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We perform ab initio no core shell model calculations for A = 18 and 19 nuclei in a 4h̄Ω, or
Nmax = 4, model space using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and
transform the many-body effective Hamiltonians into the 0h̄Ω model space to construct the A-body
effective Hamiltonians in the sd-shell. We separate the A-body effective Hamiltonians with A = 18
and A = 19 into inert core, one- and two-body components. Then, we use these core, one- and
two-body components to perform standard shell model calculations for the A = 18 and A = 19
systems with valence nucleons restricted to the sd-shell. Finally, we compare the standard shell
model results in the 0h̄Ω model space with the exact no core shell model results in the 4h̄Ω model
space for the A = 18 and A = 19 systems and find good agreement.
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I. INTRODUCTION

In recent years remarkable progress in ab initio micro-
scopic nuclear structure studies has been made in calcu-
lating nuclear properties, e.g., low-lying spectra, transi-
tion strengths, etc., in light nuclei. Large basis ab initio

no core shell model (NCSM) calculations, which provide
the foundation for this investigation, have been successful
in reproducing the low-lying spectra and other properties
of nuclei with A ≤ 16 [1–19].

In NCSM calculations all nucleons in the nucleus are
active and treated equivalently in the chosen model
space. When we increase the model space to obtain more
precise results, we encounter the problem that the size
of the calculations can easily exceed currently available
computational resources. This is especially true as one
proceeds towards the upper end of p-shell nuclei and be-
yond. The problem may be cast as a challenge to re-
produce the many-body correlations present in the large
space in a tractable, smaller model space. Success in this
endeavor will open up the prospects for ab initio solutions
for a wider range of nuclei than are currently accessible.

The NCSM has proven to be an ab initio microscopic
nuclear structure approach that has been able to repro-
duce experimental results and to make reliable predic-
tions for nuclei with A ≤ 16. These successes motivate
us to develop approaches for heavier mass nuclei. In one
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approach, a small model space effective interaction has
been constructed by modifiying the one-body piece of the
effective two-body Hamiltonian and employing a unitary
transformation in order to account for many-body corre-
lations for the A-body system in a large space [20]. In
another approach [21], the effective two- and three-body
Hamiltonians for p-shell nuclei have been constructed by
performing 12h̄Ω ab initio (i.e. Nmax = 12 harmonic
oscillator (HO) quanta above the minimum required)
NCSM calculations for A = 6 and A = 7 systems and
explicitly projecting the many-body Hamiltonians onto
the 0h̄Ω space. These A-dependent effective Hamiltoni-
ans can be separated into core, one-body, and two-body
(and three-body) components, all of which are also A-
dependent [21].

Recently, two more ab initio methods for valence nu-
cleon effective interactions have been introduced with the
same goals; one is based on the in-medium Similarity
Renormalization Group approach [22] and the other is
based on the Coupled Cluster method [23].

In this work, following the original idea of Refs.
[11, 21], we derive two-body effective interactions for the
sd-shell by using 4h̄Ω NCSM wave functions at the two-
body cluster level, which contain all the many-body cor-
relations of the 4h̄Ω no-core model space. The goal of
this work is to demonstrate feasibility of this approach
in the sd-shell, where we do not require calculations at
the limit of currently accessible computers. Such a major
extension will be addressed in a future effort.

At the first step, we construct a “primary” effective
Hamiltonian following the Okubo-Lee-Suzuki (OLS) uni-
tary transformation method [24–26]. We indicate this
first step schematically by the progression shown with
the two large squares in the lower section of Fig. 1. We
elect to perform this first step at the two-body cluster
level for 18F in the 4h̄Ω model space (the “P-space”) fol-
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FIG. 1: (Color online) Flow of renormalizations adopted to
derive an effective interaction for valence nucleons. The OLS
procedure is first applied to derive a NCSM effective inter-
action for the full A-nucleon system resulting in the “pri-
mary” effective Hamiltonian PHeffP for the chosen no-core
basis space (the “P-space”) indicated on the large square on
the right of the figure in its upper left corner. The many-
body truncation is indicated by Nmax, the total number of
HO quanta above the minimum for that system. The OLS
procedure is applied again using the results of the NCSM
calculation to derive the “secondary” effective Hamiltonian
P ′H ′

effP
′ for the chosen valence space (the P ′-space with the

smaller many-body cutoff N ′
max) indicated on the square in

the upper right of the figure.

lowing the NCSM prescription [12, 13, 16]. For our initial
interactions we select the JISP16 [27] and chiral N3LO
[28] potentials. Our formalism may be directly adapted
to include the three-nucleon force (3NF) but the compu-
tational effort increases dramatically. Thus, we do not
include the 3NF in this initial work.

For the second step, we begin by performing a NCSM
calculation for 18F with the primary effective Hamilto-
nian in the 4h̄Ω model space to generate the low-lying
eigenvalues and eigenvectors needed for a second OLS
transformation as indicated by the flow to the upper right
in Fig. 1. These 18F eigenvectors are dominated by con-
figurations with an 16O system in the lowest available HO
orbits and two nucleons in the sd-shell. All additional
many-body correlations are also present. With these 18F
eigenvectors and eigenvalues we then solve for the “sec-
ondary” effective Hamiltonian, again using an OLS trans-
formation, that acts only in the N ′

max = 0 space of 18F
but produces the same low-lying eigenvalues. Here we
are following the scheme initially introduced in Ref. [11].
The matrix elements of this secondary effective Hamilto-
nian have the property that all configurations are defined
with two nucleons in the sd-space and an 16O subsys-
tem restricted to the lowest available HO single-particle
states. This second step therefore produces a secondary
effective Hamiltonian that is equivalent to what we would

call the 18-body cluster Hamiltonian in the NCSM acting
in the N ′

max = 0 space.

At the third step, we carry out NCSM calculations for
the 16O, 17O and 17F systems with the primary effective
interaction in the 4h̄Ω basis space. The results of these
calculations produce, respectively, the core and one-body
components included in the secondary effective Hamito-
nian.

At the fourth step, we subtract the core and one-body
terms from the secondary effective Hamiltonians of step
2 to obtain the effective valence interaction Two-Body
Matrix Elements (TBMEs) in the sd-shell space.

Following the completion of these four steps, we then
use the effective valence interaction matrix elements
along with the extracted single-particle energies (for both
the proton and the neutron) for standard shell model
(SSM) calculations in the sd-shell space.

For any system with A > 18, we can obtain its 18-body
cluster Hamiltonian by repeating the entire procedure
utilizing the primary effective Hamiltonian for that value
of A. The second and subsequent steps remain the same.
That is, we perform NCSM calculations with the primary
(A-dependent) effective NN potential for 16O, 17O, 17F
and 18F in order to obtain the (A-dependent) core energy,
single-particle energies, and TBMEs, which can then be
used in a SSM calculation for that value of A. We provide
details for applications to A > 18 systems below using
19F as an example.

We employ the Coulomb interaction between the pro-
tons in the NCSM calculations which gives rise to the ma-
jor shift between the derived neutron and proton single-
particle energies. Exploration of full charge-dependence
in the derived two-body valence interactions will be ad-
dressed in a future effort. In particular, our current
A = 18 and 19 applications will have at most one va-
lence proton so we do not require a residual Coulomb
interaction between valence protons in this work.

