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Ab initio calculations of the quasi-elastic electromagnetic and neutral-weak response functions of
4He and 12C are carried out for the first time. They are based on a realistic approach to nuclear
dynamics, in which the strong interactions are described by two- and three-nucleon potentials and the
electroweak interactions with external fields include one- and two-body terms. The Green’s function
Monte Carlo method is used to calculate directly the Laplace transforms of the response functions,
and maximum-entropy techniques are employed to invert the resulting imaginary-time correlation
functions with associated statistical errors. The theoretical results, confirmed by experiment in
the electromagnetic case, show that two-body currents generate excess transverse strength from
threshold to the quasi-elastic to the dip region and beyond. These findings challenge the conventional
picture of quasi-elastic inclusive scattering as being largely dominated by single-nucleon knockout
processes.

PACS numbers: 21.60.De, 25.30.Pt

In first-order perturbation theory, the interactions of
an external electroweak probe with a nucleus are de-
scribed by response functions, which encode the strong-
interaction dynamics of the nuclear constituents, the pro-
tons and neutrons, and their coupling to these exter-
nal fields. The response functions—two for the electro-
magnetic processes A(e, e′), and five for the neutral or
charge-changing weak processes A(νl, ν

′
l) and A(νl, ν

′
l ),

or A(νl, l
−) and A(νl, l

+)—determine the inclusive dif-
ferential cross sections [1]. They can be written schemat-
ically as

Rαβ(q, ω)∼
∑
f

δ(ω + E0 − Ef )〈f |Oα(q)|0〉∗

× 〈f |Oβ(q)|0〉, (1)

where q and ω are the momentum and energy transfers
injected by the external field into the nucleus, |0〉 and |f〉
represent respectively its initial ground state of energy E0

and final continuum state of energy Ef (a sum over these
continuum states is implied), Oα(q) and Oβ(q) denote
appropriate components of the of the nuclear electroweak
current operator [2](their ω-dependence is dealt with as
described below), and an average over the ground-state
spin projections is understood (precise definitions for the
nuclear electroweak response functions, and resulting in-
clusive cross sections, are given in Ref. [1]).

At large values of momentum and energy transfers
(q >∼ 1 GeV and ω >∼ 0.5 GeV), where the dynamics of
interacting nucleons is inextricably interwoven with the
internal dynamics of individual nucleons, the accurate
calculation of the response functions poses formidable
challenges, particularly in view of the fact that a con-
sistent framework to describe such a regime in QCD is
still lacking. Even at the lower q and ω of interest in the
present study (q <∼ 0.5 GeV and ω in the quasi-elastic re-

gion), where the consequences of the nucleon’s substruc-
ture on nuclear dynamics can be subsumed into effective
many-body potentials and currents, this calculation re-
mains extremely difficult: it requires summation over the
entire excitation spectrum of the nucleus and inclusion in
the electroweak currents of one- and many-body terms.

In the case of inclusive weak scattering, a further dif-
ficulty exists for comparing calculated and experimental
results. Because neutrino beams are produced as sec-
ondary decay products, their energy is not sharply de-
fined, but broadly distributed. This means that the ob-
served cross section for a given energy and angle of the
final lepton follows from a folding with the energy distri-
bution of the incoming neutrino flux and, consequently,
may include contributions from q-ω regions where dif-
ferent mechanisms are at play: the threshold region,
where the structure of the low-lying energy spectrum and
collective effects are important; the quasi-elastic region,
which is dominated by scattering off individual nucleons
and nucleon pairs (see below); and the ∆-resonance re-
gion, where one or more pions are produced in the final
state [3].

Integral properties of the response functions can be
studied by means of sum rules, which are obtained from
ground-state expectation values of appropriate combi-
nations of the current operators (and commutators of
these combinations with the Hamiltonian in the case
of energy-weighted sum rules), thus avoiding the need
for computing the nuclear excitation spectrum. Ab ini-
tio quantum Monte Carlo (QMC) calculations of (non-
energy-weighted) electroweak sum rules in 12C have been
recently reported in Refs. [4, 5]. These calculations
have demonstrated that a large fraction (' 30%) of the
strength in the response arises from processes involving
two-body currents, and that interference effects between
the matrix elements of one- and two-body currents play a
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major role [6]. These effects are typically only partially,
or approximately, accounted for in existing perturbative
or mean-field studies [7–10].

