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Time evolution of electromagnetic field created in heavy-ion collisions strongly depends

on the electromagnetic response of the quark-gluon plasma, which can be described by the

Ohmic and chiral conductivities. The later is intimately related to the Chiral Magnetic Effect.

I argue that a solution to the classical Maxwell equations at finite chiral conductivity is

unstable due to the soft modes k < σχ that grow exponentially with time. In the kinematical

region relevant for the relativistic heavy-ion collisions, I derive analytical expressions for the

magnetic field of a point charge. I show that finite chiral conductivity causes oscillations of

magnetic field at early times.

I. INTRODUCTION

Collision of relativistic heavy-ions produces hot nuclear matter that can be described using the

relativistic hydrodynamics [1, 2]. I will refer to this matter as the Quark-Gluon Plasma (QGP)

leaving aside the issues of its equilibration and thermalization. Valence electric charges of the col-

liding ions are not a part of the plasma, as they continue on the incident trajectory along the beam

directions with very little deflection [3]. However, they create strong electromagnetic field (EMF)

that influences the plasma behavior [4–9]. Electrically conducting plasma responds by generating

induced EMF. The resulting EMF is a solution to a complicated magneto-hydrodynamic problem.

As a first approximation, one can rely on slow time-dependence of the relevant kinetic coefficients

on time to decouple the Maxwell equations from the time evolution of the QGP. Analytical solution

to these equations shows that the EMF decreases with time much slower than in vacuum and is

approximately collision energy independent; rather it depends only on the impact parameter and

the electrical conductivity of the QGP [4, 10–12]. Numerical simulations that take into account

the QGP expansion [13] qualitatively agree with this conclusion.∗

It has been recently realized that kinetic properties of the QGP reflect the nontrivial topological

structure of the QCD. In particular, the QGP responds to the chirality imbalance by generating

metastable parity-odd domains. In the presence of external magnetic field such a metastable

∗ A different strength of EMF in [13] and [11] is due to different initial time at which the plasma evolution starts.
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domain induces a parallel to it electric field, which is known as the Chiral Magnetic Effect (CME)

[9, 14–17]. Electric current generated by the CME is proportional to the external magnetic field,

with the chiral conductivity σχ being the proportionality coefficient. In this paper, I study the

electromagnetic field generated by valence charges at finite chiral conductivity and determine the

role of the Chiral Magnetic Effect (CME) in the electromagnetic field dynamics in the QGP.

I found a two-fold effect of the CME on the electromagnetic field evolution. Firstly, the field

becomes unstable because soft modes with k < σχ grow exponentially with time. For the QGP

this effects is of little importance since the largest wavelength 1/k that is allowed in QGP is much

smaller than 1/σχ. However, in non-Abelian plasmas with large spatial extent this is an important

phenomenon that may lead to a breakdown of electromagnetic field into a set of knots with non-

trivial topology.† Secondly, due to finite chiral conductivity, magnetic field, produced by valence

electric charges, oscillates at early times after a heavy-ion collision. These oscillations may result

in partial cancelation of the magnetic field effects, when averaged over time.

The paper is structured as follows: In Sec. II I describe the Maxwell-Chern-Simons (MCS)

theory, which is an elegant way to incorporate the topological effects in QED. In the MCS the

chiral conductivity arises from the time-dependent θ-angle. Following [24] I consider a simplest

model with constant σχ. In Sec. III I solve MCS equations away from charges and show that the

dispersion relation of electromagnetic wave contains an unstable mode at k < σχ. In Sec. IV I derive

expressions for the electromagnetic field of a relativistic point charge and discuss its properties.

Explicit analytical expressions for the magnetic field of a point charge is derived in Sec. V in the

diffusion approximation, which is appropriate for the relativistic heavy-ion collisions. The main

result, shown in Fig. 2, indicates that at finite chiral conductivity, magnetic field components

oscillate at early times. I discuss these results and conclude in Sec. VI.

