations and
the expansion simulations (at 0.01 fm−3) are similar, we
observe that the nuclei formed at constant density are sig-
nificantly smaller. This shows that, at least for our MD
simulations, decompression from a higher density plays a
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role in the size of clusters formed.

B. Nuclide Abudances at 0.75 and 1.0 MeV

As discussed in the previous section we evolve a uni-
formly random distribution of nucleons with a given pro-
ton fraction and temperature at a constant density of
n = 0.08 fm−3 for 5×105 timesteps of length ∆t = 2 fm/c.
We then use the final configuration of this n = 0.08 fm−3

run as a starting point to our expansion runs with ex-
pansion rate ξ̇ = 10−7c/ fm.

Our expansion runs survey five proton fractions, YP =
0.05, 0.10, 0.20, 0.30, and 0.40, and three temperatures,
T = 0.5, 0.75, and 1.0 MeV. All of these 15 cases were
simulated using 51 200 particles. Additionally, we ran
simulations with 409 600 particles for the YP = 0.05 case
to get better statistics for the mean number of protons
in each cluster. All simulations were evolved for 3ξ̇−1 =
3 × 107 fm/c with a 2 fm/c timestep on 32 GPU nodes
on Big Red II (see Appendix). The final density of the
runs was 0.00125 fm−3.

We note that the higher proton fractions runs, YP =
0.3 and 0.4, form a lasagna phase at n = 0.08 fm−3 for the
temperatures in our simulations. Meanwhile, runs with
lower proton fractions, YP ≤ 0.2, have less regular struc-
ture that are dependent on the temperature. During the
expansion, we observe that the pasta phase transitions
for the YP = 0.40 run at T = 1 MeV occurred at densi-
ties consistent with the results of our previous work [5].
Specifically, between densities of 0.02 fm−3 and 0.01 fm−3

the spaghetti fissions to produce a lattice of spheroidal
gnocchi, whose statistics are presented in the last column
of Figs. 1 and 2, and is visualized in the center column
of Tab. III.

Using the MSE clustering algorithm we observed that
below densities of 0.01 fm−3 the proton populations of
individual gnocchi stayed relatively constant for all our
runs. However, new clusters formed occasionally when-
ever protons and neutrons that escaped from one of the
large nuclei bound to make a light isotope. This effect
was more pronounced at T = 1.0 MeV, which produced
a larger populations of light isotopes (A < 12) than the
T =0.75 MeV runs. This can be seen by comparing the
distribution of clusters near the origin in the top and
bottom rows of Figure 1.

From the number for the free neutron mass mn in Fig-
ure 1 we note that the free neutron population increases
with temperature and decreases with proton fraction. It
is also worth mentioning, though it is not shown, that
in all cases the free neutron count increased as the sim-
ulation volume increased, until it eventually approached
a constant value near the end of each run. This can be
explained by the fact that in these semi-classical simula-
tions nucleons bound to a nuclei often acquire enough ki-
netic energy to overcome the potential barrier that keeps
them in a cluster. Once these neutrons are free they can
become bound to another cluster by colliding with it. It is

expected that the collision cross section for such event de-
creases significantly as the simulation volume increases.
On the other hand, when large nuclei shed neutrons their
binding energy per nucleon increases and the probability
of losing yet another neutron decreases. Thus, by observ-
ing this asymptotic behavior of the free neutron count
near the end of our simulations we conclude that these
two competing effects happen at about the same rate and
so we do not expect a significant change in the mass of
free neutron by running our simulations longer.

Other trends we observe from our simulations, see Fig-
ures 1 and 2, are (1) distribution of cluster masses and
charges is approximately Gaussian, (2) for a given proton
fraction the mean mass and charge are larger for lower
temperature, (3) the number of free neutrons is larger
at higher temperatures and, finally, (4) the average clus-
ter charge and mass increases with proton fraction in the
range of proton fractions of our simulations, YP ≤ 0.40.
Figures 5 and 6 show that the ratio Z/N of protons to
neutrons in the clusters formed within each simulation is
approximately constant and that the deviations around
the average Z/N ratio are larger for T = 1.0 MeV than
for T = 0.75 MeV.

