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We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In
the NCSM, the A-body Hilbert space is truncated by the total energy, and the IR length can be
determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of
A nucleons in a 3(A − 1)-dimensional hyper-radial well with a Dirichlet boundary condition for
the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by
performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR
extrapolations for bound states of 4He, 6He, 6Li, 7Li. We also attempt to extrapolate NCSM results
for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.

PACS numbers: 21.60.De, 21.60.-n, 21.10.Dr, 03.65.Aa

Introduction – The spherical harmonic oscillator basis
is a convenient and popular choice in nuclear structure
calculations because it reflects the symmetries and the
self-bound character of atomic nuclei. A finite oscilla-
tor space, defined by a maximum of N excited oscillator
quanta and frequency ω, exhibits an infrared (IR) and ul-
traviolet (UV) cutoff π/L and Λ, respectively [1]. Here,

L ≈
√

2Nb and Λ ≈
√

2N/b (in units where ~ = 1 = c)
are leading-order (LO) approximations in N , valid for

N � 1 [2, 3], and b ≡
√
~/(Mω) denotes the oscillator

length for a particle of mass M . This makes it neces-
sary to understand the convergence of energies and other
observables as L and Λ are increased. The UV conver-
gence depends on the momentum regulators employed
in the nuclear interaction [4], while the IR convergence
depends on the structure of the nucleus under consid-
eration. Coon et al. [5] found that the IR convergence
of ground-state energies is exponential in L (in model
spaces where corrections due to a finite UV cutoff Λ can
be neglected). This exponential convergence can be un-
derstood as follows [6]: For long wavelengths, the finite
oscillator basis is indistinguishable from a spherical well
with a hard wall at a radius L, and the resulting Dirich-
let boundary condition induces corresponding corrections
to the exponential fall-off of bound-state wavefunctions.
This insight allows one to derive IR extrapolation formu-
las for bound-state energies and radii [6, 7].

For IR extrapolations to work in practice, one needs a
value for the IR length L that is more precise than the
LO result given in the previous paragraph. As it turns
out, the next-to-leading order (NLO) value of L depends
on the model space employed in the calculation, but the
method to compute the IR length is system independent.
For a single particle in d = 3 dimensions (or the deuteron
in the center-of-mass system), More et al. [8] derived a
very precise value of L by equating the lowest eigenvalue
of the squared momentum operator in the finite oscilla-
tor basis with (π/L)2, i.e. the lowest eigenvalue of the
squared momentum operator in the infinite spherical well
of radius L. The result (for a single particle in d dimen-

sions) is

L = L2(d) ≡
√

2(N + d/2 + 2)b. (1)

This result is NLO in N . While derived for a single-
particle system, it has also been applied in extrapolations
of nuclei with mass numbers A > 2, see, e.g., Refs. [9–12].

Very recently, Furnstahl et al. [13] derived a pre-
cise value of the IR length scale for A-fermion systems
whose Hilbert space is a Cartesian product of single-
particle oscillator spaces truncated at N . Such a Hilbert
space is employed by several quantum many-body meth-
ods [9, 14–20]. The key was again to equate the lowest
eigenvalue of the total squared momentum operator in
the finite oscillator basis to the lowest eigenvalue of the
A-body kinetic energy in an infinite spherical well of ra-
dius L, keeping the exact dependence on N . The result-
ing IR length L differs in NLO from L2, and numerical
values are tabulated in Ref. [13].

We are still lacking a precise value of the IR length
scale L for the many-body model space truncation em-
ployed in the no-core shell model (NCSM) [21, 22]. This
widely used method [23–29] employs a total energy trun-
cation, i.e. a Hilbert space of all A-body product states
with an energy not exceeding N tot

max~ω. In the NCSM
literature, the model space is usually specified by the
number of excitations above the lowest configuration for
the symmetry (parity, numbers of protons and neutrons)
of interest. We will denote this truncation by NNCSM

max

in order to distinguish it from the total number of ~ω
quanta, N tot

max. The many-body character of this trunca-
tion implies that the total squared momentum operator is
not a single-particle operator in this model space (and its
eigenstates are not product states). Thus, the IR scale
derived by Furnstahl et al. [13] is only a leading order
approximation of the many-body IR length scale. It is
the purpose of this Rapid Communication to precisely
determine the IR length scale of the NCSM.