For the chiral N3LO we retain full charge-dependence
in the first step — that is when deriving the primary
effective Hamiltonian. Thus, the A-body, core and va-
lence systems calculations are performed with full charge-
dependence retained. Since we currently solve only for
18F in step 2, we derive only the isospin-dependent but
charge-independent secondary effective Hamiltonian. To
retain full charge-dependence in the secondary effective
Hamiltonian, which would constitute predictions beyond
conventional phenomenological interactions, would re-
quire additional 18O and 18Ne calculations that are in-
tended in future efforts.

One may straightforwardly generalize these steps out-
lined above to solve for effective three-body valence inter-
actions suitable for SSM calculations. Earlier efforts us-
ing an alternative implementation of step 3 [21] showed
effective three-body valence interactions lead to signifi-
cant improvements over effective two-body valence inter-
actions.



3

II. THEORETICAL DESCRIPTION

A. No Core Shell Model and Effective Interaction

The NCSM calculations start with the intrinsic Hamil-
tonian of the A-nucleon system, omitting any 3NF in the
present effort,

H =

A
∑

i<j=1

(~pi − ~pj)
2

2Am
+

A
∑

i<j=1

V NN
ij (1)

= Trel + V NN ,

where m is the nucleon mass, V NN
ij is the bare NN in-

teraction, Trel is the relative kinetic energy and V NN is
the total two-body interaction. We will add the Coulomb
interaction between the protons at a later stage since we
treat it as a perturbative correction to the derived pri-
mary effective Hamiltonian. In order to facilitate con-
vergence, we modify Eq. (1) by adding (and later sub-
tracting) the center-of-mass HO Hamiltonian which in-
troduces a dependence on the HO energy, h̄Ω, and this
dependence is denoted by “Ω” in what follows. In ad-
dition, we introduce a ≤ A to define a new a-, A-, and
Ω-dependent Hamiltonian

Ha =
a

∑

i=1

[

~pi
2

2m
+

1

2
mΩ2~ri

2

]

+
a

∑

i<j=1

Vij(Ω, A), (2)

where a = A corresponds to the full Hamiltonian of
Eq. (1) with the center-of-mass HO Hamiltonian added
and Vij(Ω, A) is the modified bare NN interaction which
we define independent of the parameter a but including
dependence on A:

Vij(Ω, A) = V NN
ij −

mΩ2

2A
(~ri − ~rj)

2. (3)

The exact solution of Eq. (1) for a subset of its eigen-
solutions in a finite matrix diagonalization requires the
derivation of an A-body effective interaction for heavy
enough nuclei [16], but such a derivation is not currently
possible for A > 5 with realistic interactions.
Here, we adopt the two-body cluster approximation

(a = 2) for the effective interaction [12, 13]. This allows
us to solve the eigenvalue problem for a sufficiently large
basis space that we achieve convergence of a suitable set
of low-lying eigenvalues and eigenvectors needed to con-
struct the primary effective Hamiltonian. In the a = 2
approximation, the Hamiltonian (2) becomes

H2 =

2
∑

i=1

[

~pi
2

2m
+

1

2
mΩ2~ri

2

]

+ V12(Ω, A). (4)

For deriving an effective three-nucleon interaction one
would take a = 3. Note that the A-dependence enters the
Hamiltonian H2 through the second term in Eq. (3). For
example, this A-dependence makes the two-body cluster

Hamiltonian H2 in the T=0 channel different from the
deuteron Hamiltonian. In order to preserve Galilean in-
variance in the primary effective Hamiltonian, we obtain
the solutions to Eq. (4) in the relative HO basis where the
the center-of-mass component of the first term in Eq. (4)
plays no role.
We now introduce our representation of the unitary

transformation needed to construct the primary effective
Hamiltonian PHeffP := HP

2 in the P -space (signified by
a superscipt “P”) of the first step. The P -space effec-
tive interactions have A-dependence, Ω- dependence and
Nmax-dependence all implied by the superscript P . We
define Nmax as the maximum number of HO quanta in
the many-body HO basis space (the NCSM basis space)
above the minimum for the A-nucleon nucleus. We se-
lect Nmax = 4 in the present work. The resulting finite
P -space, of dimension dP , for the first step is indicated
on the left-hand-side of Fig. 1. The diagonalization of
the Hamiltonian H2 in the relative HO basis provides the
unitary transformation U2 such that

H2;diag = U2H2U
†
2 (5)

whereH2;diag is the diagonal matrix containing the eigen-
values E2;k:

H2;diag =







E2;1 0 ... 0
0 E2;2 ... 0
... ... ... ...
0 0 0 E2;max






, (6)

where the subscript “max” signifies the dimension of the
a = 2 space sufficient to guarantee convergence of the
dP low-lying eigenvalues and eigenvectors. We typically
employ max = 200 to 450 for a realistic NN interac-
tion governed by the need to converge the results for the
chosen interaction at the selected value of h̄Ω.
By introducing the model space P , one builds the ma-

trix HP
2;diag = PH2;diagP :

HP
2;diag =







E2;1 0 ... 0
0 E2;2 ... 0
... ... ... ...
0 0 0 E2;dP






. (7)

The unitary transformation matrix Ua in which a = 2
refers to two-body cluster approximation, can be split
into four blocks corresponding to the blocks within the
large squares of Fig. 1.:

Ua =

(

UP
a UPQ

a

UQP
a UQ

a

)

, (8)

where the matrix UP
a is the dP ×dP square matrix corre-

sponding to the P -space. One constructs the UP
2 matrix

from the Ua matrix by taking dP rows and columns of the
eigenvectors corresponding to the chosen dP eigenvalues:

UP
2 =







b1,1 b1,2 ... b1,dP

b2,1 b2,2 ... b2,dP

... ... ... ...
bdP ,1 bdP ,2 ... bdP ,dP






. (9)
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The primary effective HamiltonianHP
2 , signified by the

box labeled“PHeffP” in Fig. 1, can then be calculated
using the following formula:

HP
2 =

UP†
2

√

UP†
2 UP

2

HP
2;diag

UP
2

√

UP†
2 UP

2

(10)

= Trel + V P
eff ,

where V P
eff is the resulting primary effective NN inter-

action and we suppress the subscript “2”. The inter-
action V P

eff depends on A and the chosen P -space in-
cluding the selected value of Ω. Note that the unitary
transformation (10) is identical to OLS unitary transfor-
mation [24–26] which satisfies the decoupling condition

QHeffP := HQP
2 = 0 where the submatrix QHeffP = 0

is one of two decoupling conditions depicted in Fig. 1 for
the primary Hamiltonian.
There are certain freedoms within the OLS renormal-

ization procedure as well as mathematical restrictions
[29]. In this context, we note that in our application, we
select the dP lowest eigenvalues and eigenvectors of H2

for input to our primary effective Hamiltonian through
Eq. (7) and obtain numerically stable and accurate re-
sults.