Consistent with our observations in Sec. III A, we also
observe the presence of light isotopes at T = 1.0 MeV
which account for less than 1% of the total mass, but we
find no such clusters at T = 0.75 MeV. This can be seen
by comparing the top and bottom rown of Figures 1 and
2 or comparing the region near the origin of Figures 5
and 6.

C. Nuclide Abudances at 0.5 MeV

Much of the discussion offered for the T = 0.75 and
1.0 MeV simulations apply to the T = 0.5 MeV runs at
proton fractions of YP = 0.05 and 0.10. We note a slight
increase in the mean mass and mean charge of clusters,
with a decrease in the mass fraction of free neutrons.
This can be seen in Fig. 3 and Fig. 4

However, the simulations at T = 0.50 MeV with
YP ≥ 0.20 show significant non-equilibrium effects, with
a static population of super heavy clusters in their fi-
nal state. Some of the clusters formed large rods, slabs,
and spheroids as seen in the last column of Tab. III.
We find that these unrealistic shapes are the result of a
phase transition in the nucleons. While the macrophase
of the system can be described by the pasta shapes, the
microphase of the nucleons within the pasta structures
can be either liquid or solid. At large proton fractions
and low enough temperatures the nucleons in the simu-
lation undergo a phase transition to a solid microphase.
These dynamics were recently observed in MD simula-
tions of pasta by Alcain et al.[10], who found that the
nucleons undergo a solid-liquid phase transition at low
densities near T = 0.5 MeV. Since at the temperatures
and densities simulated in this work nucleons are not ex-
pected to form a lattice, even at zero temperature, this
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TABLE IV: Comparison of nuclear sizes obtained from constant density runs at n = 0.01 fm−3, expansion runs with ξ̇ =
10−7c/ fm, and the NSE model of Ref. [32].

n = 0.01 fm−3 ξ̇ = 10−7c/fm NSE
YP Mfree neutrons A± σA Z ± σZ Mfree neutrons A± σA Z ± σZ Mfree neutrons A Z
0.1 0.6523 82.32 ± 19.02 23.83 ± 5.81 0.6578 99.18 ± 17.42 29.20 ± 5.57 Unavailable
0.2 0.3587 100.48 ± 21.50 31.36 ± 7.02 0.3704 136.12 ± 20.32 43.29 ± 6.72 0.3335 179.3 53.80
0.3 0.1271 111.70 ± 26.69 38.39 ± 9.58 0.1367 166.74 ± 34.71 57.95 ±12.44 0.0475 184.4 58.07
0.4 0.0112 106.57 ± 28.18 43.11 ± 11.45 0.0115 190.25 ± 29.34 76.94 ±11.83 0.0001 194.4 77.75

TABLE V: Average final ratio N/Z for clusters in simulations
with T = 0.75 MeV and T = 1.0 MeV.

Yp Z/N Z/N
0.75 MeV 1.0 MeV

0.05 0.442 0.500
0.10 0.478 0.535
0.20 0.517 0.578
0.30 0.561 0.628
0.40 0.672 0.729

result simply shows that the MD model is not reliable
at such low temperatures. Although our observation is
consistent with Alcain et al., it is worth mentioning the
nuclear potential in their work differs slightly from ours.

D. Simulations with 409 600 Nucleons

We perform simulations containing 409 600 particles
for three reasons: (1) to test the scaling of our code
performance, which is discussed in the appendix; (2) to
check for finite size effects, see discussion in Ref. [34];
and (3) to specifically obtain better cluster statistics for
the YP = 0.05 cases, see Fig. 7. With 51 200 particles
at YP = 0.05 the simulation only contains 2 560 protons,
which yields the poor Gaussians in the first column in
Figs. 1, 2, 3, & 4.

