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A complete calculation of phase space factors (PSF) for Majoron emitting 0νβ−β− decay modes
is presented. The calculation makes use of exact Dirac wave functions with finite nuclear size and
electron screening and includes life-times, single electron spectra, summed electron spectra, and
angular electron correlations. Combining these results with recent interacting boson nuclear matrix
elements (NME) we make half-life predictions for the the ordinary Majoron decay (spectral index
n=1). Furthermore, comparing theoretical predictions with the obtained experimental lower bounds
for this decay mode we are able to set limits on the effective Majoron-neutrino coupling constant
〈gMee 〉.

PACS numbers: 23.40.Hc, 23.40.Bw, 14.60.Pq, 14.60.St

I. INTRODUCTION

Double-β decay is a process in which a nucleus (A,Z)
decays to a nucleus (A,Z ± 2) by emitting two electrons
or positrons and, usually, other light particles

(A,Z) → (A,Z ± 2) + 2e∓ + anything. (1)

The mode where two antineutrinos or neutrinos are emit-
ted is predicted by the standard model and has been ob-
served in several nuclei (for a review, see e.g. [1]). The
more exotic mode, neutrinoless double beta decay, is not
allowed by the standard model, and once observed would
offer new information on many fundamental aspects of
elementary particle physics. As discussed in Ref. [2], sev-
eral scenarios of neutrinoless double beta decay have been
considered, most notably, light neutrino exchange, heavy
neutrino exchange, and Majoron emission. After the dis-
covery of neutrino oscillations, attention has been focused
on the first scenario and the mass mode, where the tran-
sition operator is proportional to 〈mν〉 /me. Even though
most current experimental efforts have been focused to
the detection of this mode, interest on the mechanism
predicting 0νββ decays through the emission of addi-
tional bosons called Majorons has also renewed lately.

Majorons were introduced years ago [3, 4] as massless
Nambu-Goldstone bosons arising from a global B − L
(baryon number minus lepton number) symmetry broken
spontaneously in the low-energy regime. These bosons
couple to the Majorana neutrinos and give rise to neutri-
noless double beta decay, accompanied by Majoron emis-
sion 0νββM [5], as shown in Fig. 1 (a). Although these
older models are disfavored by precise measurements of
the width of the Z boson decay to invisible channels [6],
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FIG. 1. Neutrinoless double beta decay accompanied by the
emission of one or two Majorons.

several other models of 0νββM decay have been pro-
posed in which one or two Majorons, denoted by χ0, are
emitted, (see Fig. 1)

(A,Z) → (A,Z + 2) + 2e− + χ0 (2)

or

(A,Z) → (A,Z + 2) + 2e− + 2χ0. (3)

Table I lists some of the models proposed to describe
these decays. The different models are distinguished by
the nature of the emitted Majoron(s), i.e. is it a Nambu-
Goldstone boson or not (NG), the leptonic charge of the
emitted Majoron(s) (L), and the spectral index of the
model (n), which characterizes the shape of the summed
electron spectrum, as described in Sect. II.

In our previous articles we have studied phase space
factors (PSF) and prefactors (PF) [12–14], and nu-
clear matrix elements (NME) [2, 13, 15–18] needed
for the theoretical description of 0νβ−β−, 2νβ−β−,
0νβ+β+, 0νβ+EC+, R0νECEC, 2νβ+β+, 2νβ+EC,
and 2νECEC decay mediated in the case of neutrino-
less decay by light or heavy neutrino exchange. In this
article we continue our systematic evaluation by present-
ing phase space factors for the different Majoron emit-
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TABLE I. Different Majoron emitting models of 0νββM de-
cay [7–11]. The third, fourth, and fifth columns indicate
whether the Majoron is Nambu-Goldstone boson or not, its
leptonic charge L, and the model’s spectral index n.

Model Decay Mode NG boson L n
IB 0νββχ0 No 0 1
IC 0νββχ0 Yes 0 1
ID 0νββχ0χ0 No 0 3
IE 0νββχ0χ0 Yes 0 3
IIB 0νββχ0 No -2 1
IIC 0νββχ0 Yes -2 3
IID 0νββχ0χ0 No -1 3
IIE 0νββχ0χ0 Yes -1 7
IIF 0νββχ0 Gauge boson -2 3
"Bulk" 0νββχ0 Bulk field 0 2

ting mechanisms and combining the n = 1 results with
recent interacting boson model (IBM-2) NMEs [18] to
make half-life predictions for ordinary Majoron decay
(n = 1). Furthermore, we compare our theoretical pre-
dictions with the obtained experimental lower bounds
for this decay mode to set some limits on the effective
Majoron-neutrino coupling constant 〈gMee 〉.