II. MAXWELL-CHERN-SIMONS EQUATIONS

The Lagrangian of electrodynamics coupled to the topological charge carried by the gluon field,

the so-called Maxwell-Chern-Simons theory, reads [17, 25–27]

L = −1

4
FµνFµν −Aµjµ −

c

4
θF̃µνFµν , (1)

† A different type of “chiral plasma instabilities” has been recently discussed in [18–23].
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where c = Nc
∑

f q
2
fe

2/2π2. An external pseudo-scalar field θ depends on the medium properties

and originates in the QCD Lagrangian. The corresponding field equations are given by ‡

∇ ·B = 0 , (2)

∇ ·E = ρ− c∇θ ·B , (3)

∇×E = −∂tB , (4)

∇×B = ∂tE + j + c(∂tθB + ∇θ ×E) . (5)

Time-derivative θ̇ = µ5 can be identified with the axial chemical potential µ5 [16, 17]. The part of

the anomalous current density proportional to the magnetic field can be written down as j = σχB,

where

σχ = µ5
e2

2π2
Nc

∑
f

q2f (6)

is the chiral conductivity induced by the QED anomaly [29]. The θ-angle is believed to be finite

inside metastable regions of size ∼ 1/g2T . On average it must vanish 〈θ〉 = 0 to preserve the global

CP-invariance of the QCD. Its space and time dynamics is complicated: shortly after a heavy-ion

collision it is determined by the colored fields of glasma [30–32], while at later time by the sphaleron

transition dynamics [20–23].

Since the detailed structure of inhomogeneous field θ is unknown, one has to resort to phe-

nomenological models in order to study its effect on the electromagnetic field dynamics (see e.g.

[32]). The simplest model that captures the essential dynamics of the CME effect, and that we

adopt in the present study, is to neglect the space variation of θ and approximate σχ by a con-

stant. In other words we set ∇θ = 0 and σχ = const. This model was used in [33] to discuss

non-trivial static topological solutions of (2)–(5) (see below) and in [24] to numerically investigate

time-evolution of magnetic field. The main advantage of this model is that it can be analytically

solved and thus provides important insights into the dynamics of the electromagnetic fields in the

presence of the chiral anomaly. Moreover, it is argued in [34, 35] that θ may actually be a slow

function of x that permits expansion θ ≈ θ0 + µ5t+ c−1P · r with constant µ5 and P .

Consider now the system of equations (2)–(5) in the absence of electric charges, with the as-

sumptions discussed in the previous paragraph. It has non-trivial stationary solutions with finite

‡ The correct signs in front of the anomalous terms where derived in [28].
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magnetic field and vanishing electric field that satisfies the following equations [36–38]:

∇ ·B = 0 , (7)

∇×B = σχB . (8)

It is argued in [33] that since the anomalous current j = σχB exists only in the deconfined phase

occupying a domain of finite volume D, there is no outward current on its boundary. This implies

the boundary condition

r̂ ·B
∣∣
∂D

= 0 . (9)

Solution to (7)-(9) is a system of magnetized knots of different sizes. In a simplest case of spherical

boundary the possible values of its radius are

Rn =
κn
σχ

, n = 0, 1, 2, . . . . . . , (10)

where n enumerates zeros of spherical Bessel functions κn. The smallest of κ’s is κ0 ≈ 4.5, which

for a realistic σχ yields R0 ≈ 200 fm. R0 is much larger than a characteristic transverse size of

the QGP RA ∼ 6 − 10 fm and thus has no effect on the QGP phenomenology. It is possible that

magnetic knots are artifacts of our model for the θ-angle. It is far from clear whether any static

topological solutions survive in a more realistic model.

III. INSTABILITY OF ELECTROMAGNETIC WAVES IN INFINITE PLASMA

Consider electromagnetic waves propagating in plasma far from any sources. In a conducting

medium Maxwell equations for the electromagnetic field read

∇ ·B = 0 , (11)

∇ ·D = 0 , (12)

∇×E = −∂tB , (13)

∇×H = ∂tD + σχB . (14)

D is electric displacement vector. We will assume that µ = 1. Fourier transformation

E(r, t) =

∫
d4k

(2π)4
e−ik·xEω,k , B(r, t) =

∫
d4k

(2π)4
e−ik·xBω,k (15)
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where x = (t, r), k = (ω,k) yields Maxwell equations in momentum space

k ·Bω,k = 0 , (16)

εk ·Eω,k = 0 , (17)

k ×Eω,k = ωBω,k , (18)

k ×Bω,k = −ωεEω,k − iσχBω,k , (19)

where Dω,k = εEω,k. In electrically conducting medium with the Ohmic conductivity σ the

permittivity is ε = 1 + iσ/ω, Taking vector product of (19) with k and using (16) and (18) we get

Bω,k[ω(ω + iσ)− k2] = −iσχk ×Bω,k . (20)

Taking another vector product with k gives

(k ×Bω,k)[ω(ω + iσ)− k2] = iσχk
2Bω,k . (21)

Equations (20) and (21) have a non-trivial solution only if the following dispersion relation is

satisfied

[ω(ω + iσ)− k2]2 = σ2χk
2 . (22)

It has four solutions

ωλ1,λ2 = − iσ
2

+ λ1

√
k2 + λ2σχk − σ2/4 , (23)

where λ1, λ2 = ±1 and k =
√
k2 ≥ 0. These solutions determine the time dependence of electro-

magnetic wave as ∼ e−iωλ1,λ2 t.