We finally note that the convergence and corrections
due to finite model spaces are also studied for interacting
particles on lattices. Here, too, the effects of hard walls
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or periodic boundary conditions onto many-body bound
states are of particular interest [30–35]. In contrast to
the harmonic oscillator, the precise IR and UV cutoffs
are easily identified on the lattice, and the effort goes
into extrapolation formulas for relevant observables.

Infrared length scale of the NCSM – Let us consider
A = 3 spinless fermions in d = 1 dimensions as an il-
lustrative example. Following Refs. [7, 8, 13], we seek to
equate the kinetic energy of this system in the NCSM
space to the kinetic energy of a corresponding system
in an infinite well of radius L. Our task consists of de-
termining what the corresponding system really is. The
Hilbert space is spanned by Slater determinants

φn1n2n3
(x1, x2, x3) = det [ψni

(xj)]i,j=1,2,3 (2)

of harmonic oscillator (HO) wave functions ψn(x), and
we only include three-body states that fulfill the total
energy truncation

A∑
i=1

ni ≤ N tot
max . (3)

The key insight is that this Hilbert space of A = 3 par-
ticles in d = 1 dimensions is equivalent to that of a sin-
gle particle in Ad = 3 dimensions, spanned by three-
dimensional spherical harmonic oscillator wave functions

φnlm(r) = φnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ) . (4)

Here, Rnl is a radial wave function and Ylm are spherical
harmonics. The NCSM truncation of Eq. (3) is equiv-
alent to allowing only those single-particle basis states
φnlm with 2n+ l ≤ N tot

max. However, we also need to con-
sider the antisymmetry of the A = 3 wave function. If we
align the projection axis of the spherical basis along the
line x1 = x2 = x3, antisymmetry can be obtained with
wavefunctions proportional to sin 3ϕ , i.e. m needs to be
a multiple of three, which implies l ≥ 3. Thus, with this
additional symmetry constraint, the NCSM truncation
for A = 3 particles in d = 1 dimensions naturally corre-
sponds to a single particle in Ad = 3 dimensions, with
single-particle energies limited to N tot

max. The IR proper-
ties of the single particle in a three-dimensional oscilla-
tor space are well known [8], and the harmonic oscillator
truncation imposes a Dirichlet-like boundary condition
on the radial coordinate.

As a check, we compute the eigenvalues of the kinetic
energy for A = 3 fermions in d = 1 dimension (in a
NCSM model space with N tot

max = 80) and compare them
to the kinetic-energy spectrum of a three-dimensional
hyper-radial well. The antisymmetry of the former sys-
tem manifests itself as a discrete symmetry of the latter.
The results are shown in Fig. 1 (middle and left spectrum,
respectively) and also compared to the kinetic energy
spectrum for three fermions in a one-dimensional infinite
well (right spectrum). In each case, the entire spectrum
is proportional to the inverse square of an underlying
length scale, so we plot the eigenvalues Ti in units of the

lowest kinetic energy eigenvalue T0 to remove this depen-
dence. Clearly the NCSM spectrum closely matches that
of the hyper-radial well, but not that of three particles
in an infinite square well.

Hyper-radial well NCSM Square well

1

2

3

4

T
i/
T

0

1D, A=3, N tot
max =80

FIG. 1. Comparison of kinetic energy spectra for three
fermions in a hyper-radial well (left), three fermions in a one-
dimensional NCSM basis (middle), and three fermions in a
one-dimensional infinite square well (right).

We can generalize these results as follows. The Hilbert
space of A nucleons in d = 3 dimensions subject to
the NCSM truncation identified by N tot

max is equivalent
to that of a single particle, with certain discrete sym-
metry constraints, in an Ad-dimensional HO space with
single-particle energies up to N tot

max excited quanta. At
low momenta, the latter is equivalent to a hyper-radial
well. Equating the kinetic energies yields the size of this
well and consequently the IR length L of the correspond-
ing NCSM basis. Alternatively, the NCSM truncation
can also be viewed as a system of A fermions confined to
an Ad dimensional hyper-radial well.

