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4National Superconducting Cylcotron Laboratory and Department of Physics and Astronomy,

Michigan State University, East Lansing, MI 48824, USA

Background: Ab initio many-body methods have been developed over the past ten years to address closed-shell
nuclei up to mass A ≈ 130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates
to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address
open-shell nuclei are currently under investigation, including ideas which exploit spontaneous symmetry breaking.

Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry
associated with particle-number conservation, as a way to account for their superfluid character. While this route
was recently followed within the framework of self-consistent Green’s function theory, the goal of the present work
is to formulate a similar extension within the framework of coupled cluster theory.

Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the
exact ground-state wavefunction of the system as the exponential of a quasiparticle excitation cluster operator
acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are
derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism
includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m-
scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry
associated with angular momentum conservation.

Results: Proof-of-principle calculations in an Nmax = 6 spherical harmonic oscillator basis for 16,18O and 18Ne
in the BCC approximation are in good agreement with standard coupled cluster results with the same chiral
two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of
U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively
constant for all five nuclei, in both the HFB and BCCD approximations.

Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations
based on single-reference coupled cluster techniques tremendously, i.e. potentially to reach several hundred
additional mid-mass nuclei. The new formalism offers a wealth of potential applications and further extensions
dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the
implementation of three-nucleon forces at the normal-ordered two-body level. Mid-term extensions include the
approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat
both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries.

PACS numbers: 21.10.-k, 21.30.Fe, 21.60.De

I. INTRODUCTION

The coupled cluster method was originally derived by
Coester and Kümmel [1, 2] as an optimal approach to
medium-mass nuclei, compromising between accuracy on
the one hand and computational cost on the other. It
proved fruitful for applications in nuclear physics, see
e.g. the review article [3] and references within. In
these early works in coupled cluster theory in nuclear
physics, one can clearly see the deficiency of the nuclear
forces in operation at the time. However, important for-
mal developments were undertaken, such as the inclusion
of high orders in the expansion (complete singles, dou-
bles and triples excitations as well as partial quadruples
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excitations) [4], and the extension to very large model
spaces [5]. Despite the lack of convergence with early
models of the nucleon-nucleon interaction, experimental
data could be reasonably reproduced after the inclusion
of phenomenological three-body forces [3, 6]. The orig-
inal formulation of coupled cluster theory was also ex-
tended to reach excited states in closed-shell nuclei [7] as
well as states in open-shell nuclei [6]. In the following
decades, coupled cluster theory became the “gold stan-
dard” for ab initio computations in quantum chemistry,
see e.g. the review [8] and references within. In the last
fifteen years, coupled cluster theory has reemerged in nu-
clear physics as a state-of-the-art approach to evaluate
the structure of medium-mass and neutron-rich nuclei
from first principles [9–18], now utilizing modern bare
nuclear forces derived from chiral effective field theory
[19–22] which provide a framework to construct consis-
tently two- and higher-body forces from the underlying
theory of quantum chromodynamics.

Similar ab initio methods in nuclear physics, e.g. self-
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consistent Dyson-Green’s function (SCDyGF) [23–27]
and in-medium similarity renormalization group (IM-
SRG) [28, 29], have been intensively developed in the
last ten years to address nuclei up to mass A ∼ 130 [30].
However, these important developments have been lim-
ited until recently to doubly closed-(sub)shell nuclei plus
those accessible via the addition and removal of one or
two nucleons.

Extending many-body methods to genuinely open-
shell nuclei necessarily complicates the formalism and in-
creases the computational cost. One possible way to over-
come the near degeneracy of the reference state relies on
the development of multi-reference (MR) methods. Re-
cently, a multi-reference IMSRG technique has been for-
mulated and implemented to address (singly) open-shell
nuclei [31] whereas CC-based [32] and IMSRG-based [33]
configuration interaction methods have been proposed as
well. Multi-reference coupled cluster techniques have also
been implemented, both in the nuclear context [6] as well
as more recently in chemistry [34–36].

An alternative route exploits the concept of sponta-
neous symmetry breaking, where U(1) gauge symmetry
associated with particle-number conservation can be bro-
ken to capture the superfluid character of singly open-
shell nuclei in a controlled manner. Addressing doubly
open-shell systems relies on the breaking of another sym-
metry, i.e. SU(2) rotational symmetry associated with
angular momentum conservation, to grasp quadrupole
correlations. The breaking of U(1) symmetry has been
recently exploited within the framework of Green’s func-
tion techniques via the first ab initio application of self-
consistent Gorkov-Green’s function (SCGoGF) theory to
finite nuclei [37–40]. First results in the calcium region
based on realistic two- and three-nucleon chiral forces
show great promise [41].

In this context, the goal of the present work is to ex-
tend single-reference CC theory in a way that allows for
the breaking of U(1) symmetry. We formulate a work-
able Bogoliubov coupled cluster (BCC) theory for nu-
clei by representing the exact ground-state wavefunction
of even-even open-shell nuclei as the exponential of a
quasiparticle excitation cluster operator acting on a Bo-
goliubov reference state in order to extend the reach of
single-reference coupled cluster calculations [42]. A re-
duced form of this theory based on a Bardeen-Cooper-
Schrieffer (BCS) reference state was already formulated
and applied to simplified, e.g. translationally invariant,
geometries [43, 44]. Very recently, the BCS-based ver-
sion of the BCC formalism developed in the present pa-
per was applied, at the doubles level, to the attractive
pairing Hamiltonian problem [45]. Near the transition
point where particle-number symmetry is spontaneously
broken, a high-quality reproduction of exact Richardson
solutions [46, 47] was obtained. The present work derives
BCC theory and, encouraged by the results of Hender-
son et al. [45], applies it for the first time to ab initio
calculations of open-shell nuclei.

The paper is organized as follows. Sections II and III

formulate the general BCC theory before providing fully
expanded expressions of the equations at the singles and
doubles (BCCSD) level in Sec. IV. The diagrammatic
method for the BCC formalism, as well as the full set of
diagrams at play at the BCCSD level, is treated in Sec. V.
Results of the first proof-of-principle calculations are dis-
cussed in Sec. VI. Conclusions are given in Sec. VII, while
two appendices provide additional technical details.

II. BOGOLIUBOV SETTING

A. Hamiltonian

The nuclear Hamiltonian H = Tkin+V +W is the sum
of the kinetic energy operator and of internucleon inter-
actions truncated at the three-body level. The Hamilto-
nian can be expressed in an arbitrary single-particle basis
under the second-quantized form

H ≡
1

(1!)2

∑

pq

tpqc
†
pcq +

1

(2!)2

∑

pqrs

v̄pqrsc
†
pc

†
qcscr

+
1

(3!)2

∑

pqrstu

w̄pqrstuc
†
pc

†
qc

†
rcuctcs , (1)

employing antisymmetric matrix elements of two- and
three-body interactions.
As self-bound systems, the center-of-mass motion of

nuclei can be separated from the motion of the nucleons
relative to it.1 Being interested in the intrinsic energy of
the system, we subtract the center-of-mass contribution
to the Hamiltonian

Hrel = H −Hcm = T 1B
rel + [V + T 2B

rel ] +W , (2)

where the relative kinetic energy was decomposed into
one- and two-body contributions defined respectively as

T 1B
rel ≡

(

1−
1

A

)

∑

i

p
2
i

2M
, (3a)

T 2B
rel ≡ −

1

A

∑

i<j

pi · pj

M
, (3b)

with pi the momentum of the i-th nucleon, M the nu-
cleon mass and A the number of nucleons. In Eq. (3),
the term 1/A should really be seen as the inverse of the
particle-number operator A. While it can be straight-
forwardly replaced by the number A in particle-number-
conserving theories, it is not the case for the BCC scheme
developed here once the many-body expansion is trun-
cated, as good particle number is then only conserved
on average. It could however be shown [49] that the

1 This separation was demonstrated in practical CC applica-
tions [15, 48], while its verification in the BCC framework will
be a subject of future investigation.
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form given in Eq. (3) constitutes the leading term of an
expansion in the operator A−1. This constitutes the ap-
proximation used in the present work. All throughout
the remainder of the paper, Tkin actually stands for T 1B

rel
while V really denotes V + T 2B

rel .

B. Bogoliubov algebra

The unitary Bogoliubov transformation connects
single-particle {cp; c

†
p} to quasiparticle {βα;β

†
α} creation

and annihilation operators according to [50]

β†
α =

∑

p

Upα c†p + Vpα cp , (4a)

βα =
∑

p

U∗
pα cp + V ∗

pα c†p . (4b)

Quasiparticle operators obey anticommutation rules such

that {βα, ββ} = {β†
α, β

†
β} = 0 and {βα, β

†
β} = δαβ .

The Bogoliubov product state, which carries even
number-parity as a quantum number, is defined as

|Φ〉 ≡ C
∏

α

βα|0〉, (5)

and is the vacuum of the quasiparticle operators, i.e.
βα|Φ〉 = 0 for all α. In Eq. (5), C is a complex normal-
ization. As quasiparticle operators mix particle creation
and annihilation operators (see Eq. (4)), the Bogoliubov
vacuum breaks U(1) symmetry associated with particle
conservation, i.e. |Φ〉 is not an eigenstate of the particle-
number operator, except in the particular limit where it
reduces to a Slater determinant.

C. Normal ordering

A Lagrange term is required to constrain the particle
number to the correct value on average, such that the
grand canonical potential Ω ≡ H − λA is used in place
of H . BCC theory is best formulated in the quasipar-
ticle basis introduced in Eq. (4) by normal ordering Ω
with respect to |Φ〉 via Wick’s theorem. Normal ordering
an operator with respect to a particle-number-breaking
product state invokes two types of elementary contrac-
tions, i.e. respectively the normal and anomalous one-
body density matrices [50]

ρqp ≡
〈Φ|c†pcq|Φ〉

〈Φ|Φ〉
, (6a)

κqp ≡
〈Φ|cpcq|Φ〉

〈Φ|Φ〉
. (6b)

The normal density matrix is hermitian (ρ† = ρ) while
the anomalous density matrix or pairing tensor is skew-
symmetric (κT = −κ). With recourse to Eq. (4), these
quantities can be written as

ρ = V ∗V T , κ = V ∗UT . (7)

Once the reference vacuum (i.e. U and V matri-
ces) is specified, the matrix elements of the various
normal-ordered contributions to Ω can be calculated and
stored. In the BCC method developed in Sec. III, the
normal-ordered form of Ω is determined once during the
initialization of the calculation, and is then employed
consistently throughout the iterative process of solving
the BCC equations. Performing the normal ordering
is tedious but straightforward. Explicit expressions of
normal-ordered Hamiltonian with respect to a Bogoli-
ubov vacuum have been given in, e.g., Ring and Schuck
[50]. In the present work, we extend this result in two
respects. First, we provide full-fledged expressions for
a Hamiltonian containing three-nucleon forces. Second,
we express the normal-ordered grand canonical potential
in terms of fully antisymmetric matrix elements. The
net result, expressed in terms of the fully antisymmetric
matrix elements defined in Appendix A1, reads as

Ω ≡ Ω[0] +Ω[2] +Ω[4] +Ω[6] (8a)

≡ Ω00 +
[

Ω11 + {Ω20 +Ω02}
]

+
[

Ω22 + {Ω31 +Ω13}+ {Ω40 +Ω04}
]

+
[

Ω33 + {Ω42 +Ω24}+ {Ω51 +Ω15}+ {Ω60 +Ω06}
]

(8b)
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= Ω00 (8c)

+
1

1!