Let κ2 = k2 + λ2σχk − σ2/4. When κ2 > 0 the electromagnetic wave oscillates with frequency

κ and is damped over the distance 1/σ. This corresponds to momenta

k > k0 ≡
1

2

√
σ2χ + σ2 − λ2σχ

2
. (24)

For k < k0, κ
2 < 0, and all ωλ1,λ2 ’s become imaginary implying that electromagnetic wave is a

monotonic function of time. At κ2 = −σ2/4, which occurs at k = σχ, λ2 = −1, and λ1 = +1, ω+−

vanishes indicating a stationary mode. Finally, when κ2 < −σ2/4, i.e. k < σχ, λ2 = −1, λ1 = +1

there is an unstable mode with Imω+− > 0 which corresponds to exponentially increasing magnetic

field. Imω+− vanishes at k = 0 and k = σχ and has a maximum value of
(√

σ2 + σ2χ − σ
)
/2 at

k = σχ/2.
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Electromagnetic wave which at some initial time contains modes extending to the region k < σχ

is unstable. This is a usual situation in an infinite plasma. However, in a plasma of spatial size

R there are only modes k & 1/R. Therefore, the instability affects the field evolution only if

R & 1/σχ. In the QGP this condition is not satisfied, except, perhaps, in a very rear fluctuations

of the θ-angle, and hence can be ignored.

IV. ELECTROMAGNETIC FIELD OF A POINT CHARGE

In electrically conducting medium Maxwell equations for the electromagnetic field of a point

charge moving along a straight line z = vt read

∇ ·B = 0 , (25)

∇ ·D = eδ(z − vt)δ(b) , (26)

∇×E = −∂tB , (27)

∇×H = ∂tD + σχB + evẑδ(z − vt)δ(b) . (28)

These equations in momentum space are

k ·Bω,k = 0 , (29)

εk ·Eω,k = −2πieδ(ω − kzv) , (30)

k ×Eω,k = ωBω,k , (31)

k ×Bω,k = −ωεEω,k − iσχBω,k − 2πievẑδ(ω − kzv) . (32)

We repeat the algebraic manipulations of the previous section. Firstly, taking the vector product

of (32) with k and using (29) and (31) we arrive at

Bω,k[ω(ω + iσ)− k2] = −iσχk ×Bω,k − 2πievk × ẑδ(ω − kzv) . (33)

Secondly, we take another vector product with k to obtain

(k ×Bω,k)[ω(ω + iσ)− k2] = iσχk
2Bω,k − 2πievk × (k × ẑ)δ(ω − kzv) . (34)

We are interested in a particular solution to equations (33),(34), namely the one that is generated

by the electric charge e. Solving (33) and (34) yields

Bω,k =
(k × ẑ)[ω(ω + iσ)− k2]− iσχk × (k × ẑ)

[ω(ω + iσ)− k2]2 − σ2χk2
(−2πi)evδ(ω − kzv) . (35)
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Electric field follows from the Faraday law (31) upon taking its vector product with k:

k(k ·Eω,k)− k2Eω,k = ω(k ×Bω,k) . (36)

Substituting (30) and (32) we find

Eω,k =
2πieδ(ω − kzv)[k/ε− vωẑ]− iωσχBω,k

ω(ω + iσ)− k2
, (37)

with Bω,k given by (35).

It will be suitable to write the cross products in (35) in cylindrical coordinates. Let ψ be the

angle between the vector k⊥ and the x-axis, the corresponding unit vector is ψ̂ = −x̂ sinψ+ŷ cosψ.

Then

k × ẑ = −k⊥ψ̂ , (38)

k × (k × ẑ) = kzk⊥ − k2⊥ẑ . (39)

Using identities (38),(39) in (30), substituting the result into (15) and taking integral over kz we

find

B = ie

∫ +∞

−∞

dω

2π

∫
d2k⊥
(2π)2

k⊥ψ̂[ω(ω + iσ)− k2⊥ −
ω2

v2
] + iσχ(k⊥

ω
v − k

2
⊥ẑ)

[ω(ω + iσ)− k2⊥ −
ω2

v2
]2 − σ2χ(k2⊥ + ω2

v2
)

e−iωx−+ik⊥·b . (40)

where x− = t− z/v.