B. Transformation of the Many-Body Hamiltonian

into the sd-shell Space

After a unitary transformation of the bare Hamilto-
nian in Eq. (4) to the 4h̄Ω (Nmax = 4) model space
for the case of 18F, we calculate the 18-body effective
Hamiltonian PHeffP := HP

18 in the 4h̄Ω space and solve
for its low-lying eigenvalues and eigenvectors in a NCSM
calculation. This is analogous to solving the a = 2 case
above so we introduce the corresponding subscript 18.
We obtain a sufficient number of these 18-body solutions
to generate a second unitary transformation to take HP

18

from the 4h̄Ω model space to a smaller secondary sub-
space P ′, e.g., the sd-shell space, given by N ′

max = 0.

The secondary effective Hamiltonian is called HP ′P
a′ with

a′ = 18 and is represented by P ′H ′
effP

′ in Fig 1).
This “second step” outlined above, follows a similar

path to the “first step” and is indicated by the workflow
to the upper right in Fig. 1. Note that the P -space in the
first unitary transformation is now split into parts related
to the two subspaces, P ′ and Q′, where P ′ + Q′ = P .
Our secondary effective Hamiltonian HP ′P

18 is designed
to reproduce exactly the lowest dP ′ eigenvalues of the
primary effective Hamiltonian HP

18 through:

HP ′P
18 =

UP ′†
18

√

UP ′†
18 UP ′

18

HP ′

18;diag

UP ′

18
√

UP ′†
18 UP ′

18

(11)

= Trel + V P ′P
eff ,

where V P ′P
eff is the resulting secondary effective interac-

tion and we suppress the label for the a′ = 18 depen-
dence.

This secondary effective Hamiltonian (11) is, in gen-
eral, an 18-body operator. However, in the N ′

max = 0
case, the matrix dimension of the 18-body secondary ef-
fective Hamiltonian (11) is the same as the matrix di-
mension of a one-body plus two-body effective Hamilto-
nian acting in the sd-shell space. This means that HP ′P

18

can be taken to consist of only one-body and two-body
terms, even after the exact 18-body cluster transforma-
tion. All the orbitals below the sd-shell space are fully
occupied by the other 16 nucleon-spectators, and the to-
tal 18-body wavefunction can be exactly factorized into
a 16-body 0+ and two-body sd-shell wavefunctions. This
considerably simplifies calculations with HP ′P

18 . There-
fore, we can write a′ as a′ = ac + av, where ac is the
number of core nucleons (16 in this case) and av is the
size of the valence cluster.

In the third step outlined above we solve for the eigen-
values of 17F and 17O in the P-space using the effec-
tive interaction V P

eff from Eq. (10) joined with the Trel

for A = 17, to obtain the proton and neutron one-body
terms of the secondary effective Hamiltonian in the sd-
shell space. Then we subtract the one-body terms from
the secondary effective Hamiltonian of 18F, and we ob-
tain the effective “residual two-body interaction” matrix
elements (or simply the TBMEs) in the sd-shell space.
Additionally, in the third step, we evaluate the 16O core
energy by solving for its ground state energy using the
effective interaction V P

eff from Eq. (10) joined with Trel

for 16O.

Here, we adopt the A = 16 (17) relative kinetic en-
ergy operators for NCSM evaluations of the core (single-
particle) energies in step three. In earlier papers [21, 30],
based on the NCSM with a core first developed in Ref.
[11], a much stronger A-dependence was obtained than
in our present sd-shell calculations. We now under-
stand these earlier results in terms of how the core and
single-particle energies are calculated. In these earlier
studies, the A-dependence of the kinetic energy opera-
tor in the many-nucleon Hamiltonian used for calculat-
ing the core and single-particle energies was taken to be
the total A of the nucleus being studied. In our cur-
rent calculations, we use A(core) = 16 for the kinetic
energy operator when calculating the core energy and
A(core+ 1) = 17 when calculating the single-particle en-
ergies, independent of the total A of the nucleus being
studied. Because the A-dependence of the kinetic energy
operator goes as 1/A, using the total A instead of A(core)
or A(core + 1) produces a much larger A-dependence of
the core and single-particle energies. Both these choices
are technically correct (i.e. they produce identical re-
sults for the nucleus being studied as we have verified),
and merely reflect that these effective valence-space in-
teractions are not uniquely defined. With our current
choice, we achieve weak A-dependence of our resulting
core, single-particle and valence effective interactions for
sd-shell applications, which is appealing since this is a
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characteristic that is commonly found in phenomenologi-
cal effective interactions. Our weak A-dependence is also
consistent with other ab initio investigations using ei-
ther the IM-SRG technique [22] or the Coupled Cluster
method [23].
We then proceed to the fourth step and subtract this

core energy from the energies of the single-particle states
of 17F and 17O mentioned above to arrive at our valence
single-particle energies. At the completion of step four,
we have our Two-Body Valence-Core (2BVC) effective
Hamiltonian that may be used in standard shell model
(SSM) calculations.
By using these core plus valence space single-particle

energies along with the derived residual two-body effec-
tive interactions, we can perform the SSM calculations
for 18F, as well as other nuclei, in the sd-shell and com-
pare with full NCSM calculations in the 4h̄Ω space using
the primary effective Hamiltonian. The SSM calculations
for 18F will, by construction, give the same results as the
NCSM calculations for 18F within numerical precision. A
corresponding approach for A > 18 nuclei is exemplified
below where we also provide a direct comparison between
NCSM and SSM results. One may then proceed, in prin-
ciple, with SSM calculations to cases where full NCSM
results are beyond current technical means.
We may summarize the results of steps 2 - 4 by arrang-

ing the results for the secondary effective Hamiltonian
HP ′P

a′ into separate terms:

HP ′P
a′ = HP ′P

ac
+HP ′P

sp + V P ′P
av

, (12)

where we have allowed for the more general case of two
successive renormalization steps (signified by P ′P ) with
a′ = A in the present discussion. In Eq. (12) Hac

rep-
resents the core Hamiltonian for ac nucleons; Hsp rep-
resents the valence nucleon single-particle Hamiltonian
and Vav

represents the av-body residual effective valence
interaction. Note that Vav

may be used for systems with
more than av valence nucleons as we will demonstrate
below. We also note that the core and the valence single-
particle Hamiltonians include their respective kinetic en-
ergy terms.
In line with our approximations mentioned above, we

use 18F alone to derive our isospin-dependent effective
two-body interaction V P ′P

2 for the sd-shell. We then re-
strict our applications, at present, to cases with at most
one proton in the sd-shell.
In SSM calculations, one typically uses only the Hsp

and Vav
terms in Eq. (12). In phenomenological Hamil-

tonians Hsp is often taken from experiment and av = 2
matrix elements are obtained by fits to properties of a set
of nuclei. We will present detailed comparisons between
our derived Hsp and Vav

terms with phenomenological
interactions in a future work.
There is an important distinction between our SSM

calculations (with our Hamiltonian derived from the ab

initio NCSM) and conventional SSM calculations with
phenomenological interactions. We preserve the factor-
ization of the CM motion throughout our derivation

for the primary and secondary effective Hamiltonians.
Therefore, the N ′

max = 0 secondary effective Hamiltonian
not only reproduces the appropriate Nmax NCSM eigen-
values but also affords access to wavefunctions for these
N ′

max = 0 states which may be written with a factorized
CM wave function of the entire system.