∑

k1k2

Ω11
k1k2

β†
k1
βk2

(8d)

+
1

2!

∑

k1k2

{

Ω20
k1k2

β†
k1
β†
k2

+Ω02
k1k2

βk2
βk1

}

(8e)

+
1

(2!)2

∑

k1k2k3k4

Ω22
k1k2k3k4

β†
k1
β†
k2
βk4

βk3
(8f)

+
1

3!

∑

k1k2k3k4

{

Ω31
k1k2k3k4

β†
k1
β†
k2
β†
k3
βk4

+Ω13
k1k2k3k4

β†
k1
βk4

βk3
βk2

}

(8g)

+
1

4!

∑

k1k2k3k4

{

Ω40
k1k2k3k4

β†
k1
β†
k2
β†
k3
β†
k4

+Ω04
k1k2k3k4

βk4
βk3

βk2
βk1

}

(8h)

+
1

(3!)2

∑

k1k2k3k4k5k6

Ω33
k1k2k3k4k5k6

β†
k1
β†
k2
β†
k3
βk6

βk5
βk4

(8i)

+
1

(2!)(4!)

∑

k1k2k3k4k5k6

{

Ω42
k1k2k3k4k5k6

β†
k1
β†
k2
β†
k3
β†
k4
βk6

βk5
+Ω24

k1k2k3k4k5k6
β†
k1
β†
k2
βk6

βk5
βk4

βk3

}

(8j)

+
1

5!

∑

k1k2k3k4k5k6

{

Ω51
k1k2k3k4k5k6

β†
k1
β†
k2
β†
k3
β†
k4
β†
k5
βk6

+Ω15
k1k2k3k4k5k6

β†
k1
βk6

βk5
βk4

βk3
βk2

}

(8k)

+
1

6!

∑

k1k2k3k4k5k6

{

Ω60
k1k2k3k4k5k6

β†
k1
β†
k2
β†
k3
β†
k4
β†
k5
β†
k6

+Ω06
k1k2k3k4k5k6

βk6
βk5

βk4
βk3

βk2
βk1

}

. (8l)

Let us now make a set of observations to clarify the con-
tent of Eq. (8).

1. Each term Ωij in Eq. (8) is characterized by its
number i (j) of quasiparticle creation (annihilation)
operators. Because Ω has been normal ordered with
respect to |Φ〉, all quasiparticle creation operators
(if any) are located to the left of all quasiparti-
cle annihilation operators (if any). The class Ω[k]

groups all the terms Ωij for which i + j = k. The
first contribution

Ω[0] = Ω00 =
〈Φ|Ω|Φ〉

〈Φ|Φ〉
(9)

denotes the fully contracted part of Ω and is noth-
ing but a (real) number.

2. The subscripts of the matrix elements are ordered
sequentially, independently of the creation or anni-
hilation character of the operators the indices refer
to. While quasiparticle creation operators them-
selves also follow sequential order, quasiparticle an-
nihilation operators follow inverse sequential order.
In Eq. (8i), for example, the three creation opera-

tors are ordered β†
k1
β†
k2
β†
k3

while the three annihi-
lation operators are ordered βk6

βk5
βk4

.

3. Matrix elements are fully antisymmetric, i.e.

Ωij
k1...kiki+1...ki+j

= (−1)σ(P )Ωij

P (k1...ki|ki+1...ki+j)
(10)

where σ(P ) refers to the signature of the permuta-
tion P . The notation P (. . . | . . .) denotes a separa-
tion into the i quasiparticle creation operators and
the j quasiparticle annihilation operators such that
permutations are only considered between members
of the same group.

4. Recent ab initio calculations of mid-mass nuclei
have made clear that contributions from the three-
nucleon interaction need to be included [14, 27, 30,
31, 41]. Still, computational requirements make it
challenging to include them in full. As a result, the
typical procedure consists of truncating the normal-
ordered Hamiltonian by excluding Ω[6] such that
the dominant effect of the three-nucleon interaction
is taken into account through its contribution to
Ω[k] with k ≤ 4.2 This is shown to work well in mid-
mass closed-shell nuclei, although the omitted part
of the three-nucleon interaction may contribute on
the same level as the triples corrections [17]. Fol-
lowing this procedure, the explicit expressions of
Ωij

k1...kiki+1...ki+j
in terms of interaction and (U, V )

matrix elements are provided in Appendix A1 for

2 While this is strictly true in CC calculations [18], MR-IMSRG
calculations of open-shell nuclei as well as SCGF calculations of
closed- and open-shell nuclei truncate the Hamiltonian after nor-
mal ordering it with respect to a partially [31] or fully correlated
state [51], respectively.



5

i+ j ≤ 4. The remaining terms have been derived
and can be used eventually to include the residual,
i.e. Ω[6], part of the three-nucleon force.

D. Hartree-Fock-Bogoliubov reference state

1. Variational problem

The expressions thus far have been formulated for an
arbitrary Bogoliubov vacuum (Eq. (5)). In practical ap-
plications, one must specify the way this vacuum |Φ〉
is actually determined. Several choices are possible: a
Brueckner reference state which maximizes the overlap
with the true ground state [52], a simple BCS state, or
the solution of the variational problem, i.e. using the
Bogoliubov vacuum that solves self-consistent Hartree-
Fock-Bogoliubov (HFB) equations [50] under a set of
symmetry requirements. We focus here on the third op-
tion.
The HFB eigenvalue equation can be expressed [50]

(

h ∆
−∆∗ −h∗

)(

Uα

Vα

)

= Eα

(

Uα

Vα

)

, (11)

where columns (Uα, Vα) of the U and V matrices deter-
mine the quasiparticle operator β†

α of Eq. (4), and where
h and ∆ are defined in Eq. (A2). In actual BCC applica-
tions, the HFB solution will be utilized as the reference
Bogoliubov vacuum. Throughout this work, however, a
general Bogoliubov vacuum is used to derive BCC equa-
tions. Any result depending specifically on the use of
a HFB reference state will have the Bogoliubov vacuum
denoted as |ΦHFB〉.

2. Spectroscopic factors

Although Bogoliubov states do not carry a definite par-
ticle number, it is still useful to discuss the spectroscopic
content associated with |Φ〉. The spectroscopic factors
for the addition (removal) of a nucleon are denoted by
F+
α (F

−
α ) and give [53]

F+
α ≡

∑

p

〈Φ|cp|Φ
α〉〈Φα|c†p|Φ〉 =

∑

p

|Upα|
2
, (12a)

F−
α ≡

∑

p

〈Φ|c†p|Φ
α〉〈Φα|cp|Φ〉 =

∑

p

|Vpα|
2 , (12b)

where the odd number-parity states |Φα〉 describe the
A± 1 systems.

3. Binding energy

The expression of the HFB total energy E0 is obtained
through the normal ordering of Ω with respect to |ΦHFB〉
given that Ω00 = E0 − λA (Eq. (A1a)). The energy

can also be computed from the Galitskii-Koltun sum rule
at play in self-consistent Gorkov-Green’s function the-
ory [37]. This alternative formulation provides a check
for consistency and convergence in the solution of the
HFB equations, and can be written under the form of a
trace over the one-body Hilbert space H1, i.e.

Ω00 = +
1

4πi

∫

C

dω TrH1

{

G11(0)(ω)
[

T − λ+ ω
]}

−
1

6
TrH1

{

Γ3Nρ+∆3Nκ∗
}

, (13)

where G11(0)(ω) denotes the HFB approximation to the
normal Gorkov propagator, while the second line repre-
sents the explicit correction to the standard Galitskii-
Koltun sum rule due to the presence of three-nucleon
forces [51]. The explicit expressions of the Hartree-
Fock Γ3N and Bogoliubov ∆3N fields associated with
the three-nucleon force contribution are provided in
App. A 1. Writing G11(0)(ω) in its Lehmann represen-
tation

G
11(0)
ab (ω) =

∑

α

UaαU
∗
bα

ω − Eα + iη
+

V ∗
aαVbα

ω + Eα − iη
, (14)

where η is an infinitesimally small parameter, the contour
integral in Eq. (13) is effected over the upper-half plane
to obtain

E0 = +
1

2

[

∑

pq

tpq ρqp −
∑

α

(

Eα − λ
)

F−
α

]

−
1

6

[

∑

pq

Γ3N
pq ρqp +∆3N

pq κ∗
qp

]

. (15a)

III. COUPLED CLUSTER THEORY

A. Coupled cluster ansatz

In standard coupled cluster (CC) theory, the ground-
state wavefunction of the system is written in the expo-
nentiated form

|Ψ〉 ≡ eT |Φ〉 , (16)

where |Φ〉 is a Slater determinant and where the cluster
operator T ≡ T1 + T2 + T3 + . . . is the sum of connected
n-tuple excitation operators of the form [54]

T1 ≡
1

(1!)2

∑

ia

tai c
†
aci , (17a)

T2 ≡
1

(2!)2

∑

ijab

tabij c
†
acic

†
bcj , (17b)

T3 ≡
1

(3!)2

∑

ijkabc

tabcijkc
†
acic

†
bcjc

†
cck , (17c)

etc., where the amplitudes tab...ij... are the unknowns to be
determined. As T is expressed in normal-ordered form
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with respect to the Slater determinant |Φ〉, intermediate
normalization 〈Φ|Ψ〉 = 1 is in order. Occupied (hole)
and unoccupied (particle) single-particle states of |Φ〉 can
be distinguished; i.e. label indices a, b, c . . . specifically
denote particle states while labels i, j, k . . . refer to hole
states. As was already clear from above, the notation
p, q, r . . . is used when referring to a general set of single-
particle basis states.
This traditional CC scheme is presently extended to a

Bogoliubov setting where the ground-state wavefunction
of the system is written in the form

|Ψ〉 ≡ eT |Φ〉 , (18)

where |Φ〉 denotes now the Bogoliubov vacuum of Eq.
(5), and where the quasiparticle cluster operator T ≡
T1 + T2 + T3 + . . . is defined by

T1 ≡
1

2!

∑

k1k2

tk1k2
β†
k1
β†
k2

, (19a)

T2 ≡
1

4!

∑

k1k2k3k4

tk1k2k3k4
β†
k1
β†
k2
β†
k3
β†
k4

, (19b)

T3 ≡
1

6!

∑

k1k2k3k4k5k6

tk1k2k3k4k5k6
β†
k1
β†
k2
β†
k3
β†
k4
β†
k5
β†
k6

,

(19c)

etc. The quasiparticle amplitudes tk1k2..., which need
to be determined, are fully antisymmetric, i.e. tk1k2... =
(−1)σ(P )tP (k1k2...), resulting in the (2n!)−1 normalization
factor in the definition of Tn. Similarly to standard CC
theory, the operator Tn is in normal-ordered form with
respect to the Bogoliubov vacuum |Φ〉, which leads to
intermediate normalization 〈Φ|Ψ〉 = 1.