Let us therefore compute the eigenvalues of the kinetic
energy for a D-dimensional hyper-radial well with an in-
finite wall at hyper radius L. The hyperspherical ba-
sis states can be labeled as |ρGα〉, where ρ is the hy-
per radius, G is the grand angular momentum, and α
is the collection of all other partial-wave quantum num-
bers. The kinetic energy operator is block diagonal in
both G and α, so we will focus on a single arbitrary hy-
perspherical partial wave. The hyper-radial part of the
non-interacting Hamiltonian is

−
(
∂2

∂ρ2
− L(L+ 1)

ρ2

)
ψG(ρ) = Q2ψG(ρ) , (5)

where L = G+(D−3)/2 and Q2 is the total squared mo-
mentum. The hyper-radial eigensolutions of this Hamil-
tonian are

ψG(ρ) =
√
QρJL+ 1

2
(Qρ) , (6)

where Jν(X) is a Bessel function of the first kind. Im-
posing a Dirichlet boundary condition at ρ = L implies
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that QL is a zero of JL+ 1
2
. We denote the ith zero as

Xi,L. The selection criteria for L (yielding an antisym-
metric wavefunction) will be discussed below, but the en-
tire spectrum of our well is now completely determined
by a minimum value of L and the hyper radius L of the
well

{Q2
i,n} = {L−2X2

i,Lmin+2n ∀i, n ∈ Z }. (7)

Here L = Lmin+2n labels states of the same parity.
The next critical ingredient is the lowest eigenvalue of

the kinetic energy operator in the NCSM basis. Recall,
that even though T̂ is a one body operator, the NCSM
truncation effectively promotes it to an A-body operator

T̂NCSM =

(
A∑
i=1

p̂2
i

)

×Θ

(
N tot

max~ω −
A∑
i=1

(
p̂2
i

2M
+
Mω2

2
x̂2
i −

3

2
~ω
))

. (8)

Here Θ denotes the unit step function that enforces the
NCSM truncation. Even though T̂NCSM is an A-body
operator, the hyperspherical basis can be used to ease
the computational requirement for finding its eigenval-
ues. Similar to the example discussed above, we can ex-
pand any product of three-dimensional HO states into
hyper-radial harmonic oscillator states.

Likewise the transformation is block diagonal in the

total oscillator quanta
∑A
i=1(2ni + li) = 2N + G, where

N is the nodal quantum number for the hyper-radial co-
ordinate. Exploiting this block diagonal structure, we
need to only diagonalize small matrices, with dimension
5 – 20, instead of the full dimension of the NCSM basis.
The kinetic energy matrix elements are

〈NGα| T̂NCSM |N ′G′α′〉 =

δG
′

G δα
′

α

~ω
2

[
δN

′

N

(
2N + L+

3

2

)

+δN<+1
N>

√
(N< + 1)

(
N< + L+

3

2

)]
, (9)

and it will be sufficient to consider a single hyperspher-
ical channel with grand angular momentum G. Here
N< ≡ min (N,N ′), N> ≡ max (N,N ′), and N,N ′ run

from 0 to
⌊
Ntot

max−G
2

⌋
, with the brackets b.c denoting the

integer part of their argument. We denote the needed
dimensionless eigenvalues as Ti,L(N tot

max) such that

T̂NCSM |i〉 =
~ω
2
Ti,L(N tot

max) |i〉 (10)

The smallest permitted eigenvalue is driven by the
smallest symmetry-allowed value of L = G+ (D − 3)/2.
For a single product state, D = 3A, and G can be de-
composed as

G =

A∑
i=1

li +

A−1∑
i=1

ni,i+i . (11)

Here li is the orbital angular momentum and ni,i+1 is the
nodal quantum number for the hyper-angle between the
radial coordinates ri and ri+1, and A is the number of
single-particle coordinates. In a single-particle basis, this
means Gmin =

∑
i li,0, where li,0 are the orbital quantum

numbers from the lowest (symmetry-allowed) energy con-
figuration in the basis.