III. EFFECTIVE TWO-BODY sd-SHELL

INTERACTION

In NCSM calculations, the dimension of the primary ef-
fective Hamiltonian increases very rapidly as we increase
Nmax and/or the number of nucleons. We have restricted
the model space to Nmax = 4 in order to limit the com-
putational effort, since our main goal is to demonstrate
the procedure to obtain effective interactions in the sd-
shell for the shell model with the 16O core using the ab

initio NCSM and to test these derived effective interac-
tions with SSM calculations. In order to carry out NCSM
calculations, we have used the MFDn code [31–33] with
the JISP16 and chiral N3LO NN interactions. For the
SSM calculations, we used a specialized version of the
shell-model code ANTOINE [34–36].

A. Core and Valence Effective Interactions for the

A = 18 System

Following the methods presented in Section II for HP
2

in Eq. (10), we calculated the 18-body primary effective
Hamiltonians with Nmax = 4 and h̄Ω = 14 MeV using
the bare JISP16 [27] and chiral N3LO [28] potentials for
V NN
ij . We chose h̄Ω = 14 MeV since it is near the min-

imum of the ground state energy of 16O at Nmax = 4
[27] and it represents a typical choice for derived effec-
tive shell-model valence interactions (see, for example,
Ref. [37]). Future efforts with primary effective Hamil-
tonians derived in larger Nmax spaces will be needed for
meaningful analyses of the h̄Ω-dependence of our results.
We solve for the 18F spectra in NCSM calculations

with these primary effective Hamiltonians and present in
the Appendix the lowest 28 eigenvalues in Table III. The
corresponding NCSM eigenvectors for these 28 states in
the Nmax = 4 space are the eigenvectors dominated by
Nmax = 0 components. These 28 eigenstates correspond
with the complete set of Nmax = 0 states in the sd-shell.
For each of these primary effective Hamiltonians HP

2

we then followed steps 2 - 4 above to calculate secondary
effective Hamiltonians HP ′P

18 as well as the resulting 6 va-

lence single-particle energies HP ′P
sp (3 for neutrons and 3

for protons) and 63 valence two-body effective interaction

matrix elements of V P ′P
2 in the coupled JT representa-

tion.
We now elaborate on the method of separating the sec-

ondary effective Hamiltonian HP ′P
18 into its components

indicated in Eq.(12). According to step 3 we first per-
form separate NCSM calculations for 17F and 17O using
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TABLE I: Proton and neutron single-particle energies (in
MeV) for JISP16 effective interaction obtained for the mass
of A = 18 and A = 19.

A = 18 A = 19

Ecore = −115.529 Ecore = −115.319

ji
1

2

5

2

3

2

1

2

5

2

3

2

ǫnji -3.068 -2.270 6.262 -3.044 -2.248 6.289

ǫ
p
ji

0.603 1.398 9.748 0.627 1.419 9.774

TABLE II: Proton and neutron single-particle energies (in
MeV) for chiral N3LO effective interaction obtained for the
mass of A = 18 and A = 19.

A = 18 A = 19

Ecore = −118.469 Ecore = −118.306

ji
1

2

5

2

3

2

1

2

5

2

3

2

ǫnji -3.638 -3.042 3.763 -3.625 -3.031 3.770

ǫ
p
ji

0.044 0.690 7.299 0.057 0.700 7.307

the Hamiltonian consisting of the same V P
eff from Eq. (10)

combined with Trel for A = 17. These two calculations
provide total single-particle energies for the valence pro-
tons and neutrons, respectively, that are expressed as
matrix elements of HP ′P

ac
+HP ′P

sp .
We continue with the second part of step 3 to ob-

tain the core energy (Ecore) through a NCSM calcula-
tion for 16O using the Hamiltonian consisting of V P

eff from
Eq. (10) in combination with Trel for

16O. The resulting
16O ground state energy defines the contribution ofHP ′P

ac

to the matrix elements of HP ′P
ac

+HP ′P
sp obtained in the

17F and 17O calculations. The valence single-particle en-
ergies, the eigenvalues of HP ′P

sp , are then defined as the
total single-particle energies less the core energy.
To obtain the TBMEs of the valence effective interac-

tion V P ′P
2 , we execute step 4 and subtract the contri-

butions of the core and valence single-particle energies
from the matrix elements of HP ′P

18 to isolate V P ′P
2 in

Eq. (12). To be specific, we designate our valence single-
particle states by their angular momenta ji = 1

2
, 3

2
, 5

2
.

Then, we define the contribution to the doubly-reduced
coupled-JT TBMEs (signified by the subscript JT on the
TBME) arising from the core and one-body terms as

〈jajb||H
P ′P
ac

+HP ′P
sp ||jcjd〉JT =

(Ecore +
1

2
(ǫnja + ǫpja + ǫnjb + ǫpjb))δja,jcδjb,jd , (13)

where ǫj represents the valence single-particle energy for
the orbital with angular momentum j and the super-
script, n(p), designates neutron (proton) for the energy
associated with the 17O (17F) calculation respectively.
The resulting doubly-reduced coupled-JT TBMEs of

the valence effective interaction V P ′P
2 are expressed as

〈jajb||V
P ′P
2 ||jcjd〉JT =

〈jajb||H
P ′P
a′ −HP ′P

ac
−HP ′P

sp ||jcjd〉JT . (14)

Using the symmetries of the coupled-JT representation,
there are 63 unique TBMEs for which ja ≤ jb.
We confirm the accuracy of this subtraction procedure

by demonstrating that SSM calculations with the derived
core, one-body and two-body terms of Eq. (12) in the sd-
shell space reproduce the absolute energies of the lowest
28 states of the 4h̄Ω NCSM calculations for 18F shown
in Table III of the Appendix.
The results for the core energy (Ecore) and valence

single-particle energies (ǫnj , ǫ
p
j ) for the JISP16 interaction

are presented on the left-hand side of Table I for our lead-
ing example where the primary effective Hamiltonian is
derived for A = 18. The corresponding core energy and
valence single-particle energy results for the chiral N3LO
interaction are presented on the left-hand side of Table II.
The valence single-particle energies clearly reflect overall
Coulomb energy shifts between NCSM calculations for
17F and 17O.
The resulting TBMEs of the secondary effective Hamil-

tonian HP ′P
18 in Eq. (11) and of the valence effective in-

teraction V P ′P
2 in Eq. (14) are given in the 7th and 8th

columns respectively of Table IV and Table V in the Ap-
pendix. The results of Table IV are obtained with the
JISP16 NN interaction while those in Table V are ob-
tained with the chiral N3LO NN interaction.
These results for A = 18 with JISP16 presented in

Tables I and IV (as well as the corresponding results
with chiral N3LO in Tables II and V) show the dominant
contribution of Ecore to the diagonal TBMEs of the sec-
ondary effective Hamiltonian HP ′P

18 , as may be expected.
When these Ecore contributions along with the one-body
contributions are subtracted following Eq. (14), the re-

sulting diagonal matrix elements of V P ′P
2 fall in the range

of conventional phenomenological valence nucleon effec-
tive interactions. The non-diagonal TBMEs for A = 18
shown in columns 7 and 8 of Tables IV and V remain
unchanged by the subtraction process of Eq. (14) as re-
quired by the kronecker deltas in Eq. (13).