B. Similarity-transformed Hamiltonian

Given the BCC ansatz of Eq. (18), the Schrödinger
equation Ω|Ψ〉 = Ω0|Ψ〉 can be written as

Ω eT |Φ〉 = Ω0 e
T |Φ〉 . (20)

Operating from the left with e−T results in

e−T Ω eT |Φ〉 = Ω0|Φ〉 . (21)

an eigenvalue equation for the non-hermitian similarity-
transformed grand canonical potential

Ω̄ ≡ e−T Ω eT (22)

with ground-state eigenvalue Ω0 and right-eigenfunction
|Φ〉. This operator is referred to as the BCC effective
grand potential.
The Baker-Campbell-Hausdorff expansion allows one

to write

Ω̄ = Ω + [Ω, T ] +
1

2!
[[Ω, T ], T ] (23)

+
1

3!
[[[Ω, T ], T ], T ] +

1

4!
[[[[Ω, T ], T ], T ], T ] + . . . ,

which is an infinite sum of nested commutators. Apply-
ing Wick’s theorem, and given that Tm consists only of
quasiparticle creation operators such that [Tm, Tn] = 0
for all m,n, only terms consisting of at least one con-
traction between Ω and each T operator in the nested
commutators remain. This results in a natural termina-
tion of the infinite expansion in Eq. (23). The grand
canonical potential being presently limited to Ω[k] with
k = 0, 2, 4, Eq. (22) terminates exactly after the term
containing four nested commutators.3 Because non-zero
contractions require quasiparticle operators in the form

〈Φ|βk1
β†
k2
|Φ〉, surviving terms necessarily contain Ω as

the leftmost operator. Thus, Eq. (22) can be rewritten

Ω̄ = Ω +
(

ΩT
)

C
+

1

2!

(

ΩT T
)

C

+
1

3!

(

ΩT T T
)

C
+

1

4!

(

ΩT T T T
)

C
, (24a)

such that Ω̄ ≡ (ΩeT )C, where the subscript C denotes
that only connected terms eventually contribute, i.e. Ω
must have at least one contraction with each T operator.

C. Bogoliubov coupled cluster equations

Operating on Eq. (21) from the left with 〈Φ| and
〈Φαβ...| produces the BCC energy equation

〈Φ|Ω̄N |Φ〉C = ∆Ω0 (25)

along with equations to determine the n-tuple amplitudes

〈Φαβ...|Ω̄N |Φ〉C = 0 , (26)

respectively, where

|Φαβ...〉 ≡ β†
αβ

†
β . . . |Φ〉 . (27)

In Eqs. (25) and (26), one works with

Ω̄N ≡ e−T (Ω− Ω00)eT (28a)

≡ e−T ΩNeT (28b)

≡
(

ΩNeT
)

C
, (28c)

which eliminates the unnecessary evaluation of terms
involving the trivial contribution Ω00 to the normal-
ordered grand canonical potential. The total ground-
state energy E0 is eventually obtained from

Ω0 = Ω00 +∆Ω0 , (29a)

3 If Ω[6] were to be included, the truncation of the expansion would
still occur, but terms with as many as six nested commutators
would contribute.
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≡ E0 − λA . (29b)

It is important to note here, as will be discussed below,
that the chemical potential obtained from the solution of
the HFB equations is in principle different from that ob-
tained in the solution of the BCC equations. Therefore,
one must be careful in evaluating Eq. (29) to obtain E0

correctly, which is of course independent of the chemical
potential and therefore can be written E0 = E0 + ∆H0,
with ∆H0 obtained analogously to ∆Ω0 from4

〈Φ|H̄N |Φ〉C = ∆H0 . (30)

D. Constraint on particle number

The energy and amplitude equations (Eqs. (25)
and (26)) must be solved under the constraint
〈Ψ|A|Ψ〉/〈Ψ|Ψ〉 = A. Even when this condition is im-
posed on the reference state |Φ〉, it is not automatically
maintained for the coupled cluster wavefunction, which
must thus be constrained as well. In practice, of course,
this must be done separately for both the neutron number
N and the proton number Z. In this formal presentation,
A stands for either of them.
It is thus mandatory to compute the average value of

the one-body operator A repeatedly while finding the
cluster amplitudes iteratively, and this for any trunca-
tion scheme of interest (see below). There are various
ways of attacking this problem. One possibility relies
on the Hellmann-Feynman theorem that accesses the av-
erage value of A via the numerical derivative of Ω0 with
respect to the chemical potential. However, the Hellman-
Feynman theorem can exhibit instabilities near phase
transitions, such as those employed by our spontaneous
breaking of U(1) symmetry. In the optimal procedure
[54],

A =
〈Ψ|A|Ψ〉

〈Ψ|Ψ〉
=

〈Φ|eT
†

AeT |Φ〉

〈Φ|eT †eT |Φ〉
(31)

=
〈Φ|A|Φ〉

〈Φ|Φ〉
+ 〈Φ|eT

†

ANeT |Φ〉C (32)

=
〈Φ|A|Φ〉

〈Φ|Φ〉
+ 〈Φ|(1 + Λ)e−T ANeT |Φ〉C , (33)

where the de-excitation operator Λ = Λ1 + Λ2 + . . . is
determined from the solution of the eigenvalue problem
for the left ground state of Ω̄ [54], and where the normal-
ordered part of any operator ON = O−〈Φ|O|Φ〉. We will
describe the evaluation of the particle number in this ap-
proach, but eventually use an approximation to evaluate
the left ground state.

4 In practice, it is more straightforward to determine E0 directly
from Eq. (29), evaluating Ω0 at the BCC chemical potential.

We first normal order the particle-number operator
with respect to |Φ〉, i.e.

A ≡ A[0] +A[2] (34a)

≡ A00 (34b)

+
1

1!

∑

k1k2

A11
k1k2

β†
k1
βk2

(34c)

+
1

2!

∑

k1k2

{

A20
k1k2

β†
k1
β†
k2

+A02
k1k2

βk2
βk1

}

, (34d)

where the expression of the matrix elements are provided
in App. A 2. Given that the reference contribution is
〈Φ|A|Φ〉/〈Φ|Φ〉 = A00 = Tr

[

ρ
]

, the correction to it is

δA = 〈Φ|(1 + Λ) e−T A[2]eT |Φ〉C . (35)

If the Bogoliubov vacuum satisfies the correct parti-
cle number on average, the correction δA must be con-
strained to zero. In practice, lower energies are obtained
using this method (in the approximation discussed in Sec.
IV) relative to those obtained when solving the BCC sys-
tem of equations via the Hellman-Feynman theorem to
evaluate the particle number. This emphasizes the dan-
ger in employing the Hellmann-Feynman theorem near
phase transitions.
In addition to constraining the average particle num-

ber, it is of interest to monitor the breaking of the sym-
metry by computing the variance associated with the op-
erator A. In the same spirit, our solution will be allowed
to break good angular momentum such that it is of in-
terest to monitor the average value of the operator J2,
which informs us directly on the breaking of rotational
symmetry when targeting the Jπ = 0+ ground state of
an even-even nucleus. From the operators A and A2, the
particle-number variance ∆A2 is obtained via

∆A2 =
〈Ψ|A2|Ψ〉

〈Ψ|Ψ〉
−

(

〈Ψ|A|Ψ〉

〈Ψ|Ψ〉

)2

. (36)

E. Computing observables

While in principle the expectation value of any op-
erator can be expressed in terms of density matrices
and normal-ordered matrix elements of the operator, one
can instead evaluate the expectation value by exploit-
ing the BCC energy and amplitude equations (Eqs. (25)
and (26)).
We want to evaluate the expectation value

O =
〈Ψ|O|Ψ〉

〈Ψ|Ψ〉
, (37)

which can be written [54]

O = 〈Φ|O|Φ〉 + 〈Φ|(1 + Λ) e−T ONeT |Φ〉C (38a)

= Oref +∆O , (38b)

where at this point the operator O is completely gen-
eral. The reference contribution Oref can be evaluated
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straightforwardly. To evaluate the second term on the
righthand side of Eq. (38), let us first define the Fock-
space projection operators

P = |Φ〉〈Φ| (39a)

Q =
∑

α

|Φα〉〈Φα|+
1

2!

∑

αβ

|Φαβ〉〈Φαβ | (39b)

+
1

3!

∑

αβγ

|Φαβγ〉〈Φαβγ |+
1

4!

∑

αβγδ

|Φαβγδ〉〈Φαβγδ|

+ . . . ,

which satisfy the identity 1 = P + Q. Inserting this
identity into the second term of Eq. (38),

∆O = 〈Φ|(1 + Λ) [P +Q] e−T ONeT |Φ〉C (40a)

= 〈Φ|(1 + Λ) |Φ〉〈Φ| e−T ONeT |Φ〉C (40b)

+〈Φ|(1 + Λ)Qe−T ONeT |Φ〉C

= 〈Φ|ŌN |Φ〉C + 〈Φ|ΛQŌN |Φ〉C .

While we have included terms with both an odd and even
number of quasiparticle creation operators in our defini-
tion of Q in Eq. (39), the odd terms do not contribute
in Eq. (40), since the Bogoliubov reference state carries
even number-parity as a quantum number and each com-
ponent of Ω and T conserves number-parity. Thus, we
only access the terms which sum over an even number
of quasiparticle excitations. For the operator O = Ω,
one can observe that the BCC equations (Eqs. (25) and
(26)) are reproduced, such that the energy from Eq. (29)
is recovered. In practice, as will be discussed in Sec. IV,
this form is convenient to obtain the expectation value
of one- and two-body operators, such as A and A2.

IV. BCC WITH SINGLES AND DOUBLES

A. Truncation scheme

Bogoliubov coupled cluster theory is formally exact
at this stage. The approximation in practical calcula-
tions results from a truncation of the operator T to a
limited number of n-tuple terms Tn. The simplest ap-
proach truncates all terms beyond the one-body oper-
ator T1. In connection with the nomenclature of stan-
dard coupled cluster theory, this truncation scheme will
be referred to as Bogoliubov coupled cluster with sin-
gles (BCCS). The present aim is to implement Bogoli-
ubov coupled cluster with singles and doubles (BCCSD),
where T BCCSD = T1 + T2. The BCCSD scheme encom-
passes the most common standard CC approximation,
i.e. CCSD, as a particular case. The extension of stan-
dard approximations for the treatment of triples, e.g. Λ-
CCSD(T) [55] or CR-CC(2,3) [56], in the context of Bo-
goliubov coupled cluster theory is expected to provide

an excellent approximation to open-shell systems. These
developments, however, are postponed to future works.
In the present section, the pedestrian approach to ob-

taining algebraic forms of BCCSD equations is followed.
Eventually, it is inefficient to code the equations in the
fully expanded form thus provided such that one relies on
the introduction of so-called intermediates [54]. The lat-
ter have the benefit to limit the computational cost and
make the equations more compact and readable. The
BCCSD equations expressed in terms of intermediates
are provided in App. B. It should be further noted that
schemes with greater truncation, such as BCCS or Bo-
goliubov coupled cluster with doubles (BCCD), can be
easily deduced from the set of BCCSD equations pro-
vided below.

B. Expanded BCCSD equations

Truncating the cluster operator according to T BCCSD,
the correction to the unperturbed energy (Eq. (25)) reads

∆Ω0 = 〈Φ|ΩN

(

T1 + T2 +
1
2T

2
1

)

|Φ〉C . (41)

This expression is in fact formally exact even when higher
n-tuple cluster operators are included, at least as long as
the grand canonical potential is restricted to terms Ω[k]

with k ≤ 4. The inclusion of higher terms in T would
affect the energy only indirectly by modifying the quasi-
particle amplitudes tk1k2

and tk1k2k3k4
entering Eq. (41).