II. PHASE SPACE FACTORS IN MAJORON

EMITTING DOUBLE-β DECAY

The key ingredients for the evaluation of phase space
factors in single- and double-β decay are the scattering
wave functions and for EC the bound state wave func-
tions. The general theory of relativistic electrons and
positrons can be found e.g., in the book of Rose [19]. The
electron scattering wave functions of interest in β−β−

were given in Eq. (8) of [12].

In order to calculate PSFs for Majoron emitting β−β−

we use the formulation of Doi, Kotani, and Takasugi [20].
The differential rate for the decay is given by [20, 21]

dWmχ0n =
(

a(0) + a(1) cos θ12

)

wmχ0ndǫ1dǫ2d(cos θ12)

(4)
where ǫ1 and ǫ2 are the electron energies, θ12 the an-
gle between the two emitted electrons, and wmχ0n takes
different values depending on the number of emitted Ma-

jorons m and the spectral index n:

w1χ01 =
g4A(G cos θC)

4

64π7~

(

~c

2R

)2

q(p1c)(p2c)ǫ1ǫ2

w1χ03 =
g4A(G cos θC)

4

64π7~
q3(p1c)(p2c)ǫ1ǫ2

w2χ03 =
g4A(G cos θC)

4

3072π9~
(mec

2)−2

(

~c

2R

)2

q3(p1c)(p2c)ǫ1ǫ2

w2χ07 =
g4A(G cos θC)

4

53760π9~
(mec

2)−6

(

~c

2R

)2

q7(p1c)(p2c)ǫ1ǫ2.

(5)

Here G is the Fermi constant, θC is the Cabibbo angle,
and the Majoron energy q is determined as q = Qββ +

2mec
2 − ǫ1 − ǫ2, and R = r0A

1/3 with r0 = 1.2 fm, is the
nuclear radius.The quantities a(0) and a(1) in Eq. (4) can
be written as [21]

a(i) = f
(i)
11

∣

∣〈gMee 〉
∣

∣

2m
∣

∣

∣
M

(m,n)
0νM

∣

∣

∣

2

i = 0, 1, (6)

where
∣

∣〈gMee 〉
∣

∣ is the effective coupling constant of the Ma-
joron to the neutrino, m = 1, 2 for the emission of one

or two Majorons, respectively, and M
(m,n)
0νM is the nuclear

matrix element. The functions f
(0)
11 , f

(1)
11 are defined as

f
(0)
11 = |f−1−1|2 + |f11|

2 + |f−1
1|

2 + |f1
−1|2,

f
(1)
11 = −2Re[f−1−1f∗

11 + f−1
1f1

−1∗].
(7)

with

f−1−1 = g−1(ǫ1)g−1(ǫ2),

f11 = f1(ǫ1)f1(ǫ2),

f−1
1 = g−1(ǫ1)f1(ǫ2),

f1
−1 = f1(ǫ1)g−1(ǫ2),

(8)

where g−1(ǫ) and f1(ǫ) are obtained from the electron
wave functions as explained in Ref. [12].

All quantities of interest are then given by integration
of Eq. (4). Introducing

G(i)
mχ0n =

2

g4A ln 2

∫ Qββ+mec
2

mec2

∫ Qββ+2mec
2−ǫ1

mec2
f
(i)
11

× wmχ0ndǫ1dǫ2,

(9)

where the axial vector coupling constant gA is separated
from the phase space factors for conveniency, we can cal-
culate:
(i) The half-life

[

τ0ν1/2

]−1

= g4AG
(0)
mχ0n

∣

∣

〈

gχM
ee

〉∣

∣

2m
∣

∣

∣
M

(m,n)
0νM

∣

∣

∣

2

, (10)
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(ii) the single electron spectrum

dWmχ0n

dǫ1
= N

(m,n)
0νM

dG
(0)
mχ0n

dǫ1
(11)

where N
(n,m)
0νM = g4Aln2

∣

∣〈gχM
ee
〉
∣

∣

2m
|Mm,n

0νM |
2
.