However, sum rules do not provide direct information
on the distribution of strength, whether, for example, the
calculated excess strength induced by two-body currents
is mostly at large ω, well beyond the quasi-elastic peak

energy ωqe =
√
q2 +m2−m (m is the nucleon mass), or

is also found in the quasi-elastic region with ω <∼ ωqe.
Moreover, in the electromagnetic case, comparison of
theoretical and experimental sum rules is problematic,
since longitudinal and transverse response functions ob-
tained from Rosenbluth separation of measured inclusive
(e, e′) cross sections are only available in the space-like
region (ω < q) and therefore must be extrapolated into
the unobserved time-like region (ω > q) before “experi-
mental” values for the sum rules can be determined; see
Refs. [4, 11] for a discussion of these issues.

In this paper we report the first ab initio calcula-
tions of the electromagnetic and neutral-weak response
functions of 4He and 12C (other studies for 4He have
been already performed within different frameworks, see
Refs. [12–14]). These calculations proceed in two steps:
the first involves the use of QMC methods to compute
the response in imaginary time, the so-called Euclidean
response [15, 16], while the second consists in the inver-
sion, via maximum-entropy techniques [17, 18], of these
“noisy” imaginary-time data to obtain Rαβ(q, ω). The
dynamical framework is based on a realistic Hamilto-
nian, including the Argonne v18 two-nucleon [19] (AV18)
and Illinois-7 three-nucleon [20] (IL7) potentials, and on
realistic electroweak currents with one- and two-body
terms. A concise description of this framework is in
Refs. [4, 5], while a more extended one can be found
in the reviews [21, 22]. These latter papers also illus-
trate the level of quantitative success it has achieved in
accurately predicting many properties of s- and p-shell
nuclei up to 12C, including, among others, energy spec-
tra of low-lying states, static properties like charge radii,
magnetic dipole and electric quadrupole moments, radia-
tive and weak transition rates, and elastic and inelastic
electromagnetic form factors.

The Euclidean response function is defined as the
Laplace transform of the response

Eαβ(q, τ) = Cαβ(q)

∫ ∞
ωth

dω e−τωRαβ(q, ω) , (2)

where ωth is the inelastic threshold and the Cαβ are q-
dependent normalization factors. In Rαβ(q, ω) the ω-
dependence enters via the energy-conserving δ-function
and the dependence on the four-momentum transfer
Q2 = q2 − ω2 of the electroweak form factors of the
nucleon and N -to-∆ transition in the currents. We
remove the latter by evaluating these form factors at
Q2

qe = q2 − ω2
qe (we have explicitly verified that this

approximation leads to a negligible correction in the
deuteron). In the case of the electromagnetic longitu-
dinal (L or αβ = 00) and transverse (T or αβ = xx)

response functions, the normalization factors are [11]

CL = CT = 1/
[
GpE(Q2

qe)
]2

, where GpE is the proton elec-
tric form factor, while in the neutral-weak response func-
tions they are the same as those adopted in the sum rule
calculations reported in Ref. [5]. With these definitions
the response functions in Eq. (2) can be thought of as be-
ing due to point-like, but strongly interacting, nucleons.
Note that non-energy-weighted sum rules correspond to
Eαβ(q, τ = 0), while energy-weighted ones are obtained
by taking derivatives of Eαβ(q, τ) with respect to τ and
evaluating them at τ = 0.