Exploiting the full antisymmetry of the quasiparticle am-
plitudes (Eq. (19)) and of the matrix elements of the
grand canonical potential (Appendix A1), the applica-
tion of Wick’s theorem permits the algebraic expansion
of the energy equation (Eq. (41)) under the form

∆Ω0 =
1

2

∑

k1k2

Ω02
k1k2

tk1k2

+
1

4!

∑

k1k2k3k4

Ω04
k1k2k3k4

tk1k2k3k4

+
1

8

∑

k1k2k3k4

Ω04
k1k2k3k4

tk1k2
tk3k4

. (42)

The singles and doubles quasiparticle amplitudes, respec-
tively tk1k2

and tk1k2k3k4
, remain to be determined by ap-

plying Eq. (26) for two (〈Φαβ |) and four (〈Φαβγδ|) quasi-
particle states. The single-excitation5 amplitude equa-
tions are given by

0 = 〈Φαβ |ΩN (1+T1+
1
2T

2
1 + 1

3!T
3
1 +T2+T1T2)|Φ〉C, (43)

while the double-excitation amplitude equations are

0 = 〈Φαβγδ|ΩN (1 + T1 + T2 +
1
2T

2
1 + 1

2T
2
2 (44)

+T1T2 +
1
3!T

3
1 + 1

4!T
4
1 + 1

2T
2
1 T2)|Φ〉C .

Applying Wick’s theorem, one obtains the expanded al-
gebraic form of the single-excitation amplitude equations
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0 = Ω20
αβ

+
∑

k1

[

Ω11
αk1

tk1β +Ω11
βk1

tαk1

]

+
1

2

∑

k1k2

[

Ω22
αβk1k2

tk1k2
+Ω02

k1k2

(

tαβk1k2
+ 2tαk1

tk2β

)

]

+
1

6

∑

k1k2k3

[

Ω13
αk1k2k3

(

tk1βk2k3
+ 3tk1βtk2k3

)

+ Ω13
βk1k2k3

(

tαk1k2k3
+ 3tαk1

tk2k3

)

]

+
1

12

∑

k1k2k3k4

Ω04
k1k2k3k4

(

2tαk1
tk2βk3k4

+ 2tβk1
tαk2k3k4

+ 3tk1k2
tαβk3k4

+ 6tαk1
tk2k3

tk4β

)

, (45)

and of the double-excitation amplitude equations

0 = Ω40
αβγδ

+
∑

k1

[

Ω31
αβγk1

tk1δ +Ω31
αβδk1

tγk1
+Ω31

αγδk1
tk1β +Ω31

βγδk1
tαk1

]

+
∑

k1

[

Ω11
αk1

tk1βγδ +Ω11
βk1

tαk1γδ +Ω11
γk1

tαβk1δ +Ω11
δk1

tαβγk1

]

+
1

2

∑

k1k2

[

Ω22
αβk1k2

(

tk1k2γδ + 2tγk1
tk2δ

)

+Ω22
αγk1k2

(

tk1k2δβ + 2tk1βtk2δ

)

+Ω22
αδk1k2

(

tk1k2βγ + 2tk1βtγk2

)

+Ω22
βγk1k2

(

tk1k2αδ + 2tαk1
tk2δ

)

+Ω22
βδk1k2

(

tk1k2γα + 2tαk1
tγk2

)

+Ω22
γδk1k2

(

tk1k2αβ + 2tαk1
tk2β

)

]

+
∑

k1k2

Ω02
k1k2

[

tαk1
tk2βγδ + tβk1

tαk2γδ + tγk1
tαβk2δ + tδk1

tαβγk2

]

+
1

2

∑

k1k2k3

[

Ω13
αk1k2k3

(

tk1βtk2k3γδ + tk1γtk2βk3δ + tk1δtk2βγk3
+ tk1k2

tk3βγδ + 2tk1γtk2βtk3δ

)

+Ω13
βk1k2k3

(

tαk1
tk2k3γδ + tk1γtαk2k3δ + tk1δtαk2γk3

+ tk1k2
tαk3γδ + 2tk1αtk2γtk3δ

)

+Ω13
γk1k2k3

(

tαk1
tk2βk3δ + tβk1

tαk2k3δ + tk1δtαβk2k3
+ tk1k2

tαβk3δ + 2tk1αtβk2
tk3δ

)

+Ω13
δk1k2k3

(

tαk1
tk2βγk3

+ tβk1
tαk2γk3

+ tγk1
tαβk2k3

+ tk1k2
tαβγk3

+ 2tk1αtk2βtk3γ

)

]

+
1

24

∑

k1k2k3k4

Ω04
k1k2k3k4

[

tk4βγδ

(

4tαk1k2k3
+ 12tk1k2

tαk3

)

+ tαk4γδ

(

4tβk1k2k3
+ 12tk1k2

tβk3

)

+ tαβk4δ(4tγk1k2k3
+ 12tk1k2

tγk3

)

+ tαβγk4

(

4tδk1k2k3
+ 12tk1k2

tδk3

)

+ tαβk3k4

(

3tk1k2γδ + 12tk1γtδk2

)

+ tαk3γk4

(

3tk1βδk2
+ 12tk1βtδk2

)

+ tαk3k4δ

(

3tk1βγk2
+ 12tk1βtγk2

)

+ tk3βγk4

(

3tαk1k2δ + 12tk1αtδk2

)

+ tk3βk4δ

(

3tαk1k2γ + 12tk1αtγk2

)

+ tk3k4γδ

(

3tαβk1k2
+ 12tk1αtβk2

)

+ 24tk1αtk2βtk3γtk4δ

]

. (46)

5 To connect with the vocabulary at play in standard CC the-
ory, the equation of motion obtained by left projecting with two
(four) quasiparticle states is said to provide the single- (double-)
excitation amplitudes.

The solution of these equations, nonlinear in the quasi-
particle amplitudes, can be found iteratively to compute
the energy. Doing so requires a zeroth iteration, i.e. an
initialization of the quasiparticle amplitudes. Motivated
by perturbation theory, the off-diagonal part of Ω11 is
neglected in Eqs. (45) and (46) along with the nonlinear
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terms, leading to the two initial conditions

tαβ = −
Ω20

αβ

Ω11
αα +Ω11

ββ

, (47a)

tαβγδ = −
Ω40

αβγδ + (1 + Pγδ − Pβδ + Pαδ)Ω
31
αβγδtδδ

Ω11
αα +Ω11

ββ +Ω11
γγ +Ω11

δδ

,

(47b)

where the solution of Eq. (47a) must be inserted into
Eq. (47b) and where the operator Pαβ permutes the two
labels α and β. Starting from |ΦHFB〉, conditions Ω

11
αα =

Eα and Ω20
αβ = 0 from the diagonalization of Eq. (11)

further simplify the initial conditions to

tαβ = 0 , (48a)

tαβγδ = −
Ω40

αβγδ

Eα + Eβ + Eγ + Eδ

. (48b)

C. Particle number and other observables

The amplitude equations (Eqs. (45) and (46)) are
solved iteratively while constraining the BCCSD wave-
function to carry good particle number A on average.
This is effected by: (i) iterating the BCCSD amplitude
equations until a converged energy is obtained, (ii) com-
puting the error in average particle number via Eq. (35),
(iii) adjusting the chemical potential to correct for the
error, (iv) reinitializing quasiparticle amplitudes via Eq.
(47), and (v) returning to (i) until the targeted value of
particle number is achieved at convergence.
As discussed in Sec. III D, the average particle num-

ber is obtained by adding to the reference value A00

the correction δA computed through Eq. (35). In the
BCCSD approximation, the expectation values of the
particle number and other operators are obtained from
Eq. (40), which terminates since the truncation to sin-
gles and doubles applies also to the left reference state,
i.e. Λ = Λ1 + Λ2. Thus, one can write

∆O = 〈Φ|ŌN |Φ〉C (49)

+
1

2

∑

αβ

〈Φ|Λ1|Φ
αβ〉〈Φαβ |ŌN |Φ〉C

+
1

4!

∑

αβγδ

〈Φ|Λ2|Φ
αβγδ〉〈Φαβγδ|ŌN |Φ〉C .

Although it is our ambition to solve the left eigenvalue
problem in the near future within the BCC framework,
along with the associated equation-of-motion (EOM)
method, it is not the most efficient approach for repeated
evaluations. We utilize instead an approximate imple-
mentation that consists of setting the de-excitation oper-
ator Λ = T †, which is exact to first order in perturbation
theory, with the potential for improvement by extending
to second order in perturbation theory [54]. This approx-
imation is sufficient to converge the system of equations,

Ω[2] =

Ω[4] =

Ω11
Ω20 Ω02

Ω22 Ω31 Ω13 Ω40 Ω04

Ω[6] =

Ω33
Ω42 Ω24

Ω51 Ω15 Ω60 Ω06

+ +

+ + + +

+ +

+ + ++

FIG. 1. Normal-ordered contributions to the grand canonical
potential in diagrammatic form. The first line corresponds to
the Ω[2] terms, the second line to the Ω[4] terms, and the final
two lines to the Ω[6] terms, which are neglected in the present
work.

and will be used to evaluate the variance in Sec. VI by
computing Eq. (36).

For the operator O = Ω, the terms 〈Φαβ |ŌN |Φ〉C
and 〈Φαβγδ|ŌN |Φ〉C are exactly the single- and double-
excitation amplitude equations. At convergence, we ver-
ify that the evaluation of Eq. (49) returns ∆Ω0. To
evaluate another operator, for instance the particle num-
ber operator A, one can use Eqs. (45) and (46), with
the normal-ordered matrix elements of A as taken from
App. A 2 in place of the normal-ordered grand canonical
potential matrix elements. Even further, the normal-
ordered matrix elements can be obtained from Eq. (A1)
with a suitable replacement of the single particle Hamil-
tonian matrix elements, i.e. with tpq → δpq, v̄pqrs →
0, w̄pqrstu → 0, λ → 0 for A. This procedure can be ap-
plied for any operator which can be similarly expressed
in terms of the Hamiltonian Eq. (1), and is also used for
the evaluation of A2 in this work.

V. DIAGRAMMATIC METHOD

The algebraic derivation of the expanded BCC equa-
tions becomes tedious as the truncation of T is relaxed.
As a result, a diagrammatic technique is desired. The
diagrammatic description at play in standard coupled
cluster theory [54] provides guidance for the extension
to BCC theory. In fact, the procedure is simplified with
fewer diagrams at a given truncation order since parti-
cles and holes do not need to be treated separately in
BCC. In agreement with the approximation used in the
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T1 T2 T3

FIG. 2. Singly- (T1), doubly- (T2) and triply- (T3) excited
quasiparticle cluster operators in diagrammatic form. In the
present work, T3 is neglected.

present work, the diagrammatic technique is constructed
here by considering normal-ordered contributions Ωij up
to i + j ≤ 4. This can be eventually extended to gen-
uine three-body terms, i.e. to Ωij terms with i + j = 6,
similarly to what was done in standard CC theory [14].
Taking BCCSD as an example, the objective is to

represent Eqs. (41), (43) and (44) in a diagrammatic
form such that their full expanded expression given
by Eqs. (42), (45) and (46), respectively, are obtained
through the application of systematic rules while bypass-
ing the pedestrian application of Wick’s theorem. In the
end, such a procedure is much more resilient against er-
rors. To proceed, the building blocks that need to be
defined are

1. Diagrams representing normal-ordered contribu-
tions Ωij to the grand canonical potential. The
complete set of such diagrams is provided in Fig. 1.
In a given diagram, one must associate the factor
Ωij

k1...kiki+1...ki+j
to the dot vertex, where i denotes

the number of lines representing quasiparticle cre-
ation operators (i.e. traveling out of and above
the vertex) and j denotes the number of lines rep-
resenting quasiparticle annihilation operators (i.e.
traveling into the vertex from below). The indices
k1 . . . ki must be assigned consecutively from the
leftmost to the rightmost line above the vertex,
while ki+1 . . . ki+j must be similarly assigned con-
secutively for lines below the vertex.