(iii) The summed electron spectrum, which shape makes
the different Majoron emitting modes experimentally rec-
ognizable

dWmχ0n

d(ǫ1 + ǫ2)
= N

(n,m)
0νM

dG
(0)
mχ0n

d(ǫ1 + ǫ2)
, (12)

(iv) and the angular correlation between the two elec-
trons

α(ǫ1) =
dG

(1)
mχ0n/dǫ1

dG
(0)
mχ0n/dǫ1

. (13)

TABLE II. Phase space factors G
(0)
mχ0n obtained using

screened exact finite size Coulomb wave functions.

G
(0)
mχ0n(10

−18 yr−1)
Nucleus m=1,n=1 m=1,n=3 m=2,n=3 m=2,n=7

48Ca 1540 17.1 73.6 690
76Ge 44.2 0.073 0.22 0.420
82Se 361 1.22 3.54 26.9
96Zr 905 4.21 11.0 128.
100Mo 598 2.42 6.15 50.8
110Pd 94.1 0.205 0.487 0.946
116Cd 569 2.28 5.23 33.9
124Sn 209 0.653 1.45 4.45
128Te 3.06 0.001 0.003 0.0003
130Te 413 1.51 3.21 14.4
134Xe 2.92 0.002 0.003 0.0002
136Xe 409 1.47 3.05 12.5
148Nd 197 0.505 0.986 1.72
150Nd 3100 21.1 40.8 538
154Sm 28.2 0.034 0.064 0.021
160Gd 1590 0.361 0.672 0.899
198Pt 60.7 0.068 0.110 0.021
232Th 82.4 0.073 0.105 0.009
238U 337 0.532 0.756 0.213

We have done a calculation of G
(0)
mχ0n and G

(1)
mχ0n in

the list of nuclei shown in Table II. We also plot our
results in Figs. 2-5, where they are compared with previ-
ous calculations [20–24]. For the comparison the values
of [20, 22] have been multiplied by a missing factor of
two and divided by g4A, and values of [21] have been di-
vided with factor g4A4R

2. The factor of two is the correct
choice, as was acknowledged in [25]. This factor of two
is also included in Table II of Ref. [26], where the de-
cay of 136Xe have been studied. In their calculation for

the phase space factors they use Fermi functions F(Z,E)
that fully include nuclear finite size and electron screen-
ing and are evaluated at the nuclear radius. Their result
with different m = 1, 2 and n = 1, 3, 7 are within 6% of
the ones reported here.
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FIG. 2. (Color online) Phase space factors G
(0)
1χ01

in units

(10−18 yr−1). The label "approximate" refers to the results
obtained by the use of approximate electron wave functions
[20–22]. The figure is in semilogarithmic scale.
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FIG. 3. (Color online) Phase space factors G
(0)
1χ03

in units

(10−21 yr−1). The label "approximate" refers to the results
obtained by the use of approximate electron wave functions
[23, 24]. The figure is in semilogarithmic scale.

We also have available upon request the single and
summed electron electron spectra and angular correla-
tion for all nuclei in Table II. An example, 136Xe decay,
is shown in Fig. 6. The shape of the spectra is determined
by the spectral index n, i.e. for the case n = 3 it is the
same for both the emission of one or two Majorons, but
the overall scale is different (χ0 result should be multi-
plied by (~c)2(2Rmec

2)−2(48π2)−1 to obtain 2χ0 result).
Also, since the angular correlation is obtained by divid-

ing dG
(1)
mχ0n/dǫ1 by dG

(0)
mχ0n/dǫ1 the calculation becomes

unstable for the higher n near the endpoint energy and
that region is thus excluded from Fig. 6. The distinc-
tion between different values of n is most prominent in
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FIG. 4. (Color online) Same as Fig. 3 for G
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FIG. 5. (Color online) Same as Fig. 3 for G
(0)
2χ07

. Due to

a very small values, 128Te and 134Xe are excluded from this
figure.

summed electron spectra, where as n increases the peak
of the spectrum shifts from near the maximum kinetic en-
ergy to near the minimum kinetic energy. The difference
between different values of n is also shown in single elec-
tron spectra but not as strongly as in the case of summed
electron spectra.