Time dependence of magnetic field is determined by the poles of (35) in the plane of complex

ω. These poles are solutions of the following quartic equation[
ω(ω + iσ)− k2⊥ −

ω2

v2

]2
− σ2χ

(
k2⊥ +

ω2

v2

)
= 0 . (41)

Eq. (41) can be obtained from the dispersion relation (22) of a free wave by restricting it to the

particle equation of motion kz = ω/v. Introducing γ = (1 − v2)−1/2 allows us to cast (41) in a

more convenient form (
− ω2

v2γ2
+ iωσ − k2⊥

)2

− σ2χ
(
ω2

v2
+ k2⊥

)
= 0 . (42)

Four solutions to this equation can be found using the standard algebraic methods. However, they

are quite bulky, so I am not reproducing them here. Instead, I find it more illuminating to plot

them at fixed σ, σχ and γ for different values of k⊥ as shown in Fig. 1.

Position of the four poles at k⊥ → 0 can be found by expanding (42), which gives three distinct

solutions ω = 0 and ω = v2γ2(iσ±σχ). The former corresponds to the minimum value of the lower

branches, while the later to the minimum values of the upper branches. Thus, the upper branches
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FIG. 1: Four solutions of (42) at σ = 5.8 MeV, σχ = 1 MeV, γ = 100. Horizontal and vertical axes are in

units of GeV. Each line is a unique function of k⊥. Squares, circles and triangles indicate the positions of

the poles at k⊥ = 0.1, 0.6, 1.1 GeV respectively.

are separated from the real axis by a gap v2γ2σ. The absolute value of the real part of the upper

branches decreases monotonically with k⊥. At k⊥ →∞

ω ≈ ±ivγk⊥ ±
1

2
vγσχ

√
γ2 − 1 , (43)

Thus, the real value of ω of upper branches approaches a constant at large k⊥, which indicates

that a gap of size ∼ γ2σχ exists also between the upper branches and the imaginary axis. In the

ultra-relativistic limit v → 1, or γ →∞, the upper branches move to infinity. Since the poles in the

upper-half plane determine the electromagnetic field at x− < 0, it gets exponentially suppressed

at γ � 1.

Behavior of the electromagnetic field at x− > 0 is determined by the two poles in the lower

half-plane. Unlike the poles in the upper half-plane they stay finite in the ultra-relativistic limit.

One of the lower branches exhibits a peculiar behavior by crossing the real axis and acquiring a

positive Imω when k⊥ < σχ. This is a way in which the field instability discussed in the previous

section manifests itself in this case. (This feature is not readily seen in Fig. 1 due the small value

of σχ). Existence of a pole in the upper-half plane implies that the field of a point charge moving

along x− = 0 receives acausal contribution, viz. a term that is finite at x− < 0 when γ → ∞.

Fortunately, transverse momenta as small as k⊥ ∼ σχ are not relevant in relativistic heavy-ion

phenomenology allowing me to neglect the acausal contribution. This however does not resolve a

theoretical problem that the acausal term presents.§

§ A solution to this problem might be related to existence magnetic knots discussed in Sec. II that also appear at
k ∼ σχ.
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V. DIFFUSION APPROXIMATION

At a given light-cone time x− > 0 the ω-integral in (40) vanishes at ω � 1/x− due to the rapid

oscillation of the integrand. Therefore, at later times the terms in (42) that are quadratic in ω are

suppressed. This correspond to the following “diffusion” approximation:

ω � σv2γ2 , ω � vγk⊥ , (44)

which is tantamount to

x− �
1

σv2γ2
, x− �

b

vγ
, (45)

where we estimated k⊥ ∼ 1/b. Electrical conductivity of the quark-gluon plasma at the critical

temperature is σ = 5.8 MeV [39–42]. For a heavy-ion collision at γ = 100 we estimate 1/σv2γ2 ∼

3 ·10−3 fm. For b ∼ 10 fm, b/γ ∼ 0.1 fm. Taking into account that it takes about 1/Qs ∼ 0.2 fm to

release the color charges from the nuclei wave functions, it follows that approximation (44) applies

to the entire lifetime of the QGP. The precise initial conditions do not play an important role in

the electromagnetic field evolution.