The Euclidean response can be expressed as a ground-
state expectation value,

Eαβ(q, τ)

Cαβ(q)
=
〈0|O†α(q)e−(H−E0)τOβ(q)|0〉

〈0|e−(H−E0)τ |0〉
, (3)

where H is the nuclear Hamiltonian (here, the AV18+IL7
model), τ is the imaginary-time, and E0 is a trial en-
ergy to control the normalization. In this paper we re-
port responses computed with the variational wave func-
tion, |0〉 = |ΨV 〉; in Refs. [4, 5] it was shown that
sum rules computed with |ΨV 〉 for 12C are very close
(within less than 5%) to those computed with the ex-
act Green’s function Monte Carlo (GFMC) wave func-
tion. The calculation of the matrix element above is
carried out with GFMC methods [15] similar to those
used in projecting out the exact ground state of H from
a trial state [23]. It proceeds in two steps. First, an
unconstrained imaginary-time propagation of the varia-
tional Monte Carlo (VMC) state |ΨV 〉 is performed and
saved. Next, the states Oβ(q)|ΨV 〉 are evolved in imag-
inary time following the path previously saved. During
this latter imaginary-time evolution, scalar products of
exp [− (H − E0) τi]Oβ(q)|ΨV 〉 with Oα(q)|ΨV 〉 are eval-
uated on a grid of τi values, and from these scalar prod-
ucts estimates for Eαβ(q, τi) are obtained (a complete
discussion of the methods is in Refs. [11, 15]).

In Fig. 1 the electromagnetic longitudinal (EL, top
panel) and transverse (ET , lower panel) Euclidean re-
sponse functions of 12C are compared to those obtained
from the world data analysis by Jourdan [24], represented
by the shaded bands. In order to better show the large τ

behavior, all the figures in this paper show Ẽαβ(q, τ) =
exp[τ q2/(2m)]Eαβ(q, τ); this scaled response would be
a constant for an isolated proton. The “experimental”
EL(q, τ) and ET (q, τ) follow from Laplace-transforming
the longitudinal and transverse data. These are first di-

vided by
[
GpE(Q2)

]2
to obtain corresponding response

functions of point-like nucleons, and then integrated with
the weight factor exp(−τω) up to ωmax, where measure-
ments are available. The strength in the unobserved re-
gion with ω > ωmax is estimated by assuming that the
RL(q, ω > ωmax) and RT (q, ω > ωmax) of 12C are pro-
portional to those in the deuteron, which can be ac-
curately calculated [1]. The procedure is identical to
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [24].

that used in Ref. [4] for the sum rules. As discussed
in Ref. [4], the scaling assumption can be justified by ob-
serving that the high ω (well beyond ωqe) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as τ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q, ω). Indeed, in this limit (τ >∼ 1/ωqe)
contributions from unmeasured strength at ω > ωmax are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is effective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ω >∼ ωqe, but also in the
quasi-elastic and threshold regions of RT (q, ω). It is re-
assuring to see that the full predictions for both longitu-
dinal and transverse Euclidean response functions are in

excellent agreement with data.
At larger values of τ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [4] is removed in order to account for the inelastic
strength only. However, it should be possible to reduce
these errors in the future by investing substantial ad-
ditional computational resources in this type of calcu-
lation. Those presented here were performed with ∼45
million core hours of Argonne National Laboratory’s IBM
Blue Gene/Q (Mira) parallel supercomputer. The Au-
tomatic Dynamic Load Balancing (ADLB) library [25]
was used to distribute the imaginary time propagation
of Oβ(q)|ΨV 〉 and the evaluation of the matrix element
in Eq. (3) over more than 8000 nodes. The code is at
present approximately 75% efficient at this scale.

In Fig. 2 we show the largest of the five Euclidean
neutral-weak response functions: the transverse (top
panel) and interference (lower panel) Eαβ(q, τ), having
respectively αβ = xx and αβ = xy in the notation of
Ref. [1]. The Exy(q, τ) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q, ω) enters with opposite sign de-
pending on whether the process A(νl, ν

′
l) or A(νl, ν

′
l ) is

considered [1]—the difference between the σ(ν) and σ(ν̄)
cross sections is proportional to Rxy. It is important
to note that this difference will have an impact on the
determination of the CP-violating phase extracted from
A(νl, ν