The resulting TBMEs of V P ′P
2 in column 8 of Tables IV

and V (see tables in the Appendix) appear highly corre-
lated, as shown in Fig. 2, indicating significant indepen-
dence of the valence nucleon interactions from the under-
lying realistic NN interaction. On the other hand, there
is a noticeable dependence on the NN interaction seen
in the spin-orbit splitting of the valence single-particle
energies in Tables I and II. For both the splitting of the
d5/2 and d3/2 orbitals, and the splitting of the s1/2 and
the d3/2 orbitals, the JISP16 interaction produces signif-
icantly larger results than the chiral N3LO interaction.
This is most noticeable in the approximately 30%, or 2
MeV, larger splittings of the d5/2 and d3/2 orbitals ob-
tained with JISP16.
Note that both JISP16 and N3LO lead to splittings

of the d5/2 and d3/2 orbitals that are larger than the
phenomenological shell model result which is based on
experiment. In addition, the order of the calculated s1/2
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JISP16A=18 (MeV)

N
3
L
O

A
=
1
8
(M

eV
)

-6
-6

-4

-4

-2

-2

0

0

2

2

4

4 T = 0
T = 1
y = x

y = 0.981x

FIG. 2: (Color online) Correlation between chiral N3LO and
JISP16 TBMEs plotted in units of MeV. The 63 TBMEs are
derived for A = 18 with the methods described in the text and
are presented in the eighth columns of Tables IV and V. Red
circles (blue squares) represent T = 0(1) matrix elements.
The diagonal dashed line is the reference for equal matrix
elements. The solid red line is a linear fit to the correlation
points with the result y = 0.981x. The root-mean-square
deviation between the two sets of TBMEs is 0.203 MeV. A
plot of the A = 19 results in the tenth columns of Tables IV
and V would be nearly indistinguishable from this plot.

and d5/2 orbitals are inverted compared with experiment.

That is, 17F and 17O have a 5/2+ ground state, an ex-
cited 1/2+ at about 0.5 and 0.9 MeV respectively, and an
excited 3/2+ at about 5 MeV. Of course, neither JISP16
nor the chiral N3LO interaction have been fitted to any
observable in the sd-shell. In addition, these calculated
splittings should be sensitive to the 3NF, which is known
to impact spin-orbit coupling effects in p-shell NCSM in-
vestigations [8, 15–17, 19].

B. Two-body Valence Cluster Approximation for

A = 19 system

We now illustrate our approach for going to heavier
nuclei by adopting the specific example of 19F. In theory,
we could proceed as with our application in the previous
subsection, retain ac = 16 and increase av in pace with
the increase with A. Thus, for A = 19 we would derive
matrix elements of an effective valence 3NF. However,
this is not a practical path since there is no net gain over
performing full NCSM calculations for each A en route to
the secondary effective Hamiltonian. Instead, we present
an alternative approximate path to heavier nuclei.
Our procedure for going to heavier nuclei in the sd-

shell is to specify the sd-shell nucleus of interest with
its value of A in the first step — the construction of
the primary effective interaction V P

eff of Eq. (10). Then
we define the two-body cluster Hamiltonian in Eq. (4)
with this new value of A (A = 19 in our specific ex-

ample) which is subsequently used to construct the pri-
mary effective interaction. Next, we perform steps 2–4
as before with ac = 16 and av = 2 neglecting effective
many-valence-nucleon interactions: we perform 18F, 17F,
17O, and 16O NCSM calculations with this primary effec-
tive interaction V P

eff in order to extract the core energy,
proton and neutron valence single-particle energies, and
valence TBMEs. This is the 2BVC applied for general
A. The generalization to av = 3 (the 3BVC approxima-
tion) is straightforward but computationally demanding.
Note that for A = 19 the 3BVC would correspond to a
complete NCSM calculation.
As an alternative, one may simply neglect any A-

dependence of the core energy, valence single-particle
energies, and valence TBMEs and perform SSM calcu-
lations throughout the sd-shell with the effective shell
model interaction derived for 18F. We also illustrate this
choice below with the example of 19F.
We now investigate the consequences of neglecting the

induced 3NF and of neglecting the A-dependence of V P
eff .

That is, we simply use the the derived core energy, va-
lence single-particle energies and valence TBMEs from
the previous section in a SSM calculation of 19F. For
comparison, we also derive these quantities specifically
for the 19F system in the 2BVC approximation, and we
compare both with a complete NCSM calculations for
19F, which corresponds to performing the 3BVC approx-
imation.
For the 2BVC approach to 19F, we perform step 1 be-

ginning with A = 19 instead of A = 18 in Eqs. (1)-(4).
That is, we calculate the primary effective Hamiltonian of
Eq. (10) for 19F instead of 18F. Then we proceed through
the remaining Equations, as we did for 18F, using V P

eff

defined in Eq. (10). For example, in the second step we

solve for the secondary effective Hamiltonian HP ′P
a′ with

a′ = 18 at Nmax = 4 using Eq. (11) as before. This es-
tablishes the foundation for proceeding with steps 3 and
4 to obtain the core energy, valence single-particle ener-
gies and valence TBMEs needed for solving 19F in a SSM
calculation.
The resulting core energies and valence single-particle

energies calculated by using JISP16 and chiral N3LO ef-
fective interactions are given in the right-hand columns
of Tables I and II, respectively. The core energies for the
A = 19 case are less attractive than the A = 18 case by
210 keV (163 keV) for JISP16 (chiral N3LO). The single-
particle energies for the A = 18 and A = 19 cases differ
by less than 30 keV (20 keV) for JISP16 (chiral N3LO).
We observe, therefore, that the core and single-particle
energies exhibit similarly weak A-dependence for both
interactions.
The resulting TBMEs of the secondary effective Hamil-

tonian HP ′P
18 in Eq. (11) and of the valence effective in-

teraction V P ′P
2 in Eq. (14) are given in the 9th and 10th

columns respectively of Table IV (for JISP16) and Ta-
ble V (for chiral N3LO) in the Appendix. One observes
a good correlation between the TBME results from the
A = 18 case and the A = 19 case by comparing column
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7 with 9 and column 8 with 10 in both Table IV (for
JISP16) and Table V (for chiral N3LO). The TBME’s

of V P ′P
2 exhibit particularly weak A-dependence. The

largest difference between the TBMEs in column 8 and
column 10 in Table IV (for JISP16) is 9 keV and corre-
sponding largest difference in Table V (for chiral N3LO)
is 1 keV.
Our observed weak A-dependence of the core energies,

valence single-particle energies and TBMEs is consistent
with the view that the OLS transformation to the P-
space accounts for the high-momentum components of
the NN interaction and the results are approximately
independent of whether the two-body cluster is treated
as embedded in A = 18 or in A = 19. The similarity of
the derived TBMEs is also suggestive of a common, or
universal, soft effective NN interaction.
We may elaborate on these points by noting that the

first OLS transformation can be viewed as reducing the
ultra-violet (UV) regulator of the JISP16 and N3LO in-
teractions to the UV scale of the HO basis space limit
controlled by Nmax and by h̄Ω. The HO basis space UV
regulator imposed by our first OLS transformation may
be estimated using N , the maximum of 2n+ l of the HO
single-particle orbits included in the P-space. For 18F
(or 19F) with Nmax = 4 and h̄Ω = 14 MeV this UV reg-

ulator is estimated to be either
√

(N + 3/2)mΩ = 1.59

fm−1 [38] or
√

2(N + 3/2 + 2)mΩ = 2.53 fm−1 [39]. In
either case, the estimated UV regulator is independent of
A and is sufficiently low that we may speculate that our
chosen NN interactions are yielding a common (or uni-
versal) UV-regulated primary effective NN -interaction
with the UV-regulation scale fixed by our choice of P-
space. Subsequent processing through the second OLS
transformation is the same for both primary effectiveNN
interactions so it retains that universality feature.