III. EXPECTED HALF-LIVES AND LIMITS ON

COUPLING CONSTANT: ORDINARY

MAJORON EMITTING β−β−
DECAY

In the case of ordinary Majoron emitting double-β de-
cay, n = 1, the nuclear matrix elements have the same
form as in the 0νββ mediated by light neutrino exchange

M
(1,1)
0νM = g2A

(

M
(0ν)
GT −

(

gV
gA

)2

M
(0ν)
F +M

(0ν)
T

)

. (14)

The calculation of phase space factors can now be com-
bined with updated nuclear matrix elements in IBM-
2 [18] to produce predictions for half-lives for ordinary
Majoron decay (n = 1) in Table III (left) and Fig. 7.

Judging by the predicted half-lives, the most prominent
candidates are 150Nd and 100Mo. Furthermore, we can
compare our predictions to half-life limits coming from
experiments to set some limits on the effective Majoron-
neutrino coupling constant. The obtained limits are
shown on Table III (right). The most stringent limits
for ordinary Majoron decay (n = 1) at the moment are
for 136Xe coming from KamLAND-Zen [34] and EXO-
200 [26] experiments reaching the order of magnitude of
10−5.

TABLE III. Left: Calculated half-lives for Majoron decay
models where n = 1 (IB, IC, IIB) with

〈

gMee
〉

= 10−4,
gA = 1.269 and recent IBM-2 nuclear matrix elements [18].
Right: Upper limit on Majoron coupling constant

〈

gMee
〉

from
current experimental limits.

Decay τ0νM1/2 (1021yr) τ0νM1/2,exp(yr)
〈

gMee
〉

(eV)

48Ca→48Ti 8.19 > 7.2× 1020a < 3.4× 10−3

76Ge→76Se 39.8 > 6.4× 1022b < 7.9× 10−4

82Se→82Kr 7.68 > 1.5× 1022c < 7.2× 10−4

96Zr→96Mo 5.32 > 1.9× 1021c < 1.7× 10−3

100Mo→100Ru 3.62 > 3.9× 1022d < 3.0× 10−4

110Pd→110Cd 25.0
116Cd→116Sn 7.06 > 8× 1021e 9.4× 10−4

124Sn→124Te 18.1
128Te→128Xe 765 > 2× 1024f < 6.2× 10−4

130Te→130Xe 6.82 > 1.6× 1022g < 6.5× 10−4

134Xe→134Ba 805
136Xe→136Ba 10.1 > 2.6× 1024h < 6.2× 10−5

> 1.2× 1024i < 9.2× 10−5

148Nd→148Sm 36.8
150Nd→150Sm 1.74 > 1.5× 1021c < 1.1× 10−3

154Sm→154Gd 173
160Gd→160Dy 14.5
198Pt→198Hg 132
232Th→232U 28.7
238U→238Pu 4.94

a Ref. [27].
b Ref. [28].
c Ref. [29].
d Ref. [30].
e Ref. [31].
f Ref. [32], geochemical.
g Ref. [33].
h Ref. [34].
i Ref. [26].

IV. CONCLUSIONS

In this article, we have reported a complete calcula-
tion of phase space factors for 0νβ−β− decay proceeding
through emission of one or two Majorons. The reported
results include half-lives, single electron spectra, summed
electron spectra, and electron angular correlations, to be
used in connection with the calculation of nuclear matrix
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FIG. 6. (Color online)Single electron spectra (panel a), summed electron spectra (panel b), and angular correlations between
the two outgoing electrons (panel c) for the 136Xe →136Ba 0νββM -decay with different spectral indices n = 1, 3, 7. The scale

of the panels (a) and (b) should be multiplied by N (n,m)
0νM for a realistic estimate.

elements. Furthermore, we have combined our results
with recent IBM-2 nuclear matrix elements to produce
predictions of half-lives in the case of ordinary Majoron
decay, spectral index n = 1. Comparing these predic-

tions with experimental lower bounds, we have set some
limits on the effective Majoron-neutrino coupling con-
stant 〈gMee 〉. At the moment the best limits are com-
ing from 136Xe experiments reaching the order of mag-
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〉
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1.269 and IBM-2 isospin restored nuclear matrix elements.
The figure is in semilogarithmic scale.

nitude of 10−5. Also, the results in Table III are for
gA = 1.269. If gA is renormalized to gA,eff , τ0νM1/2 should

be multiplied by (1.269/gA.eff)
4 and limits on 〈gMee 〉 by

(1.269/gA.eff)
2.
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