Aside from the poor cluster statistics at low proton
fractions, we observe negligible finite size effects. Simu-
lations with 409 600 particles are in good agreement with
simulations using 51 200 particles. In particular, we ob-
serve that the mass fraction of free neutrons, mean clus-
ter charge, and mean cluster mass are in good agreement
with results found in Secs. III B & III C.

IV. CONCLUSIONS

We have performed molecular dynamics (MD) simula-
tions of the decompressing nuclear matter that may be
ejected during neutron star mergers. We slowly expand
a simulation volume and then analyze the final configu-
rations for the different kinds of nuclei (clusters) present.
We find that as long as the expansion rate is not too high
and the temperature is not too low the system appears to

attain nuclear statistical equilibrium when decompressed.
In general, at temperatures of 0.75 and 1.0 MeV, ex-
panding MD simulations at rates of ξ̇ = 10−7 c/fm or
slower produces distributions of nuclei similar to many
nuclear statistical equilibrium (NSE) models. Expansion
at faster rates do not allow the clusters to attain NSE
and produces a greater spread in the masses and charges
of the final clusters.

This simple MD model can describe matter over a
large range of densities where the system may be uni-
form nuclear matter, a variety of complex nuclear pasta
phases, or a collection of more or less isolated nuclei. At
lower densities we reproduce many features of NSE mod-
els, such as the mass fraction of free neutrons and the
mean mass and charge of heavy nuclei. Therefore, our
model can describe matter at high densities, during the
initial stages as it is ejected during neutron star mergers,
through latter stages where nuclei and free neutrons pro-
vide the initial conditions for more conventional nuclear
reaction network calculations of nucleosynthesis.

Traditional nucleosynthesis calculations involve a high
density description using a simplified astrophysical equa-
tion of state that is somewhat arbitrarily matched to a
nuclear reaction network at low density. This high den-
sity equation of state often does not include complex
pasta shapes. Merger simulations with the EOS are used
to predict initial conditions of proton fraction and en-
tropy for a different low density description involving an
explicit reaction network. The simplified high density de-
scription could lead to errors in the initial conditions for
the reaction network because it may not be able to ac-
curately treat weak interaction rates or thermodynamic
properties of nuclear pasta.

Instead, our MD simulations can be used to describe
the system in a unified framework valid over a range of
both high and low densities. Therefore these simulations
will allow more accurate determinations of the initial con-
ditions for more traditional nucleosynthesis reaction net-
works. In future work we will use our simulations to pre-
dict a variety of weak interaction rates for charged lep-
ton and neutrino capture on the complex nuclear pasta
phases. This will provide better predictions for the ini-
tial proton fraction and temperature of the neutron rich
matter ejected in NS mergers.
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FIG. 1: (Color online) Distribution of cluster masses for T = 0.75 MeV (top row) and T = 1.0 MeV (bottom row) for proton
fractions YP = 0.05, 0.10, 0.20, 0.30, and 0.40 (columns) from simulations of 51 200 nucleons at a density of n = 0.00125 fm−3.
The mass fraction of free neutrons mn is indicated.
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FIG. 2: (Color online) Distribution of charge for T = 0.75 MeV (top row) and T = 1.0 MeV (bottom row) for proton fractions
YP = 0.05, 0.10, 0.20, 0.30, and 0.40 (columns) from simulations of 51 200 nucleons at a density of n = 0.00125 fm−3. The mass
fraction of free neutrons mn is indicated.
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Appendix: GPU code

The simulations in this work were computed using a
new version of the Indiana University Molecular Dynam-
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FIG. 4: (Color online) Distribution of charge for T = 0.5 MeV for proton fractions YP = 0.05, 0.10, 0.20, 0.30, and 0.40 from
simulations of 51 200 nucleons at a density of n = 0.00125 fm−3.

ics (IUMD) Fortran code, which has been modified from
our previous work Ref. [5] to run on the GPU nodes of
the Big Red II supercomputer at Indiana University.