′
l) and A(νl, ν

′
l ) scattering experiments at DUNE

[26].
On the other hand, in the transverse case the inter-

ference of VNC and ANC terms vanishes, and Exx(q, τ)
is simply given by the sum of the terms with both Oα
and Oβ in Eq. (1) being from the VNC or from the
ANC. For Exx(q, τ) these individual contributions, along
with their sum, are displayed separately. Both Exx(q, τ)
and Exy(q, τ) response functions obtained with one-body
terms only in the NC are substantially increased when
two-body terms are also retained. This enhancement is
found not only at low τ , thus corroborating the sum-
rule predictions of Ref. [5], but in fact extends over the
whole τ region studied here. Moreover, in the case of
the transverse response it affects, in relative terms, the
individual (VNC-VNC) and (ANC-ANC) contributions
about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors −2 sin2 θW
and (1 − 2 sin2 θW ) with θW being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, τ)
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FIG. 2. (Color online) Euclidean neutral-weak transverse
(top panel) and interference (lower panel) response functions
(αβ = xx and xy in the notation of Ref. [1]) of 12C at q = 570
MeV. See text for further explanations.

is substantial at these relatively large q’s. It decreases
significantly (for τ >∼ 0.01 MeV−1) as q is reduced [27],
consistently with what is found in calculations of low
q charge-changing weak transitions to specific low-lying
states, such as the β-decays and electron and muon cap-
tures studied in Refs. [28, 29], where it amounts to a
few percent. In principle, the enhancement in the quasi-
elastic region could be measured in parity-violating in-
clusive (~e, e′) scattering at backward angles. However,
the smallness of the factor (1− 4 sin2 θW ), to which the
relevant (VEM-ANC) interference response function is
proportional, makes experiments of this type extremely
difficult.

In order to obtain more detailed information on the
energy dependence of the Rαβ(q, ω) response, we em-
ploy the maximum-entropy method to invert Eαβ(q, τ).
We describe the method here very briefly, several stan-
dard references are available [17, 18]. The numerical in-
version of a Laplace transform Eαβ(q, τ) with its asso-
ciated statistical errors is a notoriously ill-posed prob-
lem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
maximum-entropy method is based on Bayesian statis-
tical inference: the “most probable” response function is
the one that maximizes the posterior probability Pr[R|E ],

i.e., the conditional probability of R given E. Bayes the-
orem states that the posterior probability is proportional
to the product Pr[E|R ] × Pr[R ], where Pr[E|R ] is the
likelihood function and Pr[R ] is the prior probability. Ar-
guments based on the central limit theorem show that
the asymptotic limit of the likelihood function is given
by Pr[E|R ] ∝ exp(−χ2/2) with χ2 defined as follows.
Let Nτ and Nω be the numbers of grid points in the
variables τ and ω, respectively. Then the Laplace trans-
form in Eq. (2) reads (the q-dependence and subscripts
αβ of Eαβ(q, τ) and Rαβ(q, τ) are suppressed for simplic-
ity hereafter)

Ei =

Nω∑
j=1

Kij Rj , (4)

where Kij = exp(−τi ωj) and Rj = ∆ωj R(ωj), and the
χ2 follows from

χ2 =

Nτ∑
i,j=1

(
Ei − Ei

) (
C−1

)
ij

(
Ej − Ej

)
, (5)

where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the χ2. The
GFMC errors on Ei are strongly correlated in τ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.

Limiting ourselves only to the χ2 minimization would
implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =

Nω∑
i=1

[
Ri −Mi −Ri ln[Ri/Mi]

]
, (6)

where Mi = ∆ωiM(ωi) and the positive definite function
M(ω) is the default model. It is worthwhile mentioning
that the above expression is applicable even when R(ω)
and M(ω) have different normalizations. The entropy
measures how much the response function differs from
the model. It vanishes when R(ω) = M(ω), and is nega-
tive when R(ω) 6= M(ω). The maximum-entropy method
adds to the simple χ2 minimization the use of the prior in-
formation that the response function can be interpreted
as a probability distribution function. We employ his-
toric maximum entropy by minimizing αS − χ2/2 with
the parameter α adjusted to make the χ2 equal to one.
While more refined methods relying on Bayes statistical
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inference have been developed, we found historic maxi-
mum entropy to be simple to implement and adequate
for our purposes.