2. Diagrams representing the n-tuple cluster ampli-
tudes. Those diagrams are provided in Fig. 2 up
to the triply-excited cluster operator T3, which is
neglected in the present work. As cluster opera-
tors only contain quasiparticle creation operators,
they only display lines traveling out of and above
the vertex. In a given diagram, one must associate
each Tm vertex with an amplitude tk1...k2m

, where
k1 . . . k2m must be assigned consecutively from the
leftmost to the rightmost line above the vertex.

With these building blocks at hand, one needs to con-
struct the diagrams that make up all the terms entering
Eqs. (41), (43) and (44). The basic rules to do so are
that

1. All diagrams are connected, i.e. each contributing
Tm operator is contracted at least once with Ω.

2. Diagrams making up Eq. (41) are vacuum-to-

vacuum diagrams, i.e. they are closed with no line

FIG. 3. Contributions to ∆Ω0 in diagrammatic form. Exclud-
ing Ω[6] terms, these three diagrams provide an exact form for
the correction to the unperturbed energy, independent of the
truncation imposed on T .

leaving the diagram. Each diagram contributing to
Eq. (43) (Eq. (44)) is linked with two (four) exter-
nal lines leaving it from above.

3. For a given term in Eqs. (41), (43) and (44), con-
struct all possible independent diagrams from the
building blocks, i.e. contract the lines of Ω and of
the various Tm in all possible ways such that the
two rules above are fulfilled. Doing so typically
limits which parts Ωij of Ω contribute to a given
term.

Once all the diagrams are drawn, one must compute their
expressions. The rules to do so are

1. Label external lines with quasiparticle indices
α, β, . . . occurring in the bra of the amplitude equa-
tions. The labeling must coincide with the left-right
ordering of the indices observed in the bra. Label
internal lines with different quasiparticle indices.

2. Associate the interaction vertex and the cluster
amplitudes at play with the appropriate factors
Ωij

k1...kiki+1...ki+j
and tk1...k2m

, respectively.

3. Sum over all internal line labels.

4. Include a factor (n!)−1 for each set of n equivalent
internal lines. Equivalent internal lines are those
which connect to identical vertices.

5. Include a factor (ℓm!)−1 for each set of ℓm equiva-
lent Tm vertices. Two Tm vertices are equivalent
if they have the same number of outgoing lines
nl (nl ≤ 2m) which terminate at the interaction
vertex.

6. Provide the diagram with a sign (−1)ℓc , where ℓc
is the number of line crossings in the diagram (ver-
tices are not considered line crossings).

7. Sum over all distinct permutations P of labels of
inequivalent external lines, including a parity fac-
tor (−1)σ(P ) from the signature of the permutation.
External lines are equivalent if and only if they con-
nect to the same vertex.

The complete set of diagrams contributing to Eqs. (41),
(43) and (44) are given in Figs. 3, 4 and 5, respectively.
Each term in the final two diagrams is labeled, where
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α β α β α β

α β α β α β
S1 S2a S2b

S3a S3b S4

α β α β α β
α β

S5a S5b S6a S6b

FIG. 4. Diagrammatic representation of the single-excitation
amplitude equations in the BCCSD approximation.

D1

α β γ δ

D2

α β γ δ δ

D3b

α β γδα β γ

D3a

D4

α β γ δ

D5a

α β γ δ

D5b

α β γ δ

α β γ δ

D6b

α β γ δ

D6a

α β γ δ

D6c

D7

α δβ γ

D9a

α β γ δ

D8

α δβ γ

D9b

α β γ δ

FIG. 5. Diagrammatic representation of the double-excitation
amplitude equations in the BCCSD approximation.

the first character S or D refers to the single- or double-
excitation amplitude equations, whereas the following
number denotes the term in the algebraic expression to
which the diagram corresponds (i.e. in Eqs. (43) and
(44)). If there are multiple diagrams which refer to a sin-
gle algebraic term, they are labeled with a final character
incremented alphabetically. For instance, diagrams S6 of

Fig. 4 refer to the sixth term in Eq. (43), for which Ω04

is the only term that can connect T1 and T2 to the two
quasiparticle excitation level required at the top of the
diagram. However, there are two possible ways to con-
nect them, i.e. T1 can either have two lines or one line
connected to the interaction vertex. These possibilities
are thus labeled S6a and S6b, respectively.
Writing the algebraic result in a compact fashion re-

quires a set of general permutation operators to handle
inequivalent external lines. The permutation factor nec-
essary for a given diagram depends on the number of ex-
ternal lines and their equivalence to each other. We thus
employ permutation operators P (αβ/γδ/ . . .) where the
notation denotes that α, β and γ, δ are equivalent pairs,
but are distinct from each other and from the remaining
indices. As a result, all possible permutations among la-
bels, except for those involving labels in the same group,
are implied. The ordering of the groups within the paren-
theses is irrelevant, e.g. P (αβ/γδ/ . . .) = P (γδ/αβ/ . . .).
In the end, the permutation operators required to express
the diagrams occurring at the BCCSD level are

P (α/β) ≡ 1− Pαβ (50a)

P (αβγ/δ) ≡ 1− Pαδ − Pβδ − Pγδ (50b)

P (αβ/γδ) ≡ 1− Pαγ − Pαδ − Pβγ

−Pβδ + PαγPβδ (50c)

P (α/βγ/δ) ≡ 1− Pαβ − Pαγ − Pαδ − Pβδ − Pγδ

+PαβPγδ + PαγPβδ + PαβPαδ

+PαγPαδ + PβδPαδ + PγδPαδ. (50d)

In fact, from the diagrammatic rules and Diagram D8,
an additional permutation operator P (α/β/γ/δ) is nec-
essary. Based on the antisymmetry of Ω04

k1k2k3k4
and the

product of four quasiparticle amplitudes, the permuta-
tion operator produces 24 identical contributions, whose
sum is the final term of Eq. (46). For brevity, the form
of this permutation operator has been suppressed.
As an illustration, we focus on diagrams S6a and S6b

that are represented in complete detail in Fig. 6, in or-
der to provide instruction on the implementation of the
rules for evaluation. Following those rules, the algebraic
expression of diagram S6a is

S6a =
1

2

1

2

∑

k1k2k3k4

Ω04
k1k2k3k4

tk1k2
tk3k4αβ , (51)

with two pairs of equivalent internal lines, no crossing
lines, and two equivalent external lines. No permuta-
tion operator occurs given that the two external lines
are equivalent. Similarly, Diagram S6b has the algebraic
expression

S6b =
1

3!
P (α/β)

∑

k1k2k3k4

Ω04
k1k2k3k4

tαk1
tk2k3k4β , (52)

where the factor of (3!)−1 comes from the three equiv-
alent internal lines. The permutation operator P (α/β)
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α β

S6a

α β

S6b

k1
k2

k3

k4 k1

k2

k3

k4

tk1k2 tk3k4αβ

Ω04
k1k2k3k4

tαk1 tk2k3k4β

Ω04
k1k2k3k4

FIG. 6. Explicit labeling of two diagrams for the double-
excitation amplitude equations in BCCSD.

enters due to the fact that the two external lines are in-
equivalent. In this diagram, there are no lines crossing
and therefore the sign of the diagram is positive. These
results correspond to the first three terms in the last line
of Eq. (45), albeit in a slightly different ordering of in-
dices after utilizing the antisymmetry properties of the
grand canonical potential matrix elements and quasipar-
ticle amplitudes. In the complete description of BCCSD,
there are 27 contributing diagrams as seen in Figs. 3, 4
and 5. The algebraic results for BCCSD obtained from
Wick’s theorem have been compared to those determined
from the diagrammatic method to ensure the identity of
the two methods. Only one method is eventually neces-
sary such that the diagrammatic technique will be em-
ployed to set up more involved truncation schemes in the
future.

VI. PROOF-OF-PRINCIPLE CALCULATIONS

A. Calculational scheme

The BCC code is written in m-scheme starting from a
spherical harmonic oscillator (HO) basis defined by its
frequency ω and the number of included major shells
Nmax ≡ max (2n + ℓ), where n is the principal quan-
tum number and ℓ is the orbital angular momentum.
Single-particle basis states carry quantum numbers p ≡
(n, π, j,m, q), where π = (−1)ℓ stands for the parity, j for
the total angular momentum, m for its projection on the
z axis and q for the projection of the isospin on the same
axis. Solving the HFB problem (Eq. (11)) within m-
scheme provides the reference state for the BCC calcula-
tion. The normal ordering of the grand canonical poten-
tial (Eq. (8)) and the BCC equations provided in Sec. IV
are thus implemented in the associated quasiparticle ba-

sis {β†
K} carrying quantum numbers K ≡ (k, πk,mk, qk)

and displaying a degeneracy according to |mk|.
In both the BCCSD and BCCD approximations, the

amplitude equations scale as N6, where N is the total
number of single-particle basis states. The scaling is
slightly worse than the standard CCSD and CCD cases,
n2
h n

4
p, where the basis can be split into nh hole (occu-

pied) orbits and np particle (unoccupied) orbits based
on the underlying Hartree-Fock reference state. In addi-

tion, coupled cluster codes have existed for decades, with
optimized and parallelized versions available. While our
BCC code is parallelized, significant optimization is nec-
essary, especially in terms of the storage of quasiparticle
amplitudes, which currently prevents calculations beyond
Nmax = 6. It has long been known that calculations are
not converged in such small model spaces, e.g. compar-
ison to exact Monte Carlo results in 4He displayed lack
of convergence for Nmax = 30 with quasirealistic poten-
tials [5], while calculations with modern chiral interac-
tions display dependence on the oscillator parameter at
Nmax = 14 for 40Ca [15].

The choice to break symmetries, i.e. not to exploit pos-
sible reductions in the parameter space, result in signif-
icant increases in the computational resources required.
Tthere are 336 basis states at Nmax = 6, but 1820 states
at Nmax = 12. As the number of equations to be solved
and matrix elements to be stored scale with the quar-
tic power of the number of basis states, this increase is
significant, requiring approximately 100TB of storage for
Nmax = 12. To increase beyond Nmax = 6, we will ei-
ther employ on-the-fly computations of matrix elements
or produce an equivalent code in J-coupled-scheme code,
where the storage required is greatly reduced. However,
only the m-scheme code authorizes the introduction of
deformation, i.e. the breaking of SU(2) symmetry, to
access doubly open-shell nuclei in the future. Eventu-
ally, the exact restoration of U(1) [57] and of SU(2) [58]
symmetry can be handled on the basis of the same BCC
m-scheme code. Presently, we will employ extrapolation
techniques (discussed in detail below) that have been de-
rived and successfully utilized for ab initio calculations
in medium-mass nuclei [59] to approximate the results
in the infinite-basis limit, although more investigation is
required to understand uncertainty quantification as well
as accuracy for quasiparticle bases. More extensive tests
will be effected once larger bases can be treated.