Since the valence quarks are ultra-relativistic, i.e. γ � 1, we will approximate their velocity as

v ≈ 1− 1/2γ2. Then, the dispersion relation (42) in the diffusion approximation takes form

(
iωσ − k2⊥

)2 − σ2χ (ω2 + k2⊥
)

= 0 . (46)

The two solutions of (46), describing the two lower poles in Fig. 1, are

ω1,2 =
−iσk2⊥ ± k⊥σχ

√
k2⊥ − σ2 − σ2χ

σ2 + σ2χ
. (47)

These are the only poles of the Fourier component of magnetic field Bω,k in the complex ω-plane

because the upper poles in Fig. 1 disappear in the limit v → 1. If k⊥ >
√
σ2 + σ2χ, then both

complex-conjugated poles lie in the lower half-plane. If σχ < k⊥ <
√
σ2 + σ2χ, then there are two

poles on the imaginary axis in the lower half-plane. Finally, if k⊥ < σχ, then both poles lie on the

imaginary axis, but ω1 is in the upper-half plane, while ω2 is still in the lower one.

In the diffusion approximation (40) reads

B = −ie
∫
dω

2π

∫
d2k⊥
(2π)2

k⊥ψ̂(iωσ − k2⊥) + iσχ(k⊥ω − k2⊥ẑ)

(σ2 + σ2χ)(ω − ω1)(ω − ω2)
e−iωx−+ik⊥·b (48)

=

∫
d2k⊥
(2π)2

eik⊥·b
∫ +∞

−∞

dω

2π

f(ω)

(ω − ω1)(ω − ω2)
e−iωx− , (49)
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where I denoted

f(ω) = − ie

σ2 + σ2χ

[
k⊥ψ̂(iωσ − k2⊥) + iσχ(k⊥ω − k2⊥ẑ)

]
. (50)

Closing the integration contour in (49) by an infinite semi-circle in the lower half-plane we find at

x− > 0

B =

∫
d2k⊥
(2π)2

eik⊥·b
i

ω2 − ω1

[
e−iω1x−f(ω1)θ(k⊥ − σχ)− e−iω2x−f(ω2)

]
θ(x−) . (51)

The value of σχ probably does not exceed a few MeV at best, while typical k⊥ is in the range

20− 200 MeV corresponding to b’s in the range 1− 10 fm. Therefore, only the case k2⊥ � σ2 + σ2χ

has a practical significance. This allows us to approximate the poles of (47) as follows

ω1,2 ≈
k2⊥(−iσ ± σχ)

σ2 + σ2χ
=

k2⊥
iσ ± σχ

. (52)

Magnetic field at x− > 0 becomes

B ≈
∫

d2k⊥
(2π)2

eik⊥·b
i

ω2 − ω1

[
e−iω1x−f(ω1)− e−iω2x−f(ω2)

]
. (53)

Its polar component is given by

Bφ =

∫
d2k⊥
(2π)2

eik⊥·b
i

ω2 − ω1
ψ̂ ·
[
e−iω1x−f(ω1)− e−iω2x−f(ω2)

]
, (54)

where φ is the angle between the impact parameter b and the x-axis. Integration over the directions

of k⊥ given by the polar angle ψ is done as follows:∫ 2π

0
eik⊥·bψ̂ dψ =

∫ 2π

0
eik⊥b cos(ψ−φ)(−x̂ sinψ + ŷ cosψ) dψ = 2πiJ1(k⊥b)φ̂ , (55)

Using (55) in (54) and substituting (50),(52) we have:

Bφ = −
∫ ∞
0

dk⊥k⊥
2π

iJ1(k⊥b)
ek⊥

2(σ2 + σ2χ)

[
(iσ − σχ)e

−i k
2
⊥x−
iσ+σχ + (iσ + σχ)e

−i k
2
⊥x−
iσ−σχ

]
. (56)

The remaining integral can be done analytically yielding

Bφ =
eb

8πx2−
e
− b2σ

4x−

[
σ cos

(
b2σχ
4x−

)
+ σχ sin

(
b2σχ
4x−

)]
. (57)

Turning to the component of magnetic field aligned along the b-direction we obtain:

Br =

∫
d2k⊥
(2π)2

eik⊥·b
i

ω2 − ω1
k̂⊥ ·

[
e−iω1x−f(ω1)− e−iω2x−f(ω2)