1. The IUMD code

The IUMD code has been used for a decade and run
on the original Big Red supercomputer at Indiana Uni-
versity (an IBM JS21), and the Kraken supercomputer
at Oak Ridge National Lab (a Cray XT5). Both these
machines consisted of general purpose multi-core CPU
nodes.

In mid 2013, Indiana University acquired a Cray
XE6/XK6 supercomputer. The XE6 part of the machine
consists of 344 general purpose dual 16-core CPU nodes.
The XK6 part consists of 676 accelerated nodes, contain-
ing one 16-core CPU and one Nvidia Kepler K20 GPU
[35]. A new version of IUMD (version 6.3.1) was cre-
ated to take advantage of the powerful accelerated nodes.
IUMD 6.3.1 is explained in greater detail in [8]. Here we
explain it only enough to understand the performance we
observed in our expansion runs.

IUMD is a parallel Fortran code which uses MPI to
pass data between nodes, OpenMP on each CPU to take
advantage of its 16 cores, and CUDA Fortran to take ad-
vantage of the GPUs. In discussing the code, it is helpful
to think of the two-particle interactions as making up
a force matrix, whose ij element is the force f ij that
source j exerts on target i. Overall of course, targets

and sources are the same particles. In IUMD the force
matrix is partitioned into a P × Q block matrix, where
PQ is the total number of MPI processes (nodes). Each
MPI process is responsible for calculating forces repre-
sented by one block. Note that this decomposition is an
abstract one, rather than one based on geometry. Tar-
gets and sources are distributed randomly among MPI
processes so that each process is responsible for the en-
tire simulation volume, but only a fraction of the targets
and sources in the volume. This is different from parallel
algorithms where each process is responsible for all parti-
cles in a subvolume. The advantage of IUMD is particles
do not have to be transferred from process to process as
they move from one subvolume to another. Orchestrat-
ing such transfers involves a level of coding complexity
that may be difficult to optimize. The disadvantage of
IUMD is that an MPI Allreduce must be performed to
combine partial forces from different processes to get the
total force on a target. However, this is a single call to an
MPI subroutine that hopefully has been optimized in the
MPI library. A similar MPI Allreduce is used to update
source particle positions each time step. Again, see [8]
for details.

The force calculation is by far the most time consum-
ing part of each time step. It consists of a short-range
two-nucleon nuclear force, and a screened Coulomb force
between protons. IUMD calculates the nuclear force on
the CPUs using an efficient neighbor list algorithm. Each
target’s neighbor list consists of those sources within dis-
tance rnuc + δrnuc. Forces are calculated only for those
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FIG. 5: (Color online) Atomic number Z and neutron num-
ber N of nuclides for simulations at T = 0.75 MeV with YP =
0.05, 0.10, 0.20, 0.30 and 0.40 described in Sec. III B.

sources within interaction range rnuc; however, sources
within a halo of thickness δrnuc are included in the list
so it does not have to be rebuilt every time step. Rather,
a target’s list needs to be rebuilt only when the distance
it has moved, plus the maximum distance any source on
its node has moved exceeds δrnuc. For only then is it
possible that a source not in the target’s list could have
come into interaction range. Since rebuilding neighbor
lists is time-consuming and disruptive, all lists on all pro-
cesses are rebuilt if any one list needs to be. We set
rnuc = 11.5 fm for the runs in this paper. Due to the
rapid decrease of the nuclear force, it will rarely regis-
ter for separations greater than this, even in 64-bit IEEE
arithmetic.