The m-scheme HFB code has been benchmarked
against a J-coupled-scheme code [37] for a variety of
closed- and open-shell nuclei. While calculations of ex-
cited states and open-shell nuclei were performed with
coupled-cluster techniques for, among others, 16,17,18O
and 18F [6, 7], we unfortunately are unable to reproduce
these pioneering calculations, being limited to ground
states of paired systems (i.e. even-even nuclei) and lack-
ing a routine to express the soft-core potentials used in
Refs.[6, 7] in terms of our m-scheme representation of
Eq. (1). Instead, the BCC code has been benchmarked
for doubly closed-shell nuclei against an existing CC code
and for open-shell nuclei via equation-of-motion meth-
ods. We discuss the latter comparison in the next sub-
section. We have established the former by employing a
J-coupled-scheme CC code [15], checking that the results
are indeed the same for 4He, 16O and 24O.While it can be
shown analytically that HFB reduces to HF in the limit
of no pairing, no such analytic proof has been found to
show that the application of BCC equations on top of the
HF reference state will reproduce standard CC results in
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this limit. In practice, however, our BCC results agree
at the eV level with CC results for a variety of doubly
closed-shell nuclei, model spaces, and interactions.
The results below are based on a two-nucleon force

only. The necessity of the inclusion of three-body forces
has been known for decades, as seen for instance in com-
parisons of coupled cluster calculations to experimental
data in the oxygen isotopes [3]. However, storage of mod-
ern chiral three-body forces is prohibitive in our current
implementation. State-of-the-art calculations require
two- and three-body forces [17, 30], and the inclusion
of three-nucleon forces at the normal-ordered two-body
level is the goal of a forthcoming publication. At the
moment, we employ the chiral NNLOopt [60] interaction
defined with a regularization cut-off ΛNN = 500 MeV
and run the calculations with Nmax = 6. Furthermore,
we restrict solely to doubles excitations in the first imple-
mentation of the BCC code, with the complete demon-
stration of BCCSD results as obtained from the solution
of Eqs. (41), (43), (44) and (35) postponed to a future
publication.
We therefore perform BCCD calculations for the

ground states of 16,18,20O, 18Ne, and 20Mg. The doubly
magic 16O nucleus provides a comparison to CCD and
CCSD calculations, while the A = 18 nuclei will be com-
pared to two-particle-attached equation-of-motion CCSD
(2PA-EOM-CCSD) results [16, 48, 61].
In Fig. 7, CCSD calculations are compared to CCD

calculations of the ground-state energy of 16O as a func-
tion of the harmonic oscillator basis quantum of energy
(denoted by ~ω). In a complete model space, the en-
ergy should be constant as a function of ~ω, which is far
from true at Nmax = 6. Regardless, the CCD results
are consistently higher in energy than the CCSD results,
but in reasonable agreement with a root-mean-square de-
viation of 315 keV for the 21 values of ~ω displayed in
Fig. 7. The doubles excitations contain the majority of
the correlation energy for a two-body potential, with the
optimized HF reference state of the CC equations mini-
mizing the effect of singles contributions. Therefore, the
CCD approximation provides sufficient accuracy for our
benchmark calculations of 16O, such that the truncation
T = T2 is reasonable for our proof-of-principle calcula-
tions of open-shell nuclei. As we likewise construct BCC
equations on top of an optimized HFB reference state,
we expect to minimize the effect of singles contributions,
which can be related to a transformation of the reference
state via the Thouless theorem [62].

B. Results

Returning to the 16O data in Fig. 7, we have ver-
ified BCCD results against CCD results in 16O, which
agree with each other at the eV level. Since the ground-
state energy is not constant as a function of the basis,
a minimum energy can be located as a function of the
oscillator frequency. In this example, the minimum en-
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FIG. 7. Comparison of CCSD and CCD calculations for 16O
with Nmax = 6 for a variety of harmonic oscillator bases given
by ~ω. The points denote total energies in the CCSD ap-
proximation, with a minimum observed at -119.211 MeV for
~ω = 26 MeV, while the solid curve provides correspond-
ing results in the more restrictive CCD approximation. The
horizontal dotted line represents the extrapolated energy (see
text), which is indistinguishable in the CCSD and CCD ap-
proximations on the scale of the figure, while the horizontal
solid line is the experimental energy.

TABLE I. Minimum energies and associated frequencies ob-
tained for 16O in different Nmax CCSD calculations.

Nmax ~ωmin Emin

6 26 -119.211

8 24 -122.776

10 24 -123.400

12 22 -123.502

ergy -119.211 (-119.110) MeV occurs at ~ω = 26 MeV in
the CCSD (CCD) approximation. This result, however,
is still underbound relative to the result with a complete
basis. For 16O, the CCSD code can be used to establish
the convergence as a function of Nmax. The minimum
energy for CCSD calculations up to Nmax = 12, along
with the corresponding value of ~ω, is shown in Tab.
I. From the convergence pattern in Tab. I, as well as
the small variation observed as a function of ~ω in the
Nmax = 12 calculations (not shown), we set a conserva-
tive uncertainty on the converged energy of 16O, namely
E0 = −123.5(1) MeV. Therefore, the missing energy due
to the truncated model space at Nmax = 6 is approxi-
mately 3.5% of the binding energy. Notice that, while
the converged CCSD energy underbinds the experimen-
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FIG. 8. CCD calculations for 16O with Nmax = 6 as a function
of L. The points denote total energies, with a minimum ob-
served at -119.110 MeV for ~ω = 26 MeV. Four points, from
the calculations with ~ω = 50, 53, 55, 58 MeV, are fit to Eq.
(54) and represented by the solid curve. The horizontal dot-
ted line is the extrapolated energy E∞, while the horizontal
solid line is the experimental energy.

tal value of -127.619 MeV, the perturbative inclusion of
triples via the Λ-CCSD(T) approximation method results
in a similarly conservative converged energy of -130.3(2),
thus overbound relative to experiment.
The BCCD code currently cannot access large enough

model spaces to reach energies which are converged (as a
function of Nmax). In order to make predictions that are
more accurate than 5%, we utilize the infrared (IR) ex-
trapolation technique [59, 63]. The oscillator basis trun-
cation effectively imposes a Dirichlet boundary condition
at a radius L in position space, approximated by

L = Leff ≡
√

2(Neff + 3/2 + 2)b , (53)

where b =
√

~/(Mω) is the oscillator length and Neff

is obtained by matching to the lowest eigenvalue of the
squared momentum operator [59]. For 16O, the values of
Neff are included in Tab. 1 of Furnstahl et al. [59]. With
the effective radius in position space, the IR extrapo-
lation technique, originally derived for a single-particle
degree of freedom but now implemented also for bound
many-body systems, can be implemented via the expres-
sion [59]

E(L) = E∞ +A∞e−2k∞L. (54)

The IR extrapolation technique is reliable in nuclei
around 16O, if the ultraviolet (UV) contamination is
small, which can be achieved by using harmonic oscil-

lator bases with UV cutoffs ΛUV greater than the mo-
mentum cutoff ΛNN of the nuclear interaction; in this
case, ΛNN = 500 MeV. In fact, the NNLOopt cutoff is
not sharp, so ΛUV must be sufficiently higher than ΛNN

[59]. Erring on the side of caution, we fit Eq. (54) using
energy data from ~ω = 50, 53, 55, 58.

In Fig. 8, we plot the same CCD data shown in Fig. 7,
but now as a function of L instead of ~ω. The filled circles
correspond to points used in the fit for the IR extrapo-
lation, given by Eq. (54), while the solid curve displays
the function determined by a least-squares fitting routine.
The fit is perfect at the keV level, and results in a parame-
ter E∞ which corresponds to the energy in the infinite ba-
sis. We thus obtain the extrapolated value for the energy
denoted by the horizontal dashed line, E∞ = −124.821
MeV. In comparison to the converged energy of 16O, -
123.5(1) MeV, we observe 1.3 MeV overbinding from the
extrapolation procedure. This is consistent with the re-
sults of [59] for Nmax = 6 [64], whereas extrapolations
from Nmax = 8, 10, 12 do not lead to overbinding. Possi-
ble explanations for this imperfect extrapolation are in-
sufficient decoupling of the center of mass due to the
small model space, or a peculiarity of the CCSD calcu-
lation at Nmax = 6 [59]. With the knowledge gleaned
from CC calculations of 16O, we produce BCCD calcula-
tions of 16,18,20O, 18Ne, 20Mg for ~ω = 26, 50, 53, 55, 58.
The lowest frequency is used as an approximate value
to obtain the minimum energy for the Nmax = 6 calcu-
lations without performing time-consuming calculations
to determine the minimum for each nucleus. The high
frequencies provide the data to fit the IR extrapolation
formula (Eq. (54)) to find an extrapolated ground-state
energy for the NNLOopt interaction. The BCCD results
for 16O reproduce the CCD results at the eV level, in-
cluding the extrapolated result. The A = 18 and A = 20
results are displayed in Figs. 9 and 10, respectively, while
numerical values of interest for all five nuclei can be found
in Tab. II.

While single-reference CC calculations on top of a
Slater determinant require a doubly closed-shell nucleus,
extensions via the equation-of-motion method have been
developed to compute nuclei with up to two nucleons
added. Therefore, BCCD results for A = 18 nuclei can
be compared to those obtained from extensions of the
standard CCSD method, as shown in Tab. II. For
these calculations, we used the two-particles-attached
equation-of-motion (2PA-EOM) method [16, 48, 61] in-
cluding up to 3p−1h excitations on top of 16O. While
the A = 20 nuclei could in principle be accessed by two-
particle-removed equation-of-motion CCSD [16] relative
to 22O and 22Si, since these closed-subshell nuclei are
accessible via CCSD calculations, one finds significant
underbinding when including up to 1p−3h excitations.
For Nmax = 6 calculations, the 2PA-EOM-CCSD results
are lower in energy than the BCCD results by 2.04 MeV
for 18O and 2.51 MeV for 18Ne. The effect of singles
contributions, which have been excluded from the BCC
calculations, is expected to remain on the order of 100
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FIG. 9. (color online) BCCD calculations for 18O (black cir-
cles) and 18Ne (red crosses) with Nmax = 6 as a function of
L. In each nucleus, four points, from the calculations with
~ω = 50, 53, 55, 58 MeV, are fit to Eq. (54) and represented
by the solid curve. The open symbols correspond to results at
~ω = 26 MeV. The horizontal dotted line is the extrapolated
energy E∞. See text for additional details.

keV such that 2PA-EOM-CCSD is genuinely lower in en-
ergy. This is not surprising given that nuclei in the very
vicinity of a closed shell are those for which the benefit
provided by the breaking of U(1) symmetry is actually
overtaken by the associated shortcoming of not having
an exact eigenstate of the particle-number operator [45],
i.e. this constitutes a regime for which the exact restora-
tion of symmetry [57] is critical. The present compari-
son of BCCD (without symmetry restoration) and 2PA-
EOM-CCSD results is meant to provide a reference cor-
responding to the worst case scenario.6 It is a compelling
question for the future to investigate the advantages and
drawbacks of CC methods based on symmetry breaking
(and restoration) relative to existing [6, 36] and future
multi-reference CC methods. Quantum chemistry ap-
pears to be a better forum for this investigation, due to a
better understanding of forces, the ability to obtain exact
results, and the further development of multi-reference
CC methods relative to nuclear systems. In this context,
the comparison is not related to our present paper and
will be postponed to a future publication.
While NNLOopt reasonably reproduces the binding en-

6 The improved performance of 2PA-EOM-CCSD calculations
compared to symmetry-unrestricted single-reference CCSD cal-
culations (without symmetry restoration) was similarly seen for
SU(2) symmetry in 6He, where 2PA-EOM-CCSD provided sig-
nificant more binding [16].
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FIG. 10. (color online) BCCD calculations for 20O (black
circles) and 20Mg (red crosses). See caption to Fig. 9 for
details.