As a first case we consider the electromagnetic re-
sponse of 4He. We generated a set of NE ' 2500
GFMC estimates of the Euclidean response functions,
obtained from independent imaginary-time propagations,
on a grid of τ points uniformly distributed between 0
to 0.05 MeV−1 with ∆τ = 0.0005 MeV−1. The esti-
mates were each started from statistically uncorrelated

sets of 20, 000 VMC configurations. Let E
(n)
i = E(n)(τi)

be the Euclidean response function corresponding to the
nth GFMC propagation. The average Euclidean response
function and covariance matrix elements are given by

Ei =
1

NE

NE∑
n=1

E
(n)
i , (7)

Cij =
1

NE(NE − 1)

NE∑
n=1

[
Ei − E(n)

i

][
Ej − E(n)

j

]
. (8)

In general, the covariance matrix is non-diagonal because
of correlations between different τi, and the full expres-
sion for the χ2 in Eq. (5) has been used (more details are
given in [2]).
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FIG. 3. (Color online) Electromagnetic longitudinal (top
panel) and transverse (lower panel) response functions of 4He
at q = 600 MeV. Experimental data are from Ref. [11].

The 4He longitudinal and transverse response functions
(at q = 600 MeV), obtained from inversion of EL(q, τ)
and ET (q, τ), are shown in Fig. 3. The inversions are,
to a very large degree, insensitive to the choice of de-
fault model response [27]. Results obtained with one-
body only (dashed line) and (one+two)-body (solid line)
currents are compared with an analysis of the experi-
mental world data [11] (empty circles). There is excel-
lent agreement between the full theory and experiment.
Two-body currents significantly enhance the transverse
response function, not only in the dip region, but also in
the quasi-elastic peak and threshold regions, providing
the missing strength needed to reproduce the experimen-
tal results. An even larger enhancement in the transverse
response occurs at q = 300 MeV [27], consistent with ex-
pectations from sum rule calculations [4].

Following Ref. [18], in order to study the sensitivity of
the solution on the choice of the prior, we have used two
non-informative default models: the flat model

M(ω) = α θ(ωM − ω) , (9)

where θ(ω) is the step function and ωM = 2 GeV, and a
simple Gaussian

M(ω) = α e−ω
2/σ2

. (10)

In spite of the fact that the maximum-entropy algorithm
turns out to be insensitive to the choice of the normal-
ization constant, we have fixed α so that the the integral
of the prior corresponds to the sum rule, the value of the
Euclidean response function at τ = 0. In the case of the
gaussian, the smallest possible σ compatible with χ2 = 1
is selected. The band in Fig. 3 provides an estimate for
the dependence of the full results on the adopted default
model. The model dependence is quite small.

With the exception of the leading relativistic correc-
tions contained in the nuclear electroweak currents (see
Ref. [1]), the present calculations are based on a non-
relativistic approach. Naive kinematical considerations
would lead one to expect the quasi-elastic peak posi-
tion in Fig. 3 to be at q2/(2m) + ∆E ' 211 MeV for
q = 600 MeV—we take ∆E ' 20 MeV to be the sepa-
ration energy of 4He into a 3+1 cluster. The calculated
response functions appear to peak at lower ω, in fact close
to ωqe + ∆E ' 195 MeV. The width of the quasi-elastic
peak is also seen to be correctly reproduced—the nonrela-
tivistic Fermi gas fails to predict this quantity at momen-
tum transfers q ∼ 600 MeV as in Fig. 3. Thus, even at
these relatively high momentum and energy transfers, the
nonrelativistic dynamical framework adopted here may
be more robust than comparisons between nonrelativis-
tic and relativistic Fermi gas models would lead one to
conclude [30].

A direct evaluation of the 12C response functions via
these same methods and with the same accuracy as the
one of 4He shown in Fig. 3, would require about 100
million core hours. We are examining improved meth-
ods including the use of correlated sampling that could
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improve the efficiency of this inversion. We are also ex-
ploring methods to extend these results to larger nuclei.

On the basis of the present 4He and 12C calculations,
a consistent picture of the electroweak response of nuclei
emerges, in which two-body terms in the nuclear elec-
troweak current are seen to produce significant excess
transverse strength from threshold to the dip region and
beyond. Such a picture is at variance with the conven-
tional one of inclusive quasi-elastic scattering, in which
single-nucleon knockout is expected to be the dominant
process in this regime.
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