C. SSM and NCSM Calculations for 18F and 19F

with A = 18 and A = 19 Interactions

We have performed SSM calculations for the ground
state and a few low-lying excited states of 18F and 19F
by using the secondary effective Hamiltonians HP ′P

18 of
Eq. (12) developed from the JISP16 and chiral N3LO
potentials. We performed these SSM calculations with
the code ANTOINE [34–36] by explicitly summing the
one-body and two-body components on the right-hand
side of Eq. (12) whose matrix elements are presented in
Tables I and IV for JISP16 and Tables II and V for chi-
ral N3LO. Then, we add the respective core energy to
the resulting spectra to yield total energies for compari-
son with NCSM calculations performed with the primary
effective Hamiltonian.
We also carried out NCSM calculations for 18F and

19F by using the primary effective Hamiltonians HP
2 of

Eq. (10) which are based on the selected NN interaction
and on the selected A in Eqs. (1)–(4). The SSM and
NCSM results for the ground state and a few low-lying

FIG. 3: (Color online) The ground state energy (in MeV)
and low-lying excited-state energies of 18F and 19F obtained
by the NCSM and SSM calculations using the effective JISP16
interaction. The tags A = 18 and A = 19 at the bottom of
each column refer to the effective JISP16 interaction obtained
with the 2BVC approximation for general A. That is, the tags
A = 18 and A = 19 represent nucleus A used for deriving the
primary effective Hamiltonian. In addition, we retain only
effective core, one-body and two-body terms for the secondary
effective Hamiltonian.

excited states of 18F and 19F are shown in Fig. 3 (for
JISP16) and Fig. 4 (for chiral N3LO). The nucleus for
which the spectra are presented (18F or 19F) is speci-
fied at the top of each column along with the many-body
method - either NCSM with the primary effective Hamil-
tonian or SSM with the secondary effective Hamiltonian.
Below each column we specify the A used in Eqs. (1)–(4).
When the results of the NCSM and SSM are the same
with both many-body methods (as they should be the-
oretically for 18F), they appear as a single column with
the label “NCSM/SSM”. This situation, a simple cross-
check of the manipulations and the codes, is presented
in the first column of Fig. 3 (for JISP16) and Fig. 4
(for chiral N3LO). Although these figures show only the
lowest states, the cross-check is verified for all 28 states
of 2 nucleons in the sd-shell.

The remaining 3 columns of Fig. 3 and Fig. 4 display
two SSM calculations with the secondary effective Hamil-
tonians and the exact NCSM calculation, all for 19F. The
second (third) column shows the results of using the pri-
mary effective Hamiltonian for A = 18 (A = 19) in the
2BVC approximation and solving the resulting SSM for
19F as outlined above. The difference between the sec-
ond and third columns is interesting since it reflects two
different 2BVC approximations. In the second column,
we see the effect of ignoring the contributions (both two-
body and three-body) that one additional neutron makes
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FIG. 4: (Color online) The ground state energy (in MeV) and
low-lying excited-state energies of 18F and 19F obtained by the
NCSM and SSM calculations using the effective chiral N3LO
interaction. The tags A = 18 and A = 19 at the bottom of
each column refer to the effective JISP16 interaction obtained
with the 2BVC approximation for general A. That is, the tags
A = 18 and A = 19 represent nucleus A used for deriving the
primary effective Hamiltonian. In addition, we retain only
effective core, one-body and two-body terms for the secondary
effective Hamiltonian.

by interacting with all nucleons in 18F. In the third col-
umn we see the effect of ignoring the contributions of all
interactions in 19F to the effective three-body valence in-
teraction in 19F. The differences between columns 2, 3
and 4 (discussed further below) are almost entirely due
to the differences in the ground state energies; the spec-
tra are nearly the same. The ground state energies in
columns 2 and 3 in Figs. 3 and 4 differ over a range
from 4 keV to 211 keV compared to the exact results in
column 4.

The effects neglected in the two different approxima-
tions represented in columns 2 and 3 of Figs. 3 and 4 led
to small differences the spectroscopy and, therefore, sug-
gest both are potentially fruitful paths for further investi-
gation. However, when performing 2BVC calculations for
A > 19 nuclei (i.e., continuing to retain only core-, one-
and two-body interaction terms) it is natural to expect
that the difference between the SSM and NCSM calcula-
tions would increase due to the neglect of induced valence
three-body, four-body, etc., interactions. The current re-
sults suggest that the dominant effect of neglecting these
higher-body induced interactions may appear mainly as
an overall shift in the spectrum. For the case of 19F,
the shift between columns 3 and 4 in Fig. 3 (4) shows
that the 2BVC approximation for A = 19 is responsible
for an overall net attraction (repulsion) of about 117 keV

(4 keV) which is small on the scale of the overall binding.
The overall shift between columns 2 and 3 in Fig. 3 (4)

shows that the differences in our derived SSM Hamiltoni-
ans produce about a 284 keV (207 keV) displacement in
the binding energy. By referring to the results shown in
Tables I and II, we find that this displacement in binding
energies is attributed approximately to the difference in
the core energies (about 80% of the displacement) and to
the difference in the sum of single-particle energies for the
three valence nucleons (about 20% of the displacement).
These displacements may be cast either as diagonal ma-
trix elements of neglected induced 3NFs or as corrections
to the core and valence single-particle energies (or to a
combination of both). The distribution of these displace-
ments will appear naturally when the 3BVC (i.e. full
av = 3) calculation is performed for 19F.