TABLE II. Compiled results for proof-of-principle BCCD cal-
culations with Nmax = 6, including both the approximate
minimum energy (taken from a calculation with ~ω = 26
MeV) and the extrapolated energy for an infinite model space
(E∞) via Eq. 54. Also included for comparison are CCSD cal-
culations for 16O and 2PA-EOM-CCSD results for 18O and
18Ne with ~ω = 26 MeV, as well as experimental values [65].
Note that the BCCD calculations for 16O, both Emin and E∞,
reproduce exactly the corresponding CCD calculations.

Nucleus Emin ECCSD
Nmax=6 E∞ ECCSD

Nmax=12 Eexp

16O -119.110 -119.211 -124.821 -123.453 -127.619
18O -124.440 -126.476 -130.738 -132.990 -139.808
20O -131.428 n/a -139.144 n/a -151.371
18Ne -115.413 -117.927 -122.089 -124.850 -132.143
20Mg -112.237 n/a -119.996 n/a -134.480

TABLE III. Variance in particle number from the solution to
HFB equations and BCCD equations, taken from a calcula-
tion with Nmax = 6 and ~ω = 26 MeV.

Nucleus ∆A2
HFB ∆A2

BCCD
16O 0.000 0.000
18O 2.775 2.814
20O 2.888 3.398
18Ne 2.765 2.761
20Mg 2.859 2.547
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ergies of oxygen isotopes [60], and might therefore be ex-
pected to reproduce all five nuclei presented here, the pri-
mary motivation of this section is not to compare our re-
sults to experiment. Future developments of the code are
needed in order to go beyond calculations at Nmax = 6,
not only to improve the extrapolation [59] but also to
ensure that this extrapolation holds for the quasiparti-
cle basis. In addition, the truncation of the quasiparticle
excitation operator at the doubles level is too restric-
tive. For instance, including triples non-iteratively in the
standard coupled cluster framework via the Λ-CCSD(T)
method [55] lowers the total energy by more than six
MeV for the nuclei considered here, better reproduc-
ing experiment in all cases. The triples correction must
therefore be included at least in a non-iterative way. Ad-
ditionally, even though the optimized two-body force uti-
lized here reasonably reproduces ground-state properties
of nuclei in the vicinity of 16O, the machinery to include
three-body forces, at least at the normal-ordered two-
body level, must be developed in order to make reliable
theoretical predictions throughout the nuclear chart. Fu-
ture publications will address progress along these fronts.
Finally, as discussed in Section III D, one should mon-

itor the breaking of particle-number symmetry by com-
puting the variance associated with the operator A us-
ing Eq. (36). The results are shown in Tab. III. For
the five nuclei calculated here, the variance in particle
number obtained at the HFB level is nearly constant.
The inclusion of additional correlations can either in-
crease or decrease the variance, based on the nucleus
of interest, but remains reasonably similar to the HFB
variance, providing confidence in the applicability of the
symmetry-breaking BCC equations. Nevertheless, the
behavior of the variance must be studied further, espe-
cially with respect to an increase in the model space size
and based on the inclusion of singles and triples exci-
tations. Eventually, the spontaneously-broken symmetry
must be restored for a proper comparison to physical (i.e.
symmetry-conserving) nuclei, for which the implementa-
tion discussed by Duguet [57] will be applied.

VII. CONCLUSIONS

The Bogoliubov coupled cluster theory has been for-
mulated as a way to extend single-reference coupled clus-
ter techniques to the description of genuinely open-shell
nuclei. The rationale behind this extension is the repre-
sentation of the exact ground-state wavefunction of even-
even nuclei as the exponential of a quasiparticle excita-
tion cluster operator acting on a Bogoliubov reference
state. As such, BCC theory exploits the spontaneous
breaking of U(1) symmetry associated with particle-
number conservation to overcome the degenerate char-
acter of open-shell systems. Thus, the potential span
of ab initio coupled cluster calculations based on single-
reference techniques is increased tremendously.
Equations for the ground-state energy and the cluster

amplitudes have been derived at the singles and dou-
bles level (BCCSD) both algebraically and diagrammat-
ically. The equations have been implemented in the
BCCD approximation in an m-scheme code based on a
harmonic oscillator basis, with results for a set of light
doubly closed-shell nuclei validated against CCD results.
The numerical scaling of the method is polynomial and
goes as N6 in both the BCCD and BCCSD approxima-
tions, where N is the total number of single-particle basis
states.

The results of the first proof-of-principle calculations
have been reported for five even-even sd-shell nuclei in
the BCCD approximation. The breaking of U(1) sym-
metry has been monitored by computing the variance
associated with the particle-number operator. The newly
developed many-body formalism offers a wealth of poten-
tial applications and further extensions dedicated to the
ab initio description of ground and excited states of open-
shell nuclei. Short term extensions include the implemen-
tation of three-nucleon forces at the normal-ordered two-
body level. Mid-term extensions include the development
of approximate triples corrections and of the equation-
of-motion methodology to treat both excited states and
odd nuclei. One can also envision calculations of doubly
open-shell nuclei via the further breaking of SU(2) sym-
metry associated with angular momentum conservation.
Longer-term extensions include the exact restoration of
U(1) [57] and SU(2) [58] symmetries.
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aid in benchmarking and troubleshooting the m-scheme
Hartree-Fock-Bogoliubov code, T. Papenbrock and K.A.
Wendt for discussions and data relevant to extrapola-
tions and coupled cluster methods, and T. Henderson
for useful discussions regarding particle-number variance
and convergence in coupled cluster methods with pair-
ing. A. S. acknowledges support from Espace de Struc-
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Appendix A: Normal-ordered matrix elements

1. Grand canonical potential

As the Ω[6] terms are not considered for practical appli-
cations at this point, the matrix elements Ωij

k1k2k3k4k5k6
,

with i + j = 6, are excluded for brevity. The grand

canonical potential of Eq. (8), up to and including Ω[4],
displays fully antisymmetrized matrix elements whose ex-
plicit expressions in terms of matrix elements of the ki-
netic energy plus two- and three-body interactions, as
well as of U and V matrices defining the reference Bo-
goliubov state, are

Ω00 = Tr
[

Tρ+
1

2
Γ2Nρ+

1

3
Γ3Nρ−

1

2
∆2Nκ∗ +

1

3
∆3Nκ∗ − λρ

]

(A1a)

Ω11
k1k2

= [U †hU − V †hTV + U †∆V − V †∆∗U ]k1k2
(A1b)

Ω20
k1k2

= [U †hV ∗ − V †hTU∗ + U †∆U∗ − V †∆∗V ∗]k1k2
(A1c)

Ω02
k1k2

= [−V ThU + UThTV − V T∆V + UT∆∗U ]k1k2
(A1d)

Ω22
k1k2k3k4

=
∑

l1l2l3l4

[

Θl1l2l3l4

(

U∗
l1k1

U∗
l2k2

Ul3k3
Ul4k4

+ V ∗
l3k1

V ∗
l4k2

Vl1k3
Vl2k4

+ U∗
l1k1

V ∗
l4k2

Vl2k3
Ul3k4

− V ∗
l4k1

U∗
l1k2

Vl2k3
Ul3k4

− U∗
l1k1

V ∗
l4k2

Ul3k3
Vl2k4

+ V ∗
l4k1

U∗
l1k2

Ul3k3
Vl2k4

)

+ Ξl1l2l3l4(U
∗
l1k1

U∗
l2k2

Ul4k3
Vl3k4

+ U∗
l1k1

V ∗
l4k2

Vl3k3
Vl2k4

− U∗
l1k1

U∗
l2k2

Vl3k3
Ul4k4

− V ∗
l4k1

U∗
l1k2

Vl3k3
Vl2k4

)

− Ξ∗
l1l2l3l4

(V ∗
l3k1

U∗
l4k2

Ul1k3
Ul2k4

+ V ∗
l3k1

V ∗
l2k2

Vl4k3
Ul1k4

− U∗
l4k1

V ∗
l3k2

Ul1k3
Ul2k4

− V ∗
l3k1

V ∗
l2k2

Vl4k4
Ul1k3

)
]

(A1e)

Ω31
k1k2k3k4

=
∑

l1l2l3l4

[

Θl1l2l3l4

(

U∗
l1k1

V ∗
l4k2

V ∗
l3k3

Vl2k4
− V ∗

l4k1
U∗
l1k2

V ∗
l3k3

Vl2k4
− V ∗

l3k1
V ∗
l4k2

U∗
l1k3

Vl2k4

+ V ∗
l3k1

U∗
l2k2

U∗
l1k3

Ul4k4
− U∗

l2k1
V ∗
l3k2

U∗
l1k3

Ul4k4
− U∗

l1k1
U∗
l2k2

V ∗
l3k3

Ul4k4

)

+ Ξl1l2l3l4

(

U∗
l1k1

U∗
l2k2

U∗
l3k3

Ul4k4
+ V ∗

l4k1
U∗
l2k2

U∗
l1k3

Vl3k4
− U∗

l2k1
V ∗
l4k2

U∗
l1k3

Vl3k4
+ U∗

l2k1
U∗
l1k2

V ∗
l4k3

Vl3k4

)

+ Ξ∗
l1l2l3l4

(

U∗
l4k1

V ∗
l3k2

V ∗
l2k3

Ul1k4
− V ∗

l3k1
U∗
l4k2

V ∗
l2k3

Ul1k4
+ V ∗

l3k1
V ∗
l2k2

U∗
l4k3

Ul1k4
− V ∗

l3k1
V ∗
l2k2

V ∗
l1k3

Vl4k4

)]

(A1f)

Ω13
k1k2k3k4

=
∑

l1l2l3l4

[

Θl1l2l3l4

(

V ∗
l4k1

Ul3k2
Vl2k3

Vl1k4
− V ∗

l4k1
Vl2k2

Ul3k3
Vl1k4

− V ∗
l4k1

Vl1k2
Vl2k3

Ul3k4

+ U∗
l1k1

Vl2k2
Ul3k3

Ul4k4
− U∗

l1k1
Ul3k2

Vl2k3
Ul4k4

+ U∗
l1k1

Ul3k2
Ul4k3

Vl2k4

)

+ Ξl1l2l3l4

(

U∗
l1k1

Vl2k2
Vl3k3

Ul4k4
− V ∗

l4k1
Vl1k2

Vl2k3
Vl3k4

+ U∗
l1k1

Ul4k2
Vl2k3

Vl3k4
− U∗

l1k1
Vl2k2

Ul4k3
Vl3k4

)