]
. (58)

Angular integration is done using∫ 2π

0
eik⊥·bk̂⊥ dψ =

∫ 2π

0
eik⊥b cos(ψ−φ)(x̂ cosψ + ŷ sinψ) dψ = 2πiJ1(k⊥b)b̂ . (59)
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Plugging the k⊥-component of f from (50) and integrating over k⊥ we derive

Br =
eb

8πx2−
e
− b2σ

4x−

[
σ sin

(
b2σχ
4x−

)
− σχ cos

(
b2σχ
4x−

)]
. (60)

Finally, repeating the by now familiar procedure and using the integral∫ 2π

0
eik⊥·bẑ dψ = 2πJ0(k⊥b)ẑ (61)

we find for the longitudinal field component:

Bz =
eb

4πx2−
e
− b2σ

4x−

[
σ sin

(
b2σχ
4x−

)
− σχ cos

(
b2σχ
4x−

)]
. (62)

It is seen in (60) and (62) that the field components Br and Bz are generated only at a finite chiral

conductivity σχ.

0.2 0.4 0.6 0.8 1.0
t

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

eB/mπ
2

0.2 0.4 0.6 0.8 1.0
t

0.002

0.004

0.006

eB/mπ
2

FIG. 2: Magnetic field of a point charge as a function of time t at z = 0. (Free space contribution is not

shown). Electrical conductivity σ = 5.8 MeV. Solid line on both panels corresponds to B = Bφ at σχ = 0.

Broken lines correspond to Bφ (dashed), Br (dashed-dotted) and Bz (dotted) with σχ = 15 MeV on the left

panel and σχ = 1.5 MeV on the right panel. Note that the vertical scale on the two panels is different.

Eqs. (57),(58) and (62) is the main result of this paper. It shows that at finite σχ, magnetic

field of a point charge acquires two components that are absent in the chirally neutral medium:

the radial and the longitudinal components. All field components oscillate at early times. This is

clearly seen in Fig. 2. The Bz and Br components change sign at light-cone times

x
(n)
− =

b2σχ
4[arctan

σχ
σ + πn]

, n = 0, 1, . . . , (63)

while the Bφ components changes sign at

x̃
(n)
− =

b2σχ
4[− arctan σ

σχ
+ πn]

, n = 0, 1, . . . , (64)

The latest oscillation corresponds to n = 0; it increases with σχ.
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VI. DISCUSSION AND SUMMARY

We discussed the chiral topological effect on electromagnetic field in the Quark-Gluon Plasma.

In our model the anomalous current density is given by j = σχB with constant chiral conductivity

σχ. For the energy and time scales of the QGP this model gives a reasonable physical picture of the

electromagnetic field space-time evolution. There are two major results presented in this paper.

(i) I showed that solutions to the Maxwell equations are not stable in the presence of the chirality

imbalance. It is possible that electromagnetic field collapses into a set of magnetic knots. This

problem certainly deserves a dedicated study and may be important in cosmology. However, as far

as heavy-ion collisions are concerned, this instability has negligible impact on the QGP because

it originates from soft modes k < σχ that do not exist in the QGP of realistic dimensions. The

maximal growth rate of unstable modes is
(√

σ2 + σ2χ − σ
)
/2.

(ii) I derived an analytical expression for magnetic field produced by valence charges in quark-

gluon plasma at finite chiral conductivity σχ. Its components are given by equations (57),(60) and

(62), which indicate emergence of the radial Br and longitudinal Bz components of magnetic field

(as compared to the σχ = 0 case). If σχ is not much smaller than σ, then all components perform

oscillations at early times after the collision. Since magnetic field is strongest at early times, these

oscillations should have important impact on heavy-ion phenomenology. In particular, they may

weaken effects that depend on the magnetic field direction, such as the B-dependent elliptic flow

[43, 44] and charge separation effect [9]. This is especially true for the charge separation effect that

requires sufficiently large σχ.

In this paper, I considered the simplest model that incorporates the chiral anomaly in electrody-

namics. Its main advantages are that it describes the experimentally observable charge separation

in heavy-ion collisions and can be solved analytically. However, it has serious drawbacks as well:

chiral conductivity of a realistic plasma is a complicated function of space and time. Thus, the

main outstanding problem is to find a more realistic model for the chiral anomaly and verify which

of the above results, and to what extent, survive in an improved formulation. This can serve as a

benchmark for the full magneto-hydrodynamical treatment of the problem.
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