While the CPUs calculate the nuclear force, the GPUs
calculate the screened Coulomb force using a simple all-
pairs, or particle-particle (PP) algorithm. The work for
each process to calculate the screened Coulomb force
scales like (YPN)2/PQ, where N/P and N/Q are the
number of targets and sources on each process. With
work rising as the square of the number of particles, the
PP algorithm would seem to be very inefficient. However,
each Kepler K20 GPU on BigRed II contains 2496 single
precision floating point cores, 832 double precision cores,
and 416 special function units for computing square root,
exponential and trigonometric functions. This is a pow-
erful computational capacity for implementing simple,
straightforward algorithms, whereas complex algorithms
may not work so well. Thus we keep the algorithm as
simple as possible, eschewing even the use of Newton’s
Third Law, as it entails branching that would slow the
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FIG. 6: (Color online) Atomic number Z and neutron num-
ber N of nuclides for simulations at T = 1.0 MeV with YP =
0.05, 0.10, 0.20, 0.30 and 0.40 described in Sec. III B.

GPU. We depend instead on the Kepler K20’s massive
parallelism. In the next section we show that for 51 200
nucleons, Yp <= 0.400 and densities of interest in nuclear
pasta research, the PP algorithm running on GPUs still
finishes before the neighbor list algorithm on the CPUs.
Even for 409 600 nucleons it outperforms the CPU at low
proton fractions.

2. Performance

The PP algorithm for the Coulomb interaction takes
order O((YpN)2/PQ) amount of work per process. For
a fixed number of nucleons, it therefore scales as the
square of the proton fraction. On the other hand, the
work involved in the neighbor list algorithm for the nu-
clear force is independent of Yp, but depends linearly on
density, because the the number of sources within inter-
action range of each target depends linearly on density.
We therefore expect the work to calculate the nuclear
force for all N/P targets on a process to be of order
O((N/P )(4π/3)(rnuc + δrnuc)

3(n/Q)). To this should
be added the work to build neighbor lists. How fre-
quently neighbor lists need to be rebuilt depends on
the density and temperature of the system. We chose
δrnuc = 4.0 fm, to reduce the frequency, while still keep-
ing lists relatively short. With this value of δrnuc we
found that neighbor lists were rebuilt approximately ev-
ery ten timesteps for high temperatures and densities,
and every hundred time steps for low density, low temper-
ature, equilibrium systems. The algorithm IUMD uses to
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FIG. 7: (Color online) Charge fractions (left) and mass frac-
tions (right hand side) for simulations of 409 600 particles at
T = 0.5, 0.75, and 1.0 MeV with YP = 0.05 as described in
Sec. III D. The mass fraction of free neutrons mn is indicated
on the left hand panels.

build neighbor lists involves dividing the simulation vol-
ume into cubical cells of width rnuc + δrnuc and check-
ing only sources in a target’s cell and its 26 neighbor-
ing cells. The work in this algorithm is thus of order
O(27(N/P )(rnuc + δrnuc)

3(n/Q)), the same order as the
nuclear force calculation itself. The exact coefficients in
this estimate and the nuclear force calculation were not
determined, but the work to decide if a source should go
in a neighbor list is much less than calculating the force
it exerts. Thus the neighbor list build may be noticeable,
but still a small fraction of the force calculation.

We collected timing data from the simulations de-
scribed in Sec. III B and Sec. III D to check the above
workload estimates. These simulations involved 51 200
and 409 600 particles, run on 32 and 128 GPU nodes re-
spectively. The simulations were evolved for 3×107 fm/c
with 2 fm/c per timestep on Big Red II, and were ex-

panded at a rate of ξ̇ = 10−7 c/fm, starting at an
initial nucleon density of 0.08 fm−3 and decreasing to
0.00125 fm−3. Since the density was monotonically de-

creasing the average time per MD timestep could be cal-
culated from timestamps on checkpoint files output by
the program every 5× 105 timesteps during the 15× 106

timesteps of the run.