IV. SUMMARY, CONCLUSIONS AND

OUTLOOK

We have calculated A-dependent effective NCSM
Hamiltonians, called primary effective Hamiltonians
(step 1 that leads to Eq. (10)), in a 4h̄Ω model space with
the realistic JISP16 and chiral N3LO NN interactions.
Next, we have solved the NCSM for low-lying eigen-
states sufficient to derive a secondary effective Hamil-
tonian that acts only in the 0h̄Ω model space for the sd-
shell yet retains information from the full A-body corre-
lations present in the NCSM solutions (step 2 that leads
to Eq. (11)). We then separate the TBMEs of the sec-
ondary effective Hamiltonians into core, one-body, and
two-body contributions (steps 3 and 4 that lead to Eq.
(12)) which defines to the 2BVC effective Hamiltonian
suitable for SSM calculations. Finally, we use these sec-
ondary effective Hamiltonians in SSM calculations and
compare with exact NCSM results based on the primary
Hamiltonians for A = 18 and 19.
We estimate that the first OLS transformation on the

JISP16 and chiral N3LO NN interactions produces pri-
mary effective interactions down to a sufficiently low
UV regulator scale that we obtain a nearly common,
or universal, primary effective NN interaction. Subse-
quent processing through the second OLS transformation
retains universality features resulting in TBMEs from
JISP16 and chiral N3LO that are highly correlated as
visualized in Fig. 2.
The SSM spectra for A = 18 in the valence space are

the same as the low-lying NCSM spectra since our the-
ory of the secondary effective Hamiltonian is derived from
the NCSM solutions obtained with the primary effective
Hamiltonian. With the 2BVC approximation, for which
we present two approaches, there are small differences
between the SSM and NCSM spectra for the 19F system.
These differences are due to the omitted three-body ef-
fective interactions for the 19F system and are observed
primarily as overall shifts in the spectra that are mainly
due to shifts in the core energies. Close examination of
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the core, one-body and two-body components of the sec-
ondary effective Hamiltonians shows weakA-dependence,
which is encouraging for applications to heavier nuclei.
We will extend our investigations to obtain more com-

plete results in sd-shell by proceeding to a higher Nmax

model space for NCSM solutions with the primary effec-
tive Hamiltonian. We will extend the 2BVC approxima-
tion to the 3BVC approximation by including the three-
body components of the secondary effective Hamiltoni-
ans. In addition, we plan to incorporate initial 3NFs
in the NCSM calculations that complement the realistic
NN interactions.
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Appendix A: Tabulation of derived two-body matrix

elements

In this Appendix, we present the results for our NCSM
spectra for 18F and tables of our derived 2-body matrix
elements (TBMEs).

TABLE III: The NCSM energies (in MeV) of the lowest 28
states Jπ

i of 18F calculated in 4h̄Ω model space using JISP16
and chiral N3LO NN interactions with h̄Ω = 14 MeV.

Jπ
i T JISP16 Jπ

i T N3LO

1+1 0 -122.742 1+1 0 -126.964

3+1 0 -122.055 3+1 0 -126.214

0+1 1 -121.320 0+1 1 -125.510

5+1 0 -120.329 5+1 0 -124.545

2+1 1 -119.505 2+1 1 -123.974

2+2 0 -119.011 2+2 0 -123.890

1+2 0 -118.709 1+2 0 -123.077

0+2 1 -118.410 0+2 1 -122.586

2+3 1 -117.211 2+3 1 -121.588

3+2 1 -117.035 4+1 1 -121.512

4+1 1 -117.004 3+2 1 -121.450

3+3 0 -116.765 3+3 0 -121.376

1+3 0 -113.565 1+3 0 -119.658

4+2 0 -112.314 4+2 0 -118.656

2+4 0 -111.899 2+4 0 -117.950

1+4 0 -110.357 1+4 0 -116.106

4+3 1 -109.625 4+3 1 -115.785

2+5 1 -109.292 2+5 1 -115.407

1+5 1 -108.752 3+4 0 -115.309

3+4 0 -108.706 1+5 1 -114.870

2+6 0 -108.485 2+6 0 -114.787

1+6 1 -108.055 1+6 1 -114.392

2+7 1 -108.041 3+5 1 -114.258

3+5 1 -107.874 2+7 1 -114.176

3+6 0 -101.528 3+6 0 -109.316

1+7 0 -99.946 1+7 0 -107.798

0+3 1 -99.848 2+8 1 -107.473

2+8 1 -99.607 0+3 1 -107.436
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TABLE IV: The TBMEs (in MeV) of the secondary sd-shell

effective Hamiltonian HP ′P
18 obtained from the NCSM calcula-

tion with Nmax = 4, h̄Ω = 14 MeV, and JISP16 potential for
18F are shown as well as the TBMEs of its residual valence ef-
fective interaction, V P ′P

2 . Pairs of columns are labelled by the
A used in Eqs. (1-4) to develop the primary effective NCSM
Hamiltonian as discussed in the text.