NCSM calculations for A > 6 usually employ single-
particle coordinates (instead of relative coordinates [36,
37]). However, the NCSM eigenstates are products of
a center-of-mass state and an intrinsic state. Thus, the
relevant IR length is an intrinsic scale. The dimension of
the intrinsic basis is D = 3(A − 1), and Gmin is deter-
mined by the sum of intrinsic orbital angular momenta
that can couple with spins to give the ground state an-
gular momentum J and parity Π. For light nuclei, and
in the intrinsic coordinate system, Gmin = 0 (1) for even
(odd) parity states.
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FIG. 2. Discrete intrinsic kinetic energy spectra for A = 4, 6
particles in the NCSM (right pane) and for the corresponding
D = 3(A− 1) dimensional hyper-radial infinite well. In each
case, we plot in units of the smallest eigenvalue.

The close similarity of the kinetic energy spectra of
3(A − 1)-dimensional hyper-radial wells with Dirichlet
boundary condition and the corresponding intrinsic ki-
netic energies in a NCSM basis for A = 4, 6 particles
in three dimensions is shown in Fig. 2. For the large
values of N tot

max employed in this numerical comparison,
the agreement between the spectra persists up to highly
excited states.

The intrinsic IR length is now obtained by equating
the lowest kinetic energy eigenstate in the hyper-radial
well, from Eq. (7), and the first eigenstate in the NCSM
basis, from Eq. (10). This yields

Leff = b
X1,L√

T1,L(N tot
max)

(12)

with

L =

{
3(A−2)

2 , for even parity,

1 + 3(A−2)
2 , for odd parity.

(13)



4

Numerical values for Leff are tabulated in the Supple-
mental Material [38].

Following König et al. [4] we exploit the duality of
the HO Hamiltonian under the exchange of position and
momentum operators and identify the UV scale of the
NCSM as

Λeff =
X1,L

b
√
T1,L(N tot

max)
= Leff/b

2 (14)

To illustrate that Leff is indeed the correct IR scale
of the NCSM basis we perform large-scale calculations
of 6Li for a wide range of HO frequencies ~ω. We
used the nucleon-nucleon interaction NNLOopt [39] in
model spaces up to NNCSM

max = 18 (N tot
max = 20). The

UV-regulator cutoff of this interaction is 500 MeV. The
model-space parameters (~ω,NNCSM

max ) were converted to
(Leff ,Λeff), using Eq. (12) and Eq. (14).

The right panel of Fig. 3 shows that a common, ex-
ponential envelope is formed by the data with large UV
cutoffs when plotted as a function of Leff . In particular,
at a given value of Leff , the energy with the largest UV
cutoff Λeff is lowest in energy. We also find that results
from smaller model spaces deviate rather quickly from
the IR envelope due to lack of UV convergence. The left
panel of Fig. 3 shows the same energies plotted as a func-
tion of the IR scale L2, with N in Eq. (1) corresponding
to the highest single-particle state in the basis. While
the points fall close to a line, no envelope is formed, and
the data with the highest UV cutoff Λ2 = L2/b

2 is not
lowest in energy at given L2. The comparison of the left
and right panels demonstrates that Leff is a much more
precise IR length for the NCSM than L2, and this leads
to more stable extrapolations.

Extrapolation results – The exponential IR extrapola-
tions [5–7] can be generalized to the NCSM by employing
the asymptotic wave function

ψ(ρ)→ eκρ − e−2κLe+κρ (15)

that is consistent with the Dirichlet boundary condi-
tion at hyper radius ρ = L. Here, κ denotes a hyper-
momentum. Asymptotically, i.e. for κL → ∞, the ap-
proximation (15) holds for any value of the grand an-
gular momentum. For nonzero grand angular momen-
tum, corrections to the coefficient exp (−2κL) are of or-
der (κL)−1, similar to corrections due to finite angular
momentum for a single particle in three dimensions [7].
Thus, we will use a simple exponential form

E(L) = E∞ + ae−2κ∞L , (16)

for IR extrapolations of bound-state energies. Here, the
extrapolated energy E∞ and the parameters a and κ∞
will be fit to data points obtained in model spaces char-
acterized by the IR length L. For the two-body system,
a and κ∞ are related to the asymptotic normalization
coefficient and binding momentum, respectively [8].