Figure 8 shows the average time per MD timestep as
a function of density for the five proton fractions we ran
with 51 200 nucleons. For Yp = 0.05 and 0.10 time de-
creases almost linearly as density decreases, in accord
with our model for the work involved in the nuclear calcu-
lation. This indicates the nuclear calculation takes longer
than the Coulomb at all densities. We call this the lin-
ear case. For Yp = 0.40 time decreases linearly from

n = 0.06 to 0.01 fm−3, then flattens out. For this proton
fraction the nuclear force calculation takes longer above
0.01 fm−3, while the Coulomb calculation takes longer
below 0.01 fm−3. We call this the broken linear case.

For Yp = 0.20 and 0.30 the decrease is linear for high
density, but slower and nonlinear at lower density. Ac-
cording to our simple model, if the performance model is
not linear or broken linear, then the Coulomb calculation
should take longer at all densities, which we call the flat
performance case. However, these two proton fractions
fit none of these cases. What the model does not take into
account, is that the size of neighbor lists actually depends
on local density rather than mean density. As nucleons
cluster into pasta shapes, or nuclei at very low mean den-
sity, the local density inside clusters goes to saturation
density, while outside is a low density gas of neutrons,
a few free protons and alpha particles. Thus the curves
for Yp = 0.05 and 0.10 are linear because there are few
clusters. For Yp = 0.40 clusters have not yet formed by
the time mean and local density diverge. However, for
Yp = 0.20 and 0.30 clusters do form while the nuclear
force calculation still dominates, so the curves gradually
flatten. Note that at about n = 0.005 fm−3 the curve ap-
pears to suddenly go horizontal. This may be the point
at which the Coulomb calculation finally dominates the
time.

The slopes of the curves do appear to depend on proton
fraction and temperature. At T = 1.00 MeV, neighbor
lists are rebuilt more often. Since the work to do that
depends linearly on density, they increase the coefficient
in the order estimate, thus increasing the slope.

One odd characteristic of Figure 8 is that the curves
do not all start at the same point at n = 0.06 fm−3.
Other tests we did to investigate this indicate it is due
to differences in the way MPI communication is set up
between different runs. Either the node set allocated
to the run, or the way the MPI runtime system places
processes on nodes, may affect the efficiency of message
passing.

In Figure 9 we show the time per MD timestep for the
N = 409600 nucleon run for Yp = 0.05 on 128 nodes.
Because of the low proton fraction, the nuclear calcula-
tion dominates at all densities, resulting in the nearly
linear decrease in time as density decreases. Again there
is a slight temperature dependence, being greater for
T = 1.00 MeV. Finally, we note the dependence on N .
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This run involved eight times as many nucleions on four
times as many nodes (128 vs. 32). According to our
model for the nuclear force, the run should have therefore
taken twice as long. Figure 9 shows it performed better
than this, taking on average only about 1.6 times as long.
This may be due to better performance of the MPI com-
munication for larger messages, and better performance
in the velocity Verlet update with a larger number of
particles.

In general, we observe that lower proton fractions can
be computed the fastest and speed up with decreasing

density, while higher proton fractions take longer to com-
pute and only slightly accelerate for decreasing densi-
ties. We observe negligible dependence on temperature.
While the 409 600 particle simulations mark an eightfold
increase in the number of particles from the 51 200 par-
ticle runs, they were only run on four times the GPU
nodes. In good agreement with our prediction of perfor-
mance scaling linearly with N , we observe the time-per-
timestep to double at high density, but to only increase
by ∼ 50% for very low density.
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FIG. 8: (Color online) Performance of the IUMD GPU code
for the 15 simulations described in Secs. III B & III C. All
computations were performed using 51 200 particles with 32
GPU nodes on Big Red II.
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FIG. 9: (Color online) Performance of the IUMD GPU code
for the 3 simulations described in Sec. III D. All simulations
were performed using 409 600 particles, YP = 0.05, with 128
GPU nodes on Big Red II.
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