A = 18 A = 19

2ja 2jb 2jc 2jd J T HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

1 1 1 1 0 1 -120.176 -2.182 -119.917 -2.181

1 1 3 3 0 1 -0.924 -0.924 -0.924 -0.924

1 1 5 5 0 1 -1.274 -1.274 -1.274 -1.274

3 3 3 3 0 1 -100.477 -0.958 -100.214 -0.958

3 3 5 5 0 1 -3.397 -3.397 -3.396 -3.396

5 5 5 5 0 1 -118.926 -2.525 -118.673 -2.525

1 1 1 1 1 0 -121.296 -3.302 -121.032 -3.296

1 1 1 3 1 0 -0.378 -0.378 -0.383 -0.383

1 1 3 3 1 0 0.231 0.231 0.236 0.236

1 1 3 5 1 0 2.054 2.054 2.052 2.052

1 1 5 5 1 0 -0.936 -0.936 -0.939 -0.939

1 3 1 3 1 0 -112.168 -3.412 -111.902 -3.406

1 3 3 3 1 0 -1.380 -1.380 -1.384 -1.384

1 3 3 5 1 0 1.455 1.455 1.456 1.456

1 3 5 5 1 0 0.525 0.525 0.528 0.528

3 3 3 3 1 0 -100.450 -0.931 -100.181 -0.925

3 3 3 5 1 0 -0.172 -0.172 -0.173 -0.173

3 3 5 5 1 0 2.511 2.511 2.508 2.508

3 5 3 5 1 0 -113.957 -5.997 -113.698 -5.996

3 5 5 5 1 0 3.579 3.579 3.580 3.580

5 5 5 5 1 0 -117.448 -1.047 -117.191 -1.043

1 3 1 3 1 1 -108.749 0.007 -108.487 0.009

1 3 3 5 1 1 0.042 0.042 0.042 0.042

3 5 3 5 1 1 -108.057 -0.097 -107.798 -0.096

1 3 1 3 2 0 -110.023 -1.267 -109.760 -1.264

1 3 1 5 2 0 -2.969 -2.969 -2.968 -2.968

1 3 3 5 2 0 -1.873 -1.873 -1.873 -1.873

1 5 1 5 2 0 -117.279 -0.081 -117.021 -0.079

1 5 3 5 2 0 -1.597 -1.597 -1.597 -1.597

TABLE IV continued

3 5 3 5 2 0 -112.093 -4.133 -111.826 -4.124

1 3 1 3 2 1 -109.374 -0.618 -109.113 -0.617

1 3 1 5 2 1 1.504 1.504 1.504 1.504

1 3 3 3 2 1 0.185 0.185 0.185 0.185

1 3 3 5 2 1 0.601 0.601 0.601 0.601

1 3 5 5 2 1 1.005 1.005 1.005 1.005

1 5 1 5 2 1 -118.667 -1.469 -118.411 -1.469

1 5 3 3 2 1 -0.840 -0.840 -0.840 -0.840

1 5 3 5 2 1 -0.374 -0.374 -0.374 -0.374

1 5 5 5 2 1 -0.780 -0.780 -0.780 -0.780

3 3 3 3 2 1 -99.766 -0.247 -99.503 -0.247

3 3 3 5 2 1 -0.933 -0.933 -0.933 -0.933

3 3 5 5 2 1 -0.730 -0.730 -0.730 -0.730

3 5 3 5 2 1 -108.232 -0.272 -107.973 -0.271

3 5 5 5 2 1 -0.352 -0.352 -0.352 -0.352

5 5 5 5 2 1 -117.617 -1.216 -117.364 -1.216

1 5 1 5 3 0 -121.030 -3.832 -120.770 -3.828

1 5 3 3 3 0 0.068 0.068 0.066 0.066

1 5 3 5 3 0 1.373 1.373 1.375 1.375

1 5 5 5 3 0 -1.766 -1.766 -1.768 -1.768

3 3 3 3 3 0 -102.271 -2.752 -102.006 -2.750

3 3 3 5 3 0 2.000 2.000 1.998 1.998

3 3 5 5 3 0 0.961 0.961 0.963 0.963

3 5 3 5 3 0 -108.629 -0.669 -108.367 -0.665

3 5 5 5 3 0 2.308 2.308 2.306 2.306

5 5 5 5 3 0 -117.125 -0.724 -116.870 -0.722

1 5 1 5 3 1 -117.022 0.176 -116.765 0.177

1 5 3 5 3 1 -0.356 -0.356 -0.356 -0.356

3 5 3 5 3 1 -107.888 0.072 -107.629 0.073

3 5 3 5 4 0 -112.314 -4.354 -112.049 -4.347

3 5 3 5 4 1 -109.863 -1.903 -109.605 -1.903

3 5 5 5 4 1 -1.303 -1.303 -1.303 -1.303

5 5 5 5 4 1 -116.766 -0.365 -116.513 -0.365

5 5 5 5 5 0 -120.329 -3.928 -120.075 -3.927
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TABLE V: The TBMEs (in MeV) of the secondary sd-shell

effective Hamiltonian HP ′P
18 obtained from the NCSM cal-

culation with Nmax = 4, h̄Ω = 14 MeV, and chiral N3LO
potential for 18F are shown as well as the TBMEs of its resid-

ual valence effective interaction, V P ′P
2 . Pairs of columns are

labelled by the A used in Eqs. (1-4) to develop the primary
effective NCSM Hamiltonian as discussed in the text.

A = 18 A = 19

2ja 2jb 2jc 2jd J T HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

1 1 1 1 0 1 -124.196 -2.106 -123.978 -2.106

1 1 3 3 0 1 -0.991 -0.991 -0.991 -0.991

1 1 5 5 0 1 -1.268 -1.268 -1.268 -1.268

3 3 3 3 0 1 -108.265 -0.858 -108.086 -0.857

3 3 5 5 0 1 -3.538 -3.538 -3.538 -3.538

5 5 5 5 0 1 -123.099 -2.278 -122.915 -2.278

1 1 1 1 1 0 -125.152 -3.089 -124.963 -3.089

1 1 1 3 1 0 -0.022 -0.022 -0.022 -0.022

1 1 3 3 1 0 -0.175 -0.175 -0.175 -0.175

1 1 3 5 1 0 -2.315 2.315 -2.315 2.315

1 1 5 5 1 0 -0.750 -0.750 -0.750 -0.750

1 3 1 3 1 0 -118.632 -3.870 -118.422 -3.870

1 3 3 3 1 0 -1.149 -1.149 -1.149 -1.149

1 3 3 5 1 0 1.568 1.568 1.568 1.568

1 3 5 5 1 0 0.355 0.355 0.355 0.355

3 3 3 3 1 0 -108.280 -0.873 -108.102 -0.873

3 3 3 5 1 0 -0.217 -0.217 -0.217 -0.217

3 3 5 5 1 0 2.265 2.265 2.265 2.265

3 5 3 5 1 0 -119.761 -5.620 -119.553 -5.620

3 5 5 5 1 0 3.377 3.377 3.377 3.377

5 5 5 5 1 0 -121.832 -1.011 -121.648 -1.011

1 3 1 3 1 1 -114.838 -0.076 -114.628 -0.076

1 3 3 5 1 1 -0.157 -0.157 -0.157 -0.157

3 5 3 5 1 1 -114.478 -0.337 -114.270 -0.337

1 3 1 3 2 0 -116.128 -1.576 -116.128 -1.576

1 3 1 5 2 0 -2.623 -2.623 -2.623 -2.623

1 3 3 5 2 0 -1.980 -1.980 -1.980 -1.980

1 5 1 5 2 0 -121.972 -0.503 -121.759 -0.503

1 5 3 5 2 0 -1.703 -1.703 -1.703 -1.703

TABLE V continued

3 5 3 5 2 0 -118.482 -4.341 -118.274 -4.341

1 3 1 3 2 1 -115.422 -0.660 -115.212 -0.660

1 3 1 5 2 1 1.569 1.569 1.569 1.569

1 3 3 3 2 1 0.188 0.188 0.188 0.188

1 3 3 5 2 1 0.695 0.695 0.695 0.695

1 3 5 5 2 1 0.883 0.883 0.883 0.883

1 5 1 5 2 1 -122.903 -1.434 -122.690 -1.434

1 5 3 3 2 1 0.869 -0.869 0.869 -0.869

1 5 3 5 2 1 0.298 -0.298 0.298 -0.298

1 5 5 5 2 1 -0.802 -0.802 -0.802 -0.802

3 3 3 3 2 1 -107.666 -0.259 -107.488 -0.259

3 3 3 5 2 1 -0.885 -0.885 -0.885 -0.885

3 3 5 5 2 1 -0.813 -0.813 -0.813 -0.813

3 5 3 5 2 1 -114.549 -0.408 -114.341 -0.408

3 5 5 5 2 1 -0.359 -0.359 -0.359 -0.359

5 5 5 5 2 1 -122.077 -1.256 -121.893 -1.256

1 5 1 5 3 0 -125.266 -3.797 -125.053 -3.797

1 5 3 3 3 0 0.155 0.155 0.155 0.155

1 5 3 5 3 0 1.206 1.206 1.206 1.206

1 5 5 5 3 0 -1.648 -1.648 -1.648 -1.648

3 3 3 3 3 0 -110.003 -2.596 -109.825 -2.596

3 3 3 5 3 0 1.819 1.819 1.819 1.819

3 3 5 5 3 0 0.564 0.564 0.564 0.564

3 5 3 5 3 0 -115.233 -1.092 -115.025 -1.092

3 5 5 5 3 0 1.940 1.940 1.940 1.940

5 5 5 5 3 0 -121.768 -0.947 -121.584 -0.947

1 5 1 5 3 1 -121.476 -0.007 -121.263 -0.007

1 5 3 5 3 1 -0.094 -0.094 -0.094 -0.094

3 5 3 5 3 1 -114.287 -0.146 -114.079 -0.146

3 5 3 5 4 0 -118.684 -4.543 -118.476 -4.543

3 5 3 5 4 1 -116.134 -1.993 -115.926 -1.993

3 5 5 5 4 1 -1.319 -1.319 -1.319 -1.319

5 5 5 5 4 1 -121.190 -0.369 -121.006 -0.369

5 5 5 5 5 0 -124.545 -3.724 -124.361 -3.724
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