In the NCSM the computational expense grows rapidly
with increasing N tot

max. The IR extrapolation of a bound-
state energy is useful if the resulting E∞ (obtained from

NCSM spaces with up to N tot
max) is closer to the exact

result than the variational minimum energy that can
be computed in a NCSM space with N tot

max. To locate
the minimum, one needs at least three NCSM calcula-
tions. For IR extrapolations, one needs also at least three
NCSM calculations, with parameters Leff and Λeff such
that (i) Leff significantly exceeds the radius of the nu-
cleus under consideration, (ii) Λeff significantly exceeds
the UV cutoff of the interaction, and (iii) the resulting
energies are negative.

Figure 4 shows extrapolations for the ground-state en-
ergies of 4He, 6He, 6Li, 7Li, 10B, and 16O. For the
A = 4, 6 systems we can perform NCSM calculations
in very large model spaces for which the ground-state
energies are virtually converged. However, in order to
benchmark the effectiveness of the extrapolation we ar-
tificially restrict our data set to smaller models spaces,
N tot

max ≤ 10 and N tot
max ≤ 14 respectively. For 7Li, we use

energies from model spaces with N tot
max ≤ 17. The extrap-

olations for the nuclei 10B and 16O employ energies from
a single model space of N tot

max = 16 and N tot
max = 20, re-

spectively. Energies from smaller model spaces were not
deemed sufficiently UV converged, as can be seen in the
corresponding panels. For each nucleus, we select data
with Λeff large enough that all points fall on a single nar-
row envelope, and Leff large enough that E(Leff) − E∞
is exponential. The blue horizontal bands give an esti-
mate of the uncertainly of the fit, obtained from refitting
with all possible pairs of data excluded from the data
set. Table I summarizes the results. The comparison
to benchmark results shows that IR extrapolations are
useful.

TABLE I. Energies (in MeV) of ground states with given spin
and parity for several nuclei. Benchmark results Eref from
coupled-cluster calculations for 16O [39], and from the NCSM
for 4,6He, 6Li, are obtained in large model spaces with N tot

max =
20 (equivalent to NNCSM

max = 18 for A = 6). Extrapolated
energies E∞ (with fit parameter κ∞ in units of fm−1) and
variational minimum energies Evarmin are from smaller model
spaces with N tot

max.

Nucleus Eref Evarmin E∞ N tot
max κ∞

4He(0+) −27.76 −27.51 −27.59 10 0.87
6He(0+) −27.13 −26.12 −27.48 14 0.45
6Li(1+) −30.27 −29.18 −30.70 14 0.46
7Li( 3

2

−
) — −35.51 −37.78 17 0.48

10B(3+) — −54.24 −54.60 16 0.40
16O(0+) −130.1 −109.77 −115.36 20 0.44

Summary – We determined the IR length scale of
the NCSM by equating the intrinsic kinetic energy of
A fermions subject to the NCSM truncation to the ki-
netic energy of A fermions in a 3(A−1) hyper-radial well
with Dirichlet boundary condition for the single collec-
tive variable ρ. Calculations of 6Li in large NCSM spaces
show that the resulting IR length Leff is correctly identi-
fied. We applied this result to extrapolate ground-state
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FIG. 3. Ground-state energy of 6Li plotted as a function of the IR scale determined by either L2 [8] (left panel) or Leff from
this work (right panel). The color of each circular marker indicates the UV cutoff of that calculation, with darker colors
corresponding to larger cutoffs. Insets show ∆E = E(L,Λ) − E∞ on a semi-logarithmic scale.
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a black border are included in the extrapolation. The solid red curve shows the exponential fit (16), and the horizontal red
line marks the value of E∞ with uncertainty estimates indicated as blue bands. The dashed black line marks the variational
minimum Evarmin for the largest model space included in the fit.

energies in 4,6He, 6,7Li, 10B, and 16O. The comparison
with benchmark results shows that extrapolated energies
are closer to the benchmarks than the minimum varia-
tional energies obtained in the model spaces utilized for
the extrapolation. Further progress would depend on a
better understanding of the extrapolation formula for the

NCSM and in particular on combined UV and IR correc-
tion terms.
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[22] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part.
Nucl. Phys. 69, 131 (2013).
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