+ Ξ∗
l1l2l3l4

(

V ∗
l3k1

Vl4k2
Ul1k3

Ul2k4
− V ∗

l3k1
Ul1k2

Vl4k3
Ul2k4

+ V ∗
l3k1

Ul1k2
Ul2k3

Vl4k4
− U∗

l4k1
Ul1k2

Ul2k3
Ul3k4

)]

(A1g)

Ω40
k1k2k3k4

=
∑

l1l2l3l4

[

Θl1l2l3l4

(

U∗
l1k1

U∗
l2k2

V ∗
l4k3

V ∗
l3k4

− U∗
l1k1

V ∗
l4k2

U∗
l2k3

V ∗
l3k4

− V ∗
l4k1

U∗
l2k2

U∗
l1k3

V ∗
l3k4

+ U∗
l1k1

V ∗
l4k2

V ∗
l3k3

U∗
l2k4

+ V ∗
l4k1

U∗
l2k2

V ∗
l3k3

U∗
l1k4

+ V ∗
l4k1

V ∗
l3k2

U∗
l1k3

U∗
l2k4

)

+ Ξl1l2l3l4

(

U∗
l1k1

U∗
l2k2

U∗
l3k3

V ∗
l4k4

− U∗
l1k1

U∗
l2k2

V ∗
l4k3

U∗
l3k4

+ U∗
l1k1

V ∗
l4k2

U∗
l2k3

U∗
l3k4

− V ∗
l4k1

U∗
l1k2

U∗
l2k3

U∗
l3k4

)

+ Ξ∗
l1l2l3l4

(

V ∗
l1k1

V ∗
l2k2

V ∗
l3k3

U∗
l4k4

− V ∗
l1k1

V ∗
l2k2

U∗
l4k3

V ∗
l3k4

+ V ∗
l1k1

U∗
l4k2

V ∗
l2k3

V ∗
l3k4

− U∗
l4k1

V ∗
l1k2

V ∗
l2k3

U∗
l3k4

)]

(A1h)

Ω04
k1k2k3k4

=
∑

l1l2l3l4

[

Θl1l2l3l4

(

Ul3k1
Ul4k2

Vl2k3
Vl1k4

− Ul3k1
Vl2k2

Ul4k3
Vl1k4

+ Ul3k1
Vl2k2

Vl1k3
Ul4k4

− Vl2k1
Ul3k2

Vl1k3
Ul4k4

+ Vl2k1
Vl1k2

Ul3k3
Ul4k4

+ Vl2k1
Ul3k2

Ul4k3
Vl1k4

)



19

+ Ξl1l2l3l4

(

Vl1k1
Vl2k2

Vl3k3
Ul4k4

− Vl1k1
Vl2k2

Ul4k3
Vl3k4

+ Vl1k1
Ul4k2

Vl2k3
Vl3k4

− Ul4k1
Vl1k2

Vl2k3
Vl3k4

)

+ Ξ∗
l1l2l3l4

(

Vl4k1
Ul3k2

Ul2k3
Ul1k4

− Ul3k1
Vl4k2

Ul2k3
Ul1k4

+ Ul3k1
Ul2k2

Vl4k3
Ul1k4

− Ul3k1
Ul2k2

Ul1k3
Vl4k4

)]

.

(A1i)

The above expressions make use of four one- and two-body operators whose matrix elements are given in an arbitrary
single-particle basis by

hpq ≡ tpq − λ δpq + Γ2N
pq + Γ3N

pq (A2a)

= tpq − λ δpq +
∑

rs

v̄psqrρrs +
1

2

∑

rstu

w̄prsqtu

(

ρusρtr +
1

2
κ∗
rsκtu

)

, (A2b)

∆pq ≡ ∆2N
pq +∆3N

pq (A2c)

=
1

2

∑

rs

v̄pqrsκrs +
1

2

∑

rstu

w̄rpqstuρsrκtu , (A2d)

Θpqrs ≡ v̄pqrs +
∑

tu

w̄pqtrsuρut , (A2e)

Ξpqrs ≡
1

2

∑

tu

w̄pqrstuκtu . (A2f)

It is easy to verify the following properties

Γ2N
pq = Γ2N∗

qp , (A3a)

Γ3N
pq = Γ3N∗

qp , (A3b)

∆2N
pq = −∆2N

qp , (A3c)

∆3N
pq = −∆3N

qp , (A3d)

Θpqrs = −Θpqsr = Θqpsr = −Θqprs , (A3e)

Θpqrs = Θ∗
rspq, (A3f)

Ξpqrs = −Ξqprs = Ξqrps = −Ξprqs = Ξrpqs = −Ξrqps .
(A3g)

From these relations, it is straightforward to show that
the matrix elements of the normal-ordered grand canoni-
cal potential exhibit the following behavior under hermi-
tian conjugation

Ω11
k1k2

= Ω11∗
k2k1

, (A4a)

Ω20
k1k2

= Ω02∗
k1k2

, (A4b)

Ω22
k1k2k3k4

= Ω22∗
k3k4k1k2

, (A4c)

Ω31
k1k2k3k4

= Ω13∗
k4k1k2k3

, (A4d)

Ω40
k1k2k3k4

= Ω04∗
k1k2k3k4

. (A4e)

2. Generic one-body operator

We define a generic one-body operator

O ≡
∑

pq

opqc
†
pcq . (A5)

Its normal ordered form with respect to |Φ〉 is given by

O ≡ O[0] +O[2] (A6a)

= O00 (A6b)

+
1

1!

∑

k1k2

O11
k1k2

β†
k1
βk2

(A6c)

+
1

2!

∑

k1k2

{

O20
k1k2

β†
k1
β†
k2

+O02
k1k2

βk2
βk1

}

,(A6d)

with the matrix elements given by

O00 = Tr
[

oρ
]

, (A7a)

O11
k1k2

= [U †oU − V †oTV ]k1k2
, (A7b)

O20
k1k2

= [U †oV ∗ − V †oTU∗]k1k2
, (A7c)

O02
k1k2

= [−V T oU + UT oTV ]k1k2
. (A7d)

The particle-number operator

A ≡
∑

p

c†pcp (A8)

is thus obtained as a particular case with opq ≡ δpq.

Appendix B: Quasilinear form of BCCSD

1. Definition of intermediates

For both computational efficiency and simplicity of ex-
pression, it is useful to rewrite the nonlinear equations of
BCCSD into quasilinear equations, in which each term
consists of a single quasiparticle amplitude connected
to an intermediate. While these intermediates can be
obtained from a diagrammatic procedure involving the
similarity-transformed grand canonical potential (in con-
nection to the coupled cluster effective-Hamiltonian di-
agrams derived in Shavitt and Bartlett [54]), a more
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straight-forward procedure will provide greater flexibil-
ity in the definition of the intermediates. As seen in
the single-excitation amplitude equations of BCCSD,
Eq. (45), there are many terms which are nonlinear in
T , i.e. which contain more than one quasiparticle ampli-
tude. However, in each contribution consisting of mul-
tiple quasiparticle amplitudes, at least one of the quasi-
particle amplitudes has m external lines (m ≥ 1). There
always exists a linear term containing the same quasi-
particle amplitude with m external lines, obtained at
most through a renaming of indices. For example, the
sixth term of Eq. (45) is the first nonlinear term, and
one identifies immediately two quasiparticle amplitudes
with external indices, tαk1

and tk2β . Both amplitudes
are present as linear contributions, from the third term
and second term, respectively (i.e., the terms involving

Ω11
βk1

and Ω11
αk1

, respectively, where the second requires a

renaming of index k1 → k2). To connect the sixth dia-
gram to the third diagram, one should “integrate over”
the summation index k2 to produce an intermediate I
with the desired indices (β, k1), i.e. one should rewrite
the sixth term as an intermediate Iβk1

connected to tαk1
.

Similarly, three later instances of tαk1
can be found in

Eq. (45) and can be manipulated in the same way to
produce the full intermediate χ11

βk1
.

2. Amplitude equations with intermediates

Implementing intermediates χij and making use of per-
mutation operators, the BCCSD amplitude equations
from Eqs. (45) and (46) can be rewritten

0 = Ω20
αβ + P (α/β)

∑

k1

χ11
βk1

tαk1
+

1

2

∑

k1k2

[

Ω22
αβk1k2

tk1k2
+ χ02

k1k2
tαβk1k2

]

+
1

6
P (α/β)

∑

k1k2k3

Ω13
αk1k2k3

tk1k2k3β , (B1a)

0 = Ω40
αβγδ + P (αβγ/δ)

∑

k1

[

χ31
αβγk1

tk1δ + χ11a
δk1

tαβγk1

]

+
1

2
P (αβ/γδ)

∑

k1k2

χ22
αβk1k2

tk1k2γδ , (B1b)

with the introduction of two separate intermediates χ11

and χ11a due to the fact that the single-excitation am-
plitude equations and double-excitation amplitude equa-

tions have different factors from their respective number
of identical Tm operators. The intermediates are defined
as

χ02
k1k2

= Ω02
k1k2

+
1

2

∑

k3k4

tk3k4
Ω04

k3k4k1k2
, (B2a)

χ11
k1k2

= Ω11
k1k2

+
1

2

∑

k3

tk3k1
Ω02

k2k3
+

1

2

∑

k3k4

tk3k4
Ω13

k1k2k3k4
+

1

12

∑

k3k4k5

Ω04
k2k3k4k5

(

3tk3k1
tk4k5

+ 2tk3k4k5k1

)

, (B2b)

χ11a
k1k2

= χ11
k1k2

+
1

2

∑

k3

tk3k1
Ω02

k2k3
+

1

4

∑

k3k4k5

Ω04
k2k3k4k5

tk3k1
tk4k5

, (B2c)

χ22
k1k2k3k4

= Ω22
k1k2k3k4

+
1

4

∑

k5k6

Ω04
k3k4k5k6

[

tk5k6k1k2
− 4tk5k1

tk6k2

]

+ P (k1/k2)
∑

k5

Ω13
k1k3k4k5

tk5k2
, (B2d)

χ31
k1k2k3k4

= Ω31
k1k2k3k4

+
1

2
P (k1/k2k3)

∑

k5

Ω22
k2k3k5k4

tk1k5
−

1

3
P (k2/k1k3)

∑

k5k6

Ω13
k2k5k6k4

tk1k5
tk6k3

+
1

4

∑

k5k6k7

Ω04
k5k6k7k4

tk1k5
tk2k6

tk7k3
. (B2e)

3. Diagrammatic method with intermediates

As before, the BCCSD equations, now in their quasi-
linear form, can be re-expressed in terms of diagrams to
simplify and shorten their treatment. It must be empha-

sized that the diagrammatic rules as developed in Section
V do not apply directly to the intermediates and quasilin-
ear form of BCCSD separately, as the symmetry factors
can be affected when the full diagram is split. Therefore,
the diagrams with intermediates should truly be seen as
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α β α β

α β α β

α β

FIG. 11. Diagrammatic representation of the single-excitation
amplitude equations in the quasilinear BCCSD approxima-
tion.

α β γ δ α β γ δ δα β γ δα β γ

FIG. 12. Diagrammatic representation of the double-
excitation amplitude equations in the quasilinear BCCSD ap-
proximation.

a shorthand, while the original diagram should be em-
ployed to determine the corresponding algebraic expres-
sions. The single-excitation and double-excitation ampli-
tude equations from Figs. 4 and 5 can be re-expressed
in the simplified quasilinear form of Figs. 11 and 12.
The definition of intermediates utilized in these figures is
given in Fig